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Overview

These notes review the following main concepts:

• Definition of quantities as ratios

• Derivatives as ratios of increments in a function f(x) over corresponding incre-
ments in x

• Differentiation as giving the slope of a graph

• Integrals as Riemann sums

• Integrals as areas under graphs

• Integrals as inverses of differentiation

These will be needed throughout the course.

Ratios

In physics and other areas of science, there are many quantities defined as ratios.
Take the simple, high school definition of velocity

velocity =
displacement

time elapsed

You will hopefully know that velocity is a a vector. We can keep things simple here
by looking only at the velocity of something that moves along a straight line, for
instance a car on a straight road. Let D be displacement — positive if motion is in
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one agreed-upon direction along the straight line, for instance North along a North-
South road, and negative if in the other direction —and T time elapsed. Then the
equation above can be written as

v =
D

T
. (1)

Why does it make sense to define velocity as this particular ratio?
We presumably want velocity to be something that is bigger if the displacement

D travelled in a fixed time interval T is bigger, for instance a car that covers 100
metres in 5 seconds is going faster than a car that covers only 50 metres in 5 seconds.
We also want velocity to be bigger if the time T taken to cover a fixed distance D is
shorter. For instance, a car that takes 5 seconds to cover 100 m is going faster than
one that takes 10 seconds. So we want v to go up when D is made larger or when T
is smaller. The definition above certainly does that. But so would many others: for
instance

v =
D

T 2

also increases with increasing D and decreasing T . So why specifically the ratio

v =
D

T
?

The real answer is that we expect distance covered to be proportional to time
elapsed, at least for steady motion — something we will come back to shortly. In
other words, wait twice the amount of time and the distance covered will be twice as
large. Symbolically,

D ∝ T

which means ‘D equals T times some constant of proportionality.’ Velocity is precisely
that constant of proportionality

D = vT. (2)

There are other examples we can easily think of. Why define density as

ρ =
M

V

for a sample of material of mass M occupying volume V ? We could go through
the same argument as above — density increases when M is increased and decrease
when V is increased, but there are many ways of combining M and V that do just
that, besides M/V . The point is once more that, for a given material under constant
conditions of pressure, temperature etc, we expect mass to be proportional to volume:
twice the volume of the same stuff will contain twice the mass, so

M ∝ V.

ρ is now the constant of proportionality, M = ρV .
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Differentiation

The argument that distance travelled D is proportional to time T is true only if the
motion is steady: the velocity does not change. So how should we understand velocity
when it is changing? If D and T are not proportional to each other, then

D

T

is not constant, but depends on the time T elapse. Figure ?? illustrates this. This
also means we cannot sensibly define v = D/T as velocity at a particular point in
time, since the value of v then depends on the interval T .

The point is that, over a short time interval, velocity does not change by much.
Even if there are forces acting on an object, these take time to change its velocity. This
means that, provided the time elapse T is short, the distance D is still proportional
to T , something which you might think of as an approximate proportionality that
holds only when T is short.

Using D and T as symbols is not really the most useful approach now. We have
just discussed that D depends on T , so we need to think of displacement as a function
of time elapsed. For small T , that function can be approximated by

D ≈ vT, (3)

but that does not work in general for larger time intervals.
More useful still is to recognize that displacement is the difference between the

position of the travelling object at some initial time t0 and some later time t1. This
means we should define position as a function of time, for instance as

x = x(t).

Then
D = x(t1)− x(t0), T = t1 − t0

and (3) becomes
x(t1)− x(t0) ≈ v × (t1 − t0)

provided the time t1 is close to the original time t0. From this, the velocity can be
approximated by

v ≈ x(t1)− x(t0)

t1 − t0
. (4)

Basically, we are starting a stopwatch at an some given initial point in time t0, having
measured the initial position x(t0) and waiting until t1 to measure a new position x(t1)
in order to compute velocity.

We assume that the approximation involved in (4) becomes better and better as
the time interval t1 − t0 is shrunk, which we do by allowing less time to elapse from
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the initial instant t0. In other words, we ‘move’ the time t1 at which we choose to
stop the stopwatch closer and closer to the initial instant t0 at which the stopwatch is
started. In practice, the choice of time interval is limited by the accuracy with which
we can keep time and with which we can measure position. The question of how short
the tune interval t1 − t0 needs to be in order for (4) to give a good approximation
depends on the particular physical situation: if we try to measure the velocity of a
car, we may need to make the time interval a small fraction of a second (cars can
brake and accelerate significantly in the space of a second) while when measuring the
velocity of a planet like the Earth, a time interval of a day may suffice (because a day
is short compared with the length of time it takes the Earth to complete an orbit,
during which its velocity changes significantly).

Mathematically, we can sidestep that issue by saying that we take the limit of t1
approaching the fixed initial time t0, and put

v = lim
t1→t0

x(t1)− x(t0)

t1 − t0
. (5)

Note that this is a matter of definition: we simply agree that this is a sensible way
of defining the concept of ‘velocity’ mathematically. Mathematically, of course, the
issues of being able to measure the time interval t1 − t0 and the positions x(t1) and
x(t0) do not occur, so we can take a limit.

Note 1 One thing that is important about the definition (5) is that it is consistent
with the earlier definiton (1). If velocity is constant, the two definitons give the
same answer. With constant velocity, we can compute the same value of v through
v = D/T = [x(t1)− x(t0)]/[t1 − t0], regardless of how big t1 − t0 is. The limit on the
right-hand side of (5) becomes obsolete, but doesn’t change the answer. Retaining the
limit simply generalizes the original definition (1).

Note 2 You may have read or heard about the mathematical definition of a limit.
This course is not concerned with formal mathematics, but with making conceptual
and practical connections between mathematics and physical sciences, in particular
geophysics, and especially in using mathematics to formulate geophysics questions
and finding answers to them. Nonetheless, it is still worth knowing about formal
definitions and why they work. The explanation below only scratches the surface of
what a limit is and how to deal with limits in practice, but you may find it useful
nevertheless — although you will not need it to follow the rest of the course.

(5) formally says that, given a fixed initial time t0 and any positive number δ, no
matter how small, we can find another positive number ε that is small enough so that∣∣∣∣v − x(t1)− x(t0)

t1 − t0

∣∣∣∣ < δ whenever |t1 − t0| < ε (6)

Now, what does that actually mean?
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Remember that
x(t1)− x(t0)

t1 − t0
(7)

is displacement travelled over time elapsed for some finite time interval t1 − t0; this
is a quantity we could actually calculate from measurements, assuming we can make
measurements accurately enough. We see that this is used as an approximation to
velocity in (4). But what does it mean to say it is an ‘approximation’?

The first inequality in (6), ∣∣∣∣v − x(t1)− x(t0)

t1 − t0

∣∣∣∣ < δ

tells us that the difference between the actual velocity v and its approximation by
[x(t1)− x(t0)]/(t1 − t0) — which is the same as D/T — is less than δ. The modulus
sign simply takes care of the possiblity that the difference between actual velocity and
its approximation might be negative. Think of δ as an error tolerance. We measure
[x(t1) − x(t0)]/(t1 − t0), and we want that to be close to the actual velocity. In this
case, we are saying we want it to be closer to v than the amount δ; ‘closeness’ is
quantified as the difference between the two quantities. What the definition of the
limit says is that, no matter how small or ‘tight’ we make our error tolerance δ, we
can always shrink our measurement interval t1 − t0 to a level so that we meet that
error tolerance. ε simply tells us how small the time interval needs to be in order to
meet the error tolerance. Generally, of course, the smaller the error tolerance δ, the
smaller the allowable time interval ε.

Now, (5) is nothing more than the definition of a derivative. It just takes getting
used to the fact that a derivative can be written in a number of different ways, by
re-writing (5) using simple algebra.

Perhaps the most common way to write a derivative, at least in physics, is this:
instead of saying I have an initial time t0 and a final time t1, I can say I start at time
t0 and wait a time interval δt. This is nothing more than defining the time interval
δt trough

δt = t1 − t0, (8)

There is nothing magic about combining the letters δ and t; δt is a number, just like
t1 and t0. The δ part of the notaiton is meant to remind you that δt is small — the
amount of time elapsed is short.

But then
t1 = t0 + δt,

and, substituting for t1,
x(t1) = x(t0 + δt).

We can therefore rewrite (5) as

v = lim
t1→t0

x(t0 + δt)− x(t0)

δt
. (9)
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However, the limit as t1 → t0 is the limit of t1 − t0 → 0, so δt→ 0. Therefore

v = lim
δt→0

x(t0 + δt)− x(t0)

δt
. (10)

You hopefully recognize this as the definition of the derivative of x with respect to t,
at the point in time t = t0. Mathematicians often do not like writing δt; instead they
will use ‘h’. Replacing δt by h throughout, we get

v = lim
h→0

x(t0 + h)− x(t0)

h
.

Note 3 You will probably know a derivative as the ‘slope of a graph’. This comes
from the slope of a straight line, which we define as ‘rise over run’. If x against t
were a straight line, then ‘rise’ would be change in x and ‘run’ would be change in t,
given by x(t1) − x(t0) and t1 − t0, respectively. This suggests that slope is again the
ratio

x(t1)− x(t0)

t1 − t0
.

When x plotted against t is not a straight line, then this is the slope of the straight
line connecting the point (t0, x(t0)) to the point (t1, x(t1)). This straight line intersects
the actual curve x(t) in two points. We can move the two points closer together by
letting t1 approach t0. As we do this, the angle of the straight line changes, and the
line more and more appears to just ‘touch’ the curve. In the limit of t1 → t0, we say
that the straight line becomes a tangent to the curve x(t); the slope of that tangent is
then the limit of [x(t1)− x(t0)]/(t1 − t0), or in other words, the derivative.

Of course v is itself a function of time; the definition (10) gives v evaluated at a
point in time t0, which we took to be fixed as δt is made smaller, but which could
actually be any point in time: If we make measurements of [x(t0 + δt)− x(t0)]/δt at
different times t0, always using very small time intervals δt over which the displace-
ment x(t0 + δt) − x(t0) is measured, we will get different answers depending on the
starting time t0 for each measurement. So v depends on t0.

Generally, if we simply relabel t0 by t (these are just labels, there is nothing special
about using the symbol t0 to denote an instant in time instead of using t), we have

v(t) =
dx

dt
= lim

δt→0

x(t+ δt)− x(t)

δt
.

The notation dx/ dt is often used for a derivative. This is because the derivative is
the limit of a change in x (i.e. the displacement x(t0+δt)−x(t0) over the corresponding
change in t (i.e., δt). That notation becomes clearer if we define δx in the same way
we defined δt above, by writing

δx = x(t+ δt)− x(t).
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In that case, (5) becomes

v =
dx

dt
= lim

δt→0

δx

δt
.

Note 4 It is worth remembering that the notation dx/ dt is meant to remind you of
the ratio δx/δt but is not quite the same; there is no finite dx being divided by a finite
dt here, dx/ dt refers to the limit if the ratio δx/δt, in which there is neither a finite
δt nor a finite δx. If you were to try to define dt = limδt→0 δt, you would simply get
dt = 0, and similarly dx = 0; the ratio of these would be 0/0, which is not defined.
So you have to take the limit of the ratio, not take the ratio of the limits of δx and
δt.

In this course, the formalism of taking limits is not the main point. What you
will need to develop is understanding that, for very small δt, ratio

δx

δt

becomes a better and better approximation of the actual derivative

v(t) =
dx

dt
,

when δt is made smaller and smaller, and that therefore the displacement travelled δx
can be approximated as being proportional to δt, with the constant of proportionality
being the instantaneous velocity:

δx ≈ v(t)δt. (11)

This is what we mean by ‘rate of change of x with respect to t’: the small change
δx that happens in time δt is approximately proportional to δt, with the constant of
proportionality being the ‘rate of change’.

Note 5 Rephrasing the contents of note 2, what we mean by saying that δx/δt be-
comes a better and better approximation to the actual derivative v(t) as δt is made
smaller and smaller is that the difference between the approximation δx/δt and the
actual derivative v = dx/ dt goes to zero as δt goes to zero:

lim
δt→0

(
δx

δt
− v(t)

)
= lim

δt→0

(
x(t+ δt)− x(t)

δt
− v(t)

)
= 0.

This is straightforward to see from the definition of the derivative

v(t) = lim
δt→0

x(t+ δt)− x(t)

δt
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if we rearrange to

lim
δt→0

(
x(t+ δt)− x(t)

δt

)
− v(t) = 0

and recognize that v(t) does not depend on δt (v is simply a function of time t, but
not of the measurement time interval δt). This means v(t) = limδt→0 v(t). Then the
fact that the sum of limits of two functions is the limit of the sum of the functions
gives us

lim
δt→0

(
x(t+ δt)− x(t)

δt

)
− lim

δt→0
v(t) = lim

δt→0

(
x(t+ δt)− x(t)

δt
− v(t)

)
= 0

as expected.

Exercise 1 Let f(x) = exp(x).

1. Plot f(x) against x (use your favourite software package)

2. What is df/ dx at x = 1?

3. Calculate δf/δx for x = 1 and for (a) δx = 1, (b) δx = 0.5, (c) δx = 0.1, (d)
δx = 0.05, (e) δx = 0.01, (h) δx = 0.005, (g) δx = 10−7. Below which value of
δx does δf/δx reproduce df/ dx to two significant figures?

4. Plot the straight lines connecting the points (x, f(x)) and (x+ δx, f(x) + δf) on
the graph.

5. Plot the tangent to the graph at x = 1.

Integration

Imagine now that you know the velocity v(t) changes over time, for instance from
some measurement that does not directly tell you position. Such a measurement
could be the rotation rate of an axle in a vehicle or similar. How can you use this
information to figure out where the object was at a particular point in time?

If velocity were a constant, you would simply invert the defintion of velocity (1)
to get (2), or in words, compute displacement as velocity times time elapsed. This
obviously does not work when v changes over time. However, we can still compute
small displacements δxx that occur over short periods of time δt using (11),

δx = v(t)δt. (12)

This works because, over a short time period δt we can treat the velocity v(t) as
approximately constant.
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Figure 1: The derivative of a function is the slope of the graph f(x).
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Figure 2: Position x(t) of a travelling object.
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To calculate the displacement that occurs over a longer time interval, say from an
initial time tin to a final time tf , we do not try to compute the whole displacement
at once. Instead, we split the long time interval into a lot of short ones, for each of
which we will use (12). This basically means picking many intermediate points in
time between tin and tf , which we will label t1, t2, t3, . . . , tN−1, so we have picked N
points, where N is a large number. We assume these points in time are arranged in
order, so that t2 is greater than t1, t3 is greater than t2 etc. In short,

tin < t1 < t2 < t3 < . . . < tN−1 < tf .

These points in time split the interval from tin to tf into N smaller intervals, with
lengths that we can write as

δt1 = t1 − tin, δt2 = t2 − t1, etc,

or more succinctly,
δtn = tn − tn−1

if we write t0 = tin and tN = tf .
If we space the intermediate points out fairly evenly, then, for a large number N

of these points, all the time intervals δtn between them will be small, and we can
write

δxn ≈ v(tn)δtn

where δxn is the displacement travelled in the nth interval. This must of course be
the difference between position at times tn−1 and tn,

δxn = x(tn)− x(tn−1).

We expect that the total displacement between the first and last point (between
tin and tf ) is given by summing the displacements travelled in all the short time
intervals, or

x(tf )− x(tin) =
N∑
n=1

δxn.

It is actually easy to show that this is the case:

N∑
n=1

δxn =
N∑
n=1

[x(tn)− x(tn−1]

= [x(t1)− x(t0)] + [x(t2)− x(t1)] + [x(t3)− x(t2)] + . . .+ [x(tN)− x(tN−1)]

In the sum, all terms except x(t0) and x(tN) appear exactly twice, once with a plus
sign and once with a minus sign. They therefore cancel, leaving only x(t0) and x(tN),
and

N∑
n=1

δxn = x(tN)− x(t0) = x(tf )− x(tin)
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because t0 = tin and tN = tf .
But we have δxn ≈ v(tn)δtn, so that

x(tf )− x(tin) ≈
N∑
n=1

v(tn)δtn. (13)

This becomes a better and better approximation if all the time intervals δtn are made
smaller and smaller, which of course simultaneously means the number of intervals N
must be made larger. Of course, the sum on the right-hand side of (13) is a Riemann
sum, and in the limit of small δn’s, large N , it becomes a definite intergral,

x(tf )− x(tin) =

∫ tf

tin

v(t) dt = lim
N→∞, δn→0

N∑
n=1

v(tn)δtn. (14)

Note 6 Above, we replaced the approximation sign in (13) with an equality in (14).
In a more formal course, this would require a mathematical course that involves the
definition of a limit etc. This is where we depart from formality: the purpose of this
course is not to provide you with mathematical proofs, but to give you a practical un-
derstanding of how the mathematical techniques presented apply to physics problems.

Equation (14) invovles the definite integral over v(t), which however was the
derivative of x(t) to begin with. In other words, we have one version of the fun-
damental theorem of calculus, stating that the integral over the derivative of x gives
the difference between x at the upper and lower limits of integration,

x(tf )− x(tin) =

∫ tf

tin

dx dt dt.

There is a second version of the theorem. Suppose we again put v(t) = dx/ dt, so
that

x(tf )− x(tin) =

∫ tf

tin

v(t) dt.

Now differentiate with respect to tf while holding tin constant:

d

dtf
x(tf ) =

d

dtf

∫ tf

tin

v(t) dt. (15)

The x(tin) term goes away under differentiation.
The notation on the left looks a bit awkward: we would much rather be differen-

tiating with respect to t than tf . The reason why we cannot is that we are already
using ‘t’ to denote the integration variable on the right, and t must vary from tin to
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tf . As a result, we cannot simultaneously use t to be the limit of integration.1 The
derivative on the left is in fact v(tf ); this becomes clear if we write

d

dtf
x(tf ) = lim

δt→0

x(tf + δt)− x(tf )

δt
.

This is however nothing more than the definition of v in (9) with tf replacing t0.
Therefore (15) really states that

v(tf ) =
d

dtf

∫ tf

tin

v(t) dt,

or in words, that differentiating the with respect to the upper limit gives the integrand,
evaluated at the upper limit.

Note 7 An integral is also the ‘area under a curve’. More specifically, the integral∫ b

a

f(x) dx

is the area of the region bordered by the x-axis, the line x = a, the line x = b and the
curve y = f(x). Any part of that region lying below the x-axis is considered to have
a negative area.

To see that this is the case, split the interval from a to b in the same way as above
by inserting points x1, x2, x3, . . .xN−1, with

a < x1 < x2 < . . . < xN−1 < b,

The area bordered by the curve y = f(x), the x-axis, and the vertical lines x = xn−1
and x = xn is a thin strip that can be approximated as a rectangle of width δxn =
xn−xn−1 and height y = f(xn). The size of that area is therefore given by base times
height, or

δAn = f(xn)δxn.

To get the total area, we need to sum all the δA’s, which gives

N∑
n=1

δA =
N∑
n=1

f(xn)δxn.

1t is in fact a dummy variable and could be replaced by another symbol that has not yet been
used; it would for instance be legitimate to write∫ tf

tin

v(t) dt =

∫ tf

tin

v(t′) dt′

or even ∫ tf

tin

v(t) dt =

∫ tf

tin

v(u) du

.

12



xn

x

f(x)

xn�

xn +2xn +1

�xn +1

a b

f(x )n

Figure 3: The integral of f(x) is the area under its graph, which is approximately the
sum of the area of the grey rectangles. If we increase the number of rectangles, the
approximation becomes better.

Turning this Riemann sum into an integral, it is clear that x goes from a to b, so the
area becomes ∫ b

a

f(x) dx.

The area computed for the rectangles is obviously negative if f(xn) < 0. If regions
below the x-axis are not to be treated as having negative area, the integral that needs
to be taken is ∫ b

a

|f(x)| dx.
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