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Overview

These notes cover the following:

• Conservation of energy

• Internal energy density, production rate density

• advective and conductive flux

Conservation of energy

Previously, we discussed the transport of mass, and how to represent mathematically
the fact that mass is conserved. Fundamental physics tells us that there are other
conserved quantities,such as momentum, angular momentum and energy. Like mass
in a contunuum, these are in general not concentrated in point particles, but are
distributed in space. We would like to extend the concept of density, of transport
through a flux to these quantities, and formulate a conservation law mathematically.

Momentum is harder to deal with because it is a vector quantity, and the same is
true of angular momentum. Energy, on the other hand, is a scalar, and can be dealt
with similarly to mass. The energy content of a sample of material can be composed of
a number of different forms of energy. The material may be moving at some velocity v
(which could be a function of time and position), and the material may therefore have
kinetic energy. There may also be potential energy arising from work done against
an external force such as gravity. In addition, there may be potential energy due to
the chemical composition of the material, for instance if there is a combustible or
other reactive material. This potential energy therefore depends on the composition
of the material, or more specifically, on the amounts of different chemical species. In
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addition, there is a ‘thermal’ component: the energy content of a sample of material
will change as its temperature changes.

To make our job easier, we assume here that energy content of a sample of mate-
rial can be separated additively into a macroscopic kinetic energy EK , macroscopic
potential energy EP , chemical potential energy EC and thermal energy ET ,

E = EK + EP + EC + ET , (1)

and, somewhat simplistically, that only ET depends on temperature. In what follows,
we will concern ourselves only with the thermal energy content ET of the material.

Note 1 If you are familiar with thermodynamics, you will know that separating chem-
ical potential and ‘thermal’ energy is not necesarily possible. In reality, the material
has an internal energy that covers both, the chemical potential and ‘thermal’ com-
ponents, but that these two cannot necessarily be separated neatly. The situation we
have in mind here is that only a small fraction of the material is reactive but the
amount of chemical potential energy it can realease is significant. In that case, we
can treat the reactive material as having only chemical potential energy, and the non-
reactive remainder as having only ‘thermal energy’, and the sum of the two makes up
the total internal energy. ‘Thermal energy’ is then really the internal energy of the
non-reactive component. The separation into a chemical and thermal component is a
useful simplification later.

To define the thermal energy content of a continuum, we need to define thermal
energy density ε. As with mass density, we will define this density as a field by
considering the thermal energy δe contained in a small volume δV surrounding the
point (x, y, z) at time t, and put

ε(x, y, z, t) =
δe

δV
;

the internal energy content δE is proportional to volume δV provided that volume is
small, and the thermnal energy density is the constant of proportionality.

The thermal energy content of an extended volume V is then computed by splitting
V up into small volume δV , finding their thermal energy content δe = εδV and
summing. In other words

ET =

∫
V

ε dV.

To construct a conservation law, we need to know how the thermal energy content
of a fixed volume V changes over time. As in the case of transfer of mass, one way
in which the thermal energy content can change is that material leaves or enters the
volume V , carrying thermal energy with it. Quantifying this is perfectly analogous to
the case of mass. We take the boundary S of the volume V and split it into surface

2



elements δS. We then compute the volume of material δV that passes out of the
volume V through each δS in δt.

δV = δSv · n̂δt. (2)

Exercise 1 Give a careful derivation of the result (2), making sure to explain why
the dot product v · n̂ appears. Which way does n̂ need to point? What happens if v
and n̂ are at an obtuse angle to each other?

Next, we compute the amount of thermal energy carried out of V through each
δS,

δe = εv · n̂δSδt

and the total thermal energy carried out by summing over the δS,

δE =

∫
S

εv · n̂ dSδt

The rate at which internal energy is carried out of the volume is then, explicitly
taking the limit of δt→ 0

Q = lim
δt→0

δE

δt
=

∫
S

εv · n̂ dS, (3)

where we deliberately use the same symbol Q for the rate of transfer of energy as we
did for the rate of transfer of mass; similarly, we can identify q = εv as a thermal
energy flux.

For conservation of mass, we had

d

dt

∫
V

ρ dV = −
∫
S

ρv · n dS,

and we might now be tempted to write

d

dt

∫
V

ε dV = −
∫
S

εv · n dS. (4)

There are however two crucial differences between mass and internal energy that
mean that (4) generally does not hold:

1. Thermal energy itself is not conserved; total energy is.

2. Different bits of material can exchange thermal energy.

We will address these two points separately next.

3



Production rate density

Even if there is absolutely no transport of internal energy, the internal energy content
of the volume V may still change because other forms of energy can be converted
to internal energy. Consequently, we cannot assume that (4) holds: even if v = 0,
the thermal energy content

∫
V
ε dV may not remain constant, so there is something

missing in (4).
We need a way of quantifying the rate of conversion of other forms energy into

thermal energy. It should not come as a surprise that we need to do this in a way
that allows for variations in conversion rate in space and time: for instance, when
you look at flames in a fire, you are looking at the conversion of chemical potential
energy into what we have termed ‘thermal energy’. Obviously, this conversion does
not happen uniformly in space or time, or else flames would not have spatial structure
that changes constantly.

Consider the amount δe of other forms of energy converted to thermal energy in
a volume element δV during a short time interval δt. It is natural that, so long as
δV and δt remain small, δe should be proportional to δV and δt. We will denote the
constant of proportionality by a, to get

δe = aδV δt

Obviously, a is a constant only with respect to δV and δt. It will depend on position
(x, y, z) and on time t: as we have seen, thermal energy is not produced with uniform
intensity. This is analogous for instance to how we defined ρ as the constant of
proportionality that relates δV to δm. We have

a(x, y, z, t) =
thermal energy δe produced in volume δV around (x, y, z) between t and t+ δ

δV δt

If we are to give a a name, the most ‘natural’ phrase would be be ‘thermal energy
production rate density’; ‘density’ because we have defined a as the rate of ther-
mal energy production δe/δt per volume size δV . The phrase is however a bit of a
mouthful.

Exercise 2 What are the units of a?

Suppose we know a as a function of time and position, for instance because we
know the rate at which chemical reactions are taking place. Can we compute the rate
at which thermal energy is produced in the volume V as a whole? This is easy to do:
we simply integrate to get ∫

V

a dV

Exercise 3 Why do we simply integrate? Show from first principles that
∫
V
a dV is

the rate at which thermal energy is produced by finding the total amount of energy of
thermal energy produced in the volume V in time δt in terms of a. ‘First principles’
means you make everything in your derivation explicit.
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Exercise 4 Radioactive decay releases a form of ‘chemical potential energy’, even
though the bonds being broken and formed are not chemical bonds in the ordinary
sense (between separate atoms) but are ‘bonds’ inside the nuclei of atoms.

Uranium oxide, UO2, has a density of 11000 kg m−3. Suppose that the uranium
in UO2 is purely uranium-238, with a half life of 4.47×109 years and an atomic mass
of 238 a.m.u., where 1 a.m.u. (atomic mass unit) = 1.66×10−27 kg. Oxygen has an
atomic mass of 16 a.m.u.

1. The rate at which the number n of radioactive nuclei in a sample decays is given
by the differential equation

dn

dt
= −λn,

where λ is a constant. Solve this using separation of variables, letting the number
of nuclei at t = 0 be n0. Determine, in terms of λ the time t1/2 at which
n(t1/2) = n0/2 nuclei are left.

2. t1/2 is called the half-life of the radionuclide. Find the decay constant λ in terms
of t1/2.

3. Assume you have a sample of pure uranium oxide, occupying a volume δV . In a
small time interval δt, what number δn of nuclei that will decay in the sample?
Keep δV and δt as variables, but express everything else in numerical terms.
(There is a constant of proportionality here; compute that constant of propor-
tionality numerically, making sure to state its units as well as its numerical
value.)

4. If the decay of a single U-238 nucleus produces 7.61×10−12 J of heat, what is
the amount of energy δe released in the volume δV in time δt? What is the
thermal energy production rate density a?

5. The geothermal heat flux coming out of the Earth’s surface is about 0.04 W
m−2 on average. How thick a layer of pure uranium oxide just below the Earth’s
surface would be required to generate this flux?

Conduction

Even if there was no conversion of other forms of energy into thermal energy, and no
motion of material carrying thermal energy out of V , the thermal energy content of
V could still change. Imagine heating a pot of water on an electric stove. There is
no chemical reaction or other conversion of potential or kinetic energy inside the pot
of water. There is also no movement of material into or out of the pot, especially if
we assume that there is a lid on the pot. And yet we know that we can heat the pot,
increasing its thermal energy content.
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The way this works is that electrical potential energy is converted to thermal
energy in the heating element in the stove, outside the pot. That thermal energy
is then transferred to the pot, but without there being a simultaneous transfer of
material. As a result, the transfer of thermal energy cannot be described by (3) as
v = 0 at the boundaries of the pot.

Instead of material moving and taking energy with it, the thermal energy moves
by conduction: it is simply transferred from the hotter heating element to the cooler
pot. It turns out that conduction can also be described by a flux qc. However, we
already have a flux q = εv: if there is motion of material, that material will still
carry thermal energy with it, with an associated flux εv. To distinguish transport by
motion of material from transport by conduction, we call q = εv the advective flux,
and the flux qc that describes transport by conduction the conductive flux.

Note 2 You may be tempted to call transport by motion of material ‘convection’
because you have probably come acress convection before, but not heard the word ‘ad-
vection’. Convection is however not quite the same as advection. It is a special case
of advection that occurs when the motion of material carrying heat is driven by the
fact that the material is hot and therefore less dense, so it rises buoyantly. This is
a common effect: try opening the door of a hot oven. However, there are plenty of
cases where advection occurs but not convection. If you stand under a hot shower, the
water coming out of the shower advects thermal energy towards you, but it certainly
is not rising buoyantly as it does so.

We can define a conductive flux qc(x, y, z, t) analogously to how we defined mass
flux in the notes on surface integrals. Pick a surface element δS that is tied to the
location (x, y, z) but whose orientation, defined through its normal n̂, can be changed.
Let δe be the amount of thermal energy that passes through δS due to conduction
in a short time interval from t to t + δt; naturally we expect δe to be proportional
to the size of δS and δt, but the constant of proportionality may depend not only
on location (x, y, z) and instant in time t, but also on the orientation of the surface
element δS. We can define the magnitude of flux qc by maximimizing δe with respect
to the orientation of δS:

|qc| =
maximum δe transferred through δS in δt as δS is rotated through all orientations

δSδt
,

(5)
and define the direction of qc to be the direction of n̂ when that maximum is reached.

It turns out that all the necessary information about conduction is contained in
the vector field qc defined in this way. When we have a surface at an oblique angle
to qc, it is the component of qc normal to δS that carries thermal energy across it.
The amount of thermal energy δe that passes through δS in δt is proportional to δS
and δt, the constant of proportionality being the normal component qc · n̂:

δe = qc · n̂δSδt. (6)
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Figure 1: qc·n̂ is the component of qc that is parallel to n̂, and therefore perpendicular
to δS. q can be decomposed into a part (q ·n̂)n̂ that is normal to δS, and a remainder
that is parallel to δS.

The total amount of thermal energy that conduction transfers out of S in δt is the
sum over the surface elements, δE =

∫
S

qc · n̂ dSδt, and the rate at which thermal
energy passes out through S due to conduction is

Qc = lim
δt→0

δE

δt
=

∫
S

qc · n̂ dS, (7)

just as (3) gives the rate at which heat is advected out of V .

Note 3 It is actually not trivial to show from our definition of conductive flux in (5)
that equation (6) holds. The definition of qc only tells us that (6) holds when n̂ is
aligned with q, so that the rate of heat flow across δS is maximized, in which case
qc ·n̂ = |qc|. The fact that (6) holds for surface elements oblique to qc is demonstrated
in the appendix to these notes. You do not need to know that material in order to
follow the rest of the course, however.

Conservation of energy in integral and differential

form

The thermal energy content of V can change not only due to material leaving or
entering V and carrying thermal energy with it, but also due to conduction into or
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out of V , and due to production. Summing up all these effects gives

d

dt

∫
V

ε dV = −
∫
S

εv · n̂ dS −
∫
S

qc · n̂ dS +

∫
V

a dV. (8)

As in the case of conservation of mass, we would like to turn this ‘integral form’
of the conservation law into a differential equation. We have seen two ways for doing
this for the case of mass conservation in the notes on the divergence theorem, and we
could use either. Here we opt for the second, which uses the divergence theorem.

This method has four steps. First, turn the derivative of the volume integral on
the left in a volume integral over a derivative:

d

dt

∫
V

ε dV =

∫
V

∂ε

∂t
dV.

Second, turn the surface integrals into volume integrals using the divergence theorem,∫
S

εv · n̂ dS =

∫
V

∇ · (εv) dV∫
S

qc · n̂ dS =

∫
V

∇ · qc dV

Third, substitute and combine all the terms in (8) into a single volume integral,∫
V

∂ε

∂t
+∇ · (εv) +∇ · qc − a dV = 0. (9)

Last, V is arbitrary. Recognize that if the integrand was positive in some region, we
could choose the volume V to lie in that region so the integral would be positive, in
contradiction to the equality in (9). If a positive integrand means the equation (9)
cannot be satisfied, then the integrand cannot be positive. Similarly, if the integrand
was negative in some region, the same argument would hold, So the intgerand must
be zero to make sure the integral is always zero.

∂ε

∂t
+∇ · (εv) +∇ · qc − a = 0. (10)

Of course, if the local form (10) holds, we can reverse the steps above to show that
the integral form (8) also holds, regardless of the volume V .

We can compare (10) with the equation for conservation of mass,

∂ρ

∂t
+∇ · (ρv) = 0. (11)

The two are clearly very similar: if we put a = 0, qc = 0 and ε = ρ, then (10) turns
into (11). This is because their construction was very similar, looking at the mass and
thermal energy content of a volume V using an integral over a density, and relating
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changes in that content to the rate at which mass and thermal energy flow into and
out of the volume. The difference between the two is that thermal enegry can be
produced, represented by the thermal energy production rate density a, and that it
can be transported by conduction without any movement of material, represented by
the conductive flux qc. Neither of these processes applies to mass.

Exercise 5 The other method of turning an integral statement like (8) involved look-
ing at a volume V that takes the form of a small cuboid δx δy δz, and computing the
surface integral as the sum over flux components going into and out the six different
sides of the cuboid. Follow that method (which we use at the start of the notes on the
divergence theorem) to provide an alternative derivation of (10).

The need for constitutive relations

Suppose that we know how fast the material is moving and how rapidly thermal
energy is produced, so v and a are known. Is this enough iin order to be able to use
(8) to predict changes in the thermal energy density ε? Clearly, the answer must be
‘no’, because we have too many unknowns: ε as well as the three components of the
flux qc. The problem is not closed, meaning it has too many unknowns and cannot
be solved on its own.

If you recall the previous differential equation example on pressure in the atmo-
sphere, you will see an analogous situation: we needed an equation that would link
pressure and density, which we described as a constitutive relation. The fact that we
need constitutive relations here, too, should not come as a surprise. (8) is very general
and could describe conservation of energy in any continuum, without any particular
reference to the material we are talking about or its properties. For instance, is the
material a good insulator or conductor of heat? Equation (8) on its own has nothing
to say about that.

The property that will link ε to qc is temperature. We expect that ε goes up with
temperature. We also expect that temperature will tell us about conduction: heat
generally flows from high to low temperature. We deal with the relevant constitutive
relations and the necessary calculus in the next set of notes.

Appendix: Conductive heat transport as a flux

We defined heat flux as a vector field in (5). That definition is all very well, but
there is actually nothing in it that tells us that the thermal energy transferred across
a small surface δS in δt should be related to qc through

δe = qc · n̂δSδt

when the surface δS is not oriented to maximimize δe. All we were really working off is
that δe should be proportional to δS and δt, but that the constant of proportionality
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depends on the orientation of δS. Saying the constant of proportionality depends on
orientation is the same as saying that it depends on the orientation of the unit normal
vector n̂. We should therefore have said more generally that

δe = q̃c(x, y, z, t, n̂)δSδt. (12)

Do not be distracted by the squiggle1 on q̃c: we simply want a symbol that looks
somewhat like flux (that is, like the symbol qc we have been using for flux), but
without the risk of confusing that symbol with the modulus of the flux vector qc we
have defined before. Also, do not be put off by having a function that has a vector
like n̂ as an argument; this is nothing more clever than saying that it is a function of
the components of the vector.

We have said that n̂ defines the orientation of δS. Obviously, δS has two possible
normals that are equal and opposite to each other. As before, we take n̂ to point
towards the side of δS to which δe is being transferred, and treat a negative amount
of energy transferred to mean a positive amount transferred in the opposite direction.
This means we immediately know that

q̃c(x, y, z, t, n̂) = −q̃c(x, y, z, t,−n̂). (13)

Obviously, δe, δS and δt are scalars, and therefore q̃c(x, y, z, t, n̂) is also a scalar
for given position (x, y, z), time t, and orientation n̂ of the surface element δS. What
we would like to show is that

q̃c(x, y, z, t, n̂) = qc(x, y, z, t) · n̂. (14)

where qc is defined in (5), as this would ensure that (6) holds. However, we can-
not assume that this is the case. The only thing we know from the way we have
constructed the flux is that

|qc(x, y, z, t)| = max
n̂

q̃c(x, y, z, t, n̂),

where ‘maxn̂’ denotes the maximum taken as n̂ is varied over all possible orientations.
If we cannot rely on (6) but have only (12) to work with, the the rate at which

thermal energy is conducted out of a volume V is therefore no longer given by (7)
but by

Qc =

∫
S

q̃c(x, y, z, t, n̂) dS (15)

where n̂ is as before the outward-pointing normal. The conservation law then becomes

d

dt

∫
V

ε dV = −
∫
S

εv · n̂ dS −
∫
S

q̃c(x, y, z, t, n̂) dS +

∫
V

a dV,

or, after a bit of manipulation,∫
S

q̃c(x, y, z, t, n̂) dS +

∫
V

∂ε

∂t
+∇ · (εv)− a dV. (16)

1the squiggle˜is usually called a ‘tilde’
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Figure 2: Energy exchange between two volumes V1 and V2: conductive heat flow out
of V1 has to be mass flow into V2

Note 4 With Qx given by (15), we can see why (13) needs to hold. If we have two
neighbouring volumes V1 and V2 (see figure (2), we can compute the rate of conduction
out of V1 through the shared boundary Si as

Q1 =

∫
Si

q̃c(x, y, z, t, n̂1) dS,

and the rate of conduction out of V2 as

Q2 =

∫
Si

q̃c(x, y, z, t, n̂2) dS.

The two need to be equal and opposite — what flows out of V1 has to flow into V1, so
Q1 +Q2 = 0 or ∫

Si

q̃c(x, y, z, t, n̂1) + q̃c(x, y, z, t, n̂2) dS = 0.

With n̂2 = −n̂1, ∫
Si

q̃c(x, y, z, t, n̂1) + q̃c(x, y, z, t,−n̂1) dS = 0, (17)

which is certainly the case of (13) holds. With the volumes and their contact area Si
being arbitrary, we could actually show that (17) must hold.

This must hold for arbitrary V , so let V be the triangular prism shown in figure
3, where the shaded face of the prism (labelled δS1) is oriented at right angles to the
flux vector qc we defined before, with the flux qc pointing into the volume, so in the
opposite direction to the outward-pointing unit normal labelled n̂1. This means that

q̃c(x, y, z, t,−n̂1) = |qc(x, y, z, t)|
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for the normal direction n̂1 to that face.
We assume the prism is very small, and this allows us to approximate surface and

volume integrals by evaluating the integrands at (x, y, z) = (x0, y0, z0) (the vertex
shown in figure 3 and multiplying the integrands by the relevant surface areas and
volumes. When we apply this to (16), the result we get (which we demonstrate in
more detail in note 5) is that

q̃c(x0, y0, z0, t, n̂1)δS1 + q̃c(x0, y0, z0, t, n̂2)δS2 + q̃c(x0, y0, z0, t, n̂3)δS3 = 0. (18)

In other words, at ‘leading order’ we can ignore advection, changes in thermal energy
storage and thermal energy production for a very small volume (because the volume
size δV gets smaller much faster than the surface area δS as we shrink the volume, so
the volume integral gets smaller faster than the surface integral), as well as conduc-
tion through the bottom and top faces of the prism (because they cancel each other
automatically in the limit of a small volume) and require that conduction through
the three faces δS1, δS2 and δS3 must cancel.

Then, knowing that δS1 = δS3 cos(θ) and δS2 = δS3 sin(θ). we get the simpler
form of (18)

q̃c(x0, y0, z0, t, n̂3) + cos(θ)q̃c(x0, y0, z0, t, n̂1) + sin(θ)q̃c(x0, y0, z0, t, n̂2) = 0. (19)

Note 5 Here we will show that (18) and (19) must hold. The triangular face is a
right-angled triangle has sides δa and an interior angle θ as shown, and the prism has
height δa. The prism has a small base area δ2 sin(θ) cos(θ)/2 and therefore a small
volume δV = δa2δb sin(θ) cos(θ)/2. The volume integral on the left-hand side of (16)
can therefore be approximated as integrand times volume,(

∂ε

∂t
+∇ · (εv)− a

)∣∣∣∣
(x0,y0,z0)

δa2δb sin(θ) cos(θ)/2,

the integrand being evaluated at the point (x0y0, z0) indicated in figure 3
Because the prism is small, we can also approximate the surface integrals as in-

tegrand times surface area for each of the faces of the prism (each face having a dis-
tinct normal n̂, and therefore a distinct integrand q̃c(x0, y0, z0, t, n̂)). Label the faces
as shown in figure 3, in which case we have δS1 = δaδb cos(θ), δS2 = δaδb sin(θ),
δS3 = δaδb and δS4 = δS5 = δa2 sin(θ) cos(θ)/2. With those, we have∫
S

q̃c(x, y, z, t, n̂) dS ≈δS1q̃c(x0, y0, z0, t, n̂1) + δS2q̃c(x0, y0, z0, t, n̂2) + δS3q̃c(x0, y0, z0, t, n̂3)

+ δS4q̃c(x0, y0, z0, t, n̂4) + δS5q̃c(x0, y0, z0, t, n̂5).

However, the top and bottom faces have equal size, δS4 = δS5, while their outward-
pointing unit normals are equal and opposite, n̂4 = −n̂5. From (13), we have

δS4q̃c(x0, y0, z0, t, n̂4)+δS5q̃c(x0, y0, z0, t, n̂5). = δS4 [q̃c(x0, y0, z0, t, n̂4)− q̃c(x0, y0, z0, t, n̂4)] = 0.
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Figure 3: The prism shape of V : a) perspective view and b) top-down view. The
previously defined flux vector qc is perpendicular to the face δS1, pointing inwards.
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Conduction into the bottom face and out of the top face approximately cancels as the
two faces are parallel to each other. This leaves only the three remaining faces, and
we have∫
S

q̃c(x, y, z, t, n̂) dS ≈δS1q̃c(x0, y0, z0, t, n̂1) + δS2q̃c(x0, y0, z0, t, n̂2) + δS3q̃c(x0, y0, z0, t, n̂3)

= [q̃c(x0, y0, z0, t, n̂3) + cos(θ)q̃c(x0, y0, z0, t, n̂1) + sin(θ)q̃c(x0, y0, z0, t, n̂2)] δaδb

Substituting in (16) gives

[q̃c(x0, y0, z0, t, n̂3) + cos(θ)q̃c(x0, y0, z0, t, n̂1) + sin(θ)q̃c(x0, y0, z0, t, n̂2)] δaδb

+

(
∂ε

∂t
+∇ · (εv)− a

)∣∣∣∣
(x0,y0,z0)

δa2δb sin(θ) cos(θ)/2,= 0.

If we divide both sides by δaδb, then we get

q̃c(x0, y0, z0, t, n̂3) + cos(θ)q̃c(x0, y0, z0, t, n̂1) + sin(θ)q̃c(x0, y0, z0, t, n̂2)

+

(
∂ε

∂t
+∇ · (εv)− a

)∣∣∣∣
(x0,y0,z0)

δa sin(θ) cos(θ)/2,= 0

Now we can recongize that the last term is multiplied by δa while the first three terms
are not, so the last term is very small compared with the first three. This means we
can approximately write

q̃c(x0, y0, z0, t, n̂3) + cos(θ)q̃c(x0, y0, z0, t, n̂1) + sin(θ)q̃c(x0, y0, z0, t, n̂2) = 0.

which is (19)

Next, we can show from (19) that, if the face δS1 is perpendicular to the flux qc,
then there cannot be any conduction into the face δS2 at that sits at right angles
to qc. We can do this by looking at different prisms in which the faces δS1 and δS2

always have the same orientation (and therefore the same normals n̂1 and n̂2), but
where each prism can have a different internal angle θ and therefore the face δS3

can have a different normal n̂3. This means that we can treat q̃c(x0, y0, z0, t, n̂1) and
q̃c(x0, y0, z0, t, n̂2) as constant, but q̃c(x0, y0, z0, t, n̂3) will be a function of θ. Putting

q1 = q̃c(x0, y0, z0, t, n̂1)

q2 = q̃c(x0, y0, z0, t, n̂2)

q3 = q̃c(x0, y0, z0, t, n̂3)

we treat q1 and q2 as constant but q3 is a function of θ.
Now remember that the face δS1 was chosen to be perpendicular to the flux qc,

so q̃c(x0, y0, z0, t, n̂) should be maximized when the normal n̂ is aligned with −n̂1.
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This means that q3 should be maximized when θ = 0, in which case n̂3 = −n̂1. We
therefore expect

dq3
dθ

= 0 when θ = 0.

But
q3 = −q1 cos(θ)− q2 sin(θ)

and so
dq3
dθ

= q1 sin(θ)− q2 cos(θ) = −q2 = 0 when θ = 0.

This implies that q2 = 0.
But if q2 = 0, then q3 = −q1 cos(θ), or

q̃c(x0, y0, z0, t, n̂3) =− q̃c(x0, y0, z0, t, n̂1) cos(θ)

=q̃c(x0, y0, z0, t,−n̂1) cos(θ)

=|qc(x0, y0, z0, t)| cos(θ) (20)

because the alignment of face δS1 was chosen so that the flux qc points into the face
at right angles, qc = −|qc|n̂1. But θ is the angle between n̂3 and −n̂1, and therefore
the angle between n̂3 and qc. In other words, (20) says that

q̃c(x0, y0, z0, t, n̂3) = qc(x0, y0, z0, t) · n̂3.

But this is precisely the equation (14) we set out to derive.
The key to this derivation is that the faces δS1 and δS3 are related through the

cosine of same angle θ that separates the normals −n̂1 and n̂3. The conductive flux
qc enters perpendicularly through the face δS1. Conduction out through the oblique
face δS3, which is larger than δS1 by a factor of 1/ cos(θ) must carry out thermal
energy at the same rate as qc carries it in through δS1. The rate at which heat is
conducted per unit area of the face δS3 must therefore be smaller than the flux |qc|
by a factor cos(θ) to account for the larger surface area.
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