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Overview

These notes cover the following:

• Introduction to formulating physical problems as differential equations

• The concept of constitutive relations

• Separation of variables and integrating factors

• Initial conditions

• Visualizing solutions

• Deriving differential equations from scratch: a continuum physics example

Mechanics

We have previously seen how motion can be described using the tools of calculus:
velocity can be defined as the derivative of position with respect to time, and position
can be calculated from velocity by integrating. There is, however, no physics in these
statements: we have simply used differentiation to extend the definition of velocity
to the case of non-steady motion, and used the fundamental theorem of calculus
to reverse that differentiation to find displacement from velocity. We have not said
anything about why an object has a particular velocity, or how its velocity changes
over time.

Another way of viewing this is that we could measure the motion of an object
as its position x(t) as a function of time and compute its velocity from the position
data, or possible measure the velocity v(t) and compute position from velocity, but
this by itself does not tell us anything about what makes the object behave the way it
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does. A model for the motion of the object is an attempt to describe mathematically
the physics driving the motion; the model is therefore a set of equations. It has
two purposes. First, it allows us to test whether our understanding of the physics
involved is correct. This is done by solving the equations (i.e., by solving the model)
and comparing its predictions against data. If the model fails to predict the data,
then something in the model is wrong: it may be missing something important, or it
may not describe correctly some aspect of the physics that is included in the model.

To construct a model for motion, we need the laws of mechanics. You will know
these as Newton’s laws, the second of which you probably know as force being equal
to mass times acceleration. You may also know acceleration as

acceleration =
change in velocity

time elapsed,

which is analogous to velocity being displacement (or change in position) over time
elapsed. Once more, we look only at an object that is forced to move along a straight
line, so we do not have to deal with acceleration as a vector. If the initial point in
time is t0 and we wait until t1 to measure the change in velocity, we get

a =
v(t1)− v(t0)

t1 − t0
,

which is analogous to how we initially we tried to define velocity through

v =
x(t1)− x(t0)

t1 − t0
.

We saw how this definition of velocity is problematic when velocity is not constant,
and how we can get around that difficulty if we require the time elapsed t1− t0 to be
small. It makes sense to do the same to the definition of acceleration, and to look at
change in velocity over a short time interval δt = t1 − t0. We therefore take the limit

a(t0) = lim
δt→0

v(t0 + δt)− v(t0)

δt
,

so acceleration a is the derivative of v(t).
Newton’s second law therefore says

m
dv

dt
= F. (1)

This is however not much use unless we know what F is. The other two Newton’s
laws are not much help to decide this. Newton’s first law is really a special case of the
second: if there is no force, velocity does not change, which is the same as saying that
dv/ dt = 0 if F = 0. Newton’s third law meanwhile says that forces between objects
are equal and opposite, but it does not say anything about the size or direction of
these forces.
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This is because the force acting on an object, or the forces acting between two
interacting objects, depend on the particulars of the situation we are looking at. Two
objects connected by a spring will experience different forces than two electrically
charged objects that attract or repel each other, and these forces will differ from the
forces experienced by an object falling through the atmosphere subject to aerodyn-
mamic drag.

Newton’s second law (1) must therefore be supplemented by some additional state-
ment, or equation, that defines F . In the area of physics that we will mostly focus on
later in the course (namely continuum physics), an additional statement of this kind
is often called a constitutive relation.

Newton’s second law always holds, at least if we ignore more exotic situations in
which quantum mechanics or relativity become relevant. By contrast, the constitutive
relation for F is problem-specific. In some cases, for instance when electric charges
repel or attract each other, the form of F is given by physical laws that hold just as
generally as Newton’s second law (in this case, Maxwell’s equations for electrical and
magnetic fields). More often, as with the case of the force acting between objects
connected by springs, or with the drag on an object falling through the atmosphere,
the constitutive relation for F will be empirical. For instance, Hooke’s law states
that the force generated by extending a spring is proportional to the extension of the
spring. This is ‘true’ in the sense that it is confirmed by experiment, but only up to
a point: stretch the spring far enough so it deforms irreversibly, and Hooke’s law no
longer holds. Hooke’s law also involves a ‘spring constant’, which must generally be
found by experiment. A constitutive relation that does not hold universally and is
based on experiment is called an empirical relation, and has a lesser status as a ‘law’
than for instance Newton’s law.

Note 1 Newton’s third law is actually best understood if we combine it with the second
law and restate it as saying that ‘forces conserve momentum’. Take two objects, A
and B, that exert forces on each other. Let the force exerted by B on A be FAB, and
FBA be the force exerted by A on B. Newton’s third law states that

FBA = −FAB.
Suppose that the two objects are a closed system, meaning that they experience no
forces from elsewhere. Then Newton’s second law applied to A and B in turn says

mA
dvA
dt

= FAB,

mB
dvB
dt

= FAB,

where mA and mB are the masses of the two objects, and vA and vB their velocities.
Adding the two equations gives

mA
dvA
dt

+mB
dvB
dt

= FAB + FBA = 0
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because FBA = −FAB. But the momentum of of the two objects is mAvA and mBvB,
respectively. The total momentum p in the system is the sum of momenta,

p = mAvA +mBvB.

With constant masses (mass is also conserved) we have

dp

dt
= mA

dvA
dt

+mB
dvB
dt

= 0,

so p is constant.
Newton’s second and third laws together therefore state that momentum is con-

served. Conservation laws are fundamental principles in physics that must not be
violated, and any successful theory must satisfy them. Conservation laws alone do
not allow the evolution of a system to predicted, however: as we have seen, Newton’s
laws do not tell us about the force F other than that it has an equal and opposite
counterpart. Constitutive relations are therefore of equal importance to conservation
laws in allowing predictions to be made. This will be a recurring theme in this course.

Let us return to the case of a body falling under the action of gravity and aero-
dynamic drag. If x is measured vertically upwards from the ground, then v is also
positive when the body moves upwards. F is therefore positive when pointing up.
We expect the force to be the sum of gravity and drag. The gravitational force is
−mg. Drag should act in the opposite direction to the velocity (so it slows the object
down) but we know little else about it. For now, assume that the magnitidue of drag
is proportional to speed. In that case we can write

F = −mg − Cv, (2)

C being a drag coefficient.

Note 2 There is an important lesson here: models are always simplifications of how
nature really works. In the present case, the simplification of drag being proportional
to velocity v is probably the most questionable. In reality, drag arises from complicated
interactions between the falling object and the flow of air around it. Ultimately, there
is no end to refinements that could be made to any single model — it is impossible
in practice to capture every detail of the physics that drives some process, and trying
to achieve that impossible goal will only lead to an intractable and therefore useless
model. The level of sophistication in a good model1 depends on its purpose (how
accurately do you need an answer) and the ability to capture all the physics necessary
to achieve that purpose (do we know enough about the physics involved to achieve the
accuracy we want). Often, a relatively simple model like (2) can provide the most
insight.

1A good quote to remember — due to the statistician George Box – is that ‘all models are wrong,
but some are useful’
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If we substitute this form of F into Newton’s second law (1), we get

m
dv

dt
= −mg − Cv. (3)

This is a differential equation: rather than telling us how big the velocity v is, the
equation tells us something about the rate of change dv/ dt.

It is worth defining some notation here:

1. t is the independent variable, while v is the dependent variable, the ‘unknown’.
We want to find a solution that gives velocity as a function of time v(t). In
other words, we want to be able to predict the velocity at some point t in the
future.

2. m, g and C are neither dependent nor independent variables, but parameters.
They are values of fixed physical quantities that may differ between different
settings, but not during the motion of a single object. That is, if we repeat the
experiment of throwing an object on a different planet, g might be different.
Similarly, if we repeat experiment of throwing an object with an object of a
different shape or mass, C or m might be different. They will not vary while
a given object falls in a given location. We denote parameters like m, g and
C by letters rather than numbers because it makes our solution more generally
applicable, and we can see what effect changing the parameters has on the
solution.

To solve (3), we cannot simply integrate left- and right-hand sides as they are,
because v on the right-hand side is unknown. Instead, we use a technique known
as separation of variables. This requires the following steps: first we need to move
everything involving the dependent variable on the right to the left by dividing (not
adding or subtracting). We do this by dividing both sides by mg + Cv:

m

mg + Cv

dv

dt
= −1 (4)

Now we can integrate both sides with respect to t:∫
m

mg + Cv

dv

dt
dt =

∫
−1 dt

Having removed everything containing v from the right, the integral on the right is
straightforward to do. On the left, the integrand is the product of a function of v
with dv/rdt, and we can use the change-of-variable formula∫

F (v)
dv

dt
dt =

∫
F (v) dv.
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In other words, ∫
m

mg + Cv

dv

dt
dt =

∫
m

mg + Cv
dv

and so ∫
m

mg + Cv
dv =

∫
−1 dt

Evaluating the integrals gives

m

C
log
(mg
C

+ v
)

= −t+K,

where K is a constant of integration. Note that we only need one constant of integra-
tion; if we had one on each side, we could move the one on the left of the equality to
the right, and K would simply be the difference of the two constants of integration.2

Now all we have to do is solve for v: Rearrange

log
(mg
C

+ v
)

= −Ct
m

+
CK

m
.

Exponentiate

mg

C
+ v = exp

(
−Ct
m

+
CK

m

)
= exp

(
CK

m

)
exp

(
−Ct
m

)
,

and rearrange again,

v(t) = exp

(
CK

m

)
exp

(
−Ct
m

)
− mg

C
. (5)

This is a general solution of the differential equation (3). (5) satisfies (3) for any
choice of the constant of integration K. Nothing in that equation will constrain K
further. This is however a problem. We do not have a unique solution unless we know
K: given a time t and values for the parameters m, g and C, we cannot say what
value velocity v takes unless we also know K.

In order to fix K, we need additional physical information, not contained in New-
ton’s second law or the formula for F in equation (2). In the case of an object falling
in the atmosphere, the most obvious piece of physical information that could help us
fix would be the velocity the object starts out with at t = 0. This is known as an
initial condition.

2Explicitly, if we had
m

C
log
(mg
C

+ v
)
+K1 = −t+K2,

we could rearrange to given
m

C
log
(mg
C

+ v
)
= −t+K2 −K1,

and we would simply get K = K2 −K1.
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Suppose we know that v = v0 at t = 0, where v0 is a fixed value (another parameter
describing the problem. The way to determine the constant of integration is to
substitute v(0) = v0 into the general equation (5), where v(0) of course means v(t)
at t = 0. This gives

v0 = exp

(
CK

m

)
exp (0)− mg

C
= exp

(
CK

m

)
− mg

C

This means

exp

(
CK

m

)
= v0 +

mg

C
.

We could go on to solve for K, but this is not necessary as K only appears in the
combination exp(CK/m) in (5). Substituting gives

v(t) =
(
v0 +

mg

C

)
exp

(
−Ct
m

)
− mg

C
. (6)

This finally is our solution.

Note 3 It is often worth checking you have not made a mistake. To do this, substitute
v on both sides of (3) and check the two sides equal each other. Also substitute t = 0
and check that v = v0 when you do so.

Remember that we essentially invented the drag term in the force formula F =
−mg −Cv from little more than intuition, and we certainly have no way of knowing
what C should be for a given object. There is therefore no guarantee that the actual
velocity of a falling object will satisfy the formula (6). This is again where direct
measurement (the source of those empirical constitutive relations) becomes impor-
tant: we could measure the actual motion of a falling object and compare it with the
predictions of (6). An obvious first way to compare data and prediction would be to
plot both on the same graph.

Visualizing a solution

Deriving a formula for a solution is all very well, but it does not help you understand
the solution. To do that, you almost certainly need to visualize the solution — that
is, to sketch the graph of v against t.

There are a number of steps you need to take in order to sketch a solution, es-
pecially if you do not have numerical values of the parameters to fall back on. The
concepts below should have been covered in basic calculus, but you should remember
the following:

1. You need to identify intercepts. Intercepts on the vertical (in this case, v-) axis
are easy to find: you simply set t = 0 in the formula for v(t).
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2. Intercepts on the horizontal (in this case, t-) axis are harder to find: you need
to find values of t for which v(t) = 0

3. You need to identify if the function has any singularities. Is there a value of t
at which v(t) becomes infinite? If yes, does v go to positive or negative infinity
as that value of t is approached from above or below?

4. You need to determine whether the solution is defined for all values of the
independent variable. For instance, y =

√
x is not defined for x < 0, unless you

are willing to admit solutions in imaginary numbers (beyond the scope of this
course, and not relevant to the kinds of plots we are talking about here).

5. You need to identify asymptotes. As t→ ±∞, does the graph of v(t) approach
a simple curve like a straight line? Note that an asymptote does not need to
be a horizontal or vertical straight line. For instance, the graph of the function
f(x) = exp(−x) + x2 asymptotes to the parabola y = x2 when x → +∞. (It
does not do the same as x→ −∞.)

6. You need to find minima or maxima of the function. This involves finding
the derivative dv/ dt as a function of t, and solving for values of t for which
dv/ dt = 0. Points at which dv/ dt = 0 are called stationary points. To de-
termine whether they are local maxima or minima, you can look at the second
derivative. If d2v/ dt2 > 0, a stationary point is a local minimum, and a local
maximum if d2v/ dt2 < 0. You do not always need to take the second deriva-
tive; sometimes you can determine from intercepts, asymptotes or singularities
whether a stationary point is a minimum or maximum

7. Before you plot, you should also look for symmetries. If f(−x) = f(x), the
graph is symmetric about the y-axis. f(−x) = −f(x), the graph has rotational
symmetry: a 180◦ rotation about the origin does not change the graph. There
are also less obvious symmetries, for instance if f(a− x) = f(a+ x), the graph
is symmetric under reflections about the vertical line x = a.

In the case of our solution (6), we can work through these points in order

1. The intercept on the vertical axis is easy to find. We know that v = v0 at t = 0;
this is the initial condition.

2. Intercepts on the horizontal axis correspond to v = 0. This implies(
v0 +

mg

C

)
exp

(
−Ct
m

)
− mg

C
= 0
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which has a solution

t = −m
C

log

( mg
C

v0 + mg
C

)
= −m

C
log

(
1

1 + Cv0
mg

)

This solution is only well-defined if the argument of the logarithm is not nega-
tive, so we need

1 +
Cv0
mg

> 0

or
v0 > −

mg

C
.

The logarithm is positive if its argument is greater than one, in which case the
value of t at the intercept is negative and lies to the left of the vertical (v-) axis.
The intercept lies to the right of the v-axis if the argument of the lograithm is
less than one, which happens if 1 + cv0/mg > 1, or v0 > 0.

3. There are no singularities: there is no finite value of t for which v becomes
infinite; the exponential function is well-defined for all values of t

4. As t → +∞, the exponential function exp
(
−Ct

m

)
goes to zero. The solution

therefore asymptotes to v → −mg/C

5. To see if there are local maxima or minima, we can use the fact that, from the
original differential equation we have

dv

dt
= −g − C

m
v

Substituting for v(t) on the right gives

dv

dt
= −g −

[(cv0
m

+ g
)

exp

(
−Ct
m

)
− g
]

= −
(cv0
m

+ g
)

exp

(
−Ct
m

)
This can never be zero unless cv0/m = g, or v0 = −mg/C, in which case dv/ dt
is always zero. There are therefore no local minima or maxima.

6. There are also no obvious symmetries to exploit

As you can see, it is not trivial to work through the list of tasks needed to sketch a
solution carefully, but there is also no magic to it. Now that we can sketch the solution
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t

v(t)

0

−mg
C

Figure 1: The solution v(t) as a function of t for v0 > 0, −mg/C < v0 < 0 and
v0 < −mg/C.

There are three cases to distinguish, and they go back to point 2 above — whether
we have a t-intercept. There is no t-intercept if v0 < −mg/C. Looking at point
4, this corresponds to the graph starting below its asymptote. We can explain this
physically: the asymptote is the terminal velocity of the object, which it approaches
as t goes to infinity (which of course ignores the possiblity of eventually hitting the
ground, somthing our model is not set up to describe). If the objects starts with
a downward velocity greater than its terminal velocity, its downward motion will
simply slow to spproach terminal velocity. There will not be a point in time for which
velocity is zero, which would be a point at which the object is not moving.

There is a t-intercept if 0 > −v0 > −mg/C, but it lies on the negative half of
the t-axis, that is, it comes before the point in time t = 0 at which the object was
launched with its initial velocity. This is the case if the initial velocity v0 is negative:
we launch the object downward, and there is no reason why it should stop moving
at any point after that. A t-intercept on the positive t-axis occurs if v0 > 0: this is
the case where the object is launched upwards; naturally we expect it to slow down,
stop, and then begin falling downwards, eventually approaching terminal velocity. In
all three cases, the velocity either continually decreases (becomes more negative) or
continually increases (becomes less negative); there is no local velocity minimum or
maximum.

Exercise 1 From (5), derive a solution for x(t) if x(0) = 0. Identify the different
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parameter ranges (‘parameter regimes’) that will give different-looking graphs, and
sketch the solution for each of those.

Note 4 The solution for v(t) above takes the form

v(t) = a exp(−bt) + c

for choices of a, b and c that depend on the parameters m, g, C and v0. Stripping
the solution down to a simpler-looking form like this can sometimes help you plot it
more easily. Immediately, c is evident as the asymptote, and a exp(−bt) is the height
of the graph above the asymptote.

Defining that ‘height above the asymptote’ as V = v − c, we have

V (t) = a exp(−bt)

The height above the asymptote ‘decays exponentially’ to zero. The key characteristic
of exponential decay you should know about that is that V decays by a constant fraction
each time a fixed time interval elapses. If that time interval is ∆t, we have

V (t+ ∆t) = a exp[−b(t+ ∆t)] = a exp(−bt) exp(−∆t) =
V (t)

exp(b∆t)

and

V (t+ n∆t) =
V (t)

[exp(b∆t)]n

This gives rise to the idea of a ‘half-life’. If we put

∆t = log(2)/b

we have exp(b∆t) = 2, and

V (t+ n∆t) =
V (t)

2n
.

Every time a half-life ∆t passes, V is halved. This reduction is very rapid: after four
half-lives, only one sixteenth of the original value of V is left, and after five half-lives,
only 1/32 of the original value.

Closely related and perhaps more widely used is the idea of an e-folding time. If

∆t = 1/b

then

V (t+ n∆t) =
V (t)

en
.

where e is the base of the exponential function, e = 2.71 . . .. Every time an e-fodling
time elapses, the solution is reduced by a factor of 1/e.
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Whether we think of exponential decay in terms of half-lives or e-folding times
does not matter much. The important observation is that both, half-life and e-folding
time are inversely proportional to b (that is, they are given by a constant divided by
b; the e-folding time is simply one divided by b). 1/b therefore gives a characteristic
time scale for decay. Even though V never goes to zero, we can identify a meaningful
time scale over which it ‘approaches’ zero.

Exercise 2 Sketch the following functions. This means you have to identify inter-
cepts, minima/maxima, singularities and asymptotes before you start drawing.

1. f(x) = 1
1+(x−1)2

2. f(x) = 1
1−(x−1)2

3. f(x) = 1
x

+ x

4. f(x) = − 1
x

+ x

5. f(x) = 1
x

+ x2

6. f(x) = − 1
x

+ x2

Note 5 It is worth knowing the shapes of a few basic functions, like f(x) = exp(x),
f(x) = sin(x), f(x) = log(x), f(x) = 1/x, f(x) = x, f(x) = x2, f(x) = x2 etc.
Often, your solution will be a sum or product of such functions, possibly stretched or
shifted. Stretching or shifting happens if you do any of the following

1. The plot of y = f(−x) looks like the mirror image of the plot of y = f(x) about
the y-axis. Note that if f(x) = f(−x), the plot is symmetric about the y-axis
(as is the case for instance for y = x2).

2. The plot of y = −f(x) looks like the mirror image of the plot of y = f(x) about
the x-axis

3. The plot of y = f(ax) looks like the plot of y = f(x) but is compressed horizon-
tally by a factor of 1/a

4. The plot of y = af(x) looks like the plot of y = f(x) but is stretched vertically
by a factor of a

5. The plot of y = f(x+ a) looks like the plot of y = f(x) but is shifted to the left
by an amount a

6. The plot of y = f(x) + a looks like the plot of y = f(x) but is shifted upwards
by an amount a
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To plot the sum of two functions y = f(x) + g(x), you need to add the height of
the plots of the two functions. Plotting the product of two functions y = f(x)g(x) is
harder. y then has x-intercepts whereever the graph of either y = f(x) or y = g(x)
has an intercept, provided the other function does not have a singularity there. The
graph of y = f(x)g(x) lies above the x-axis wherever either both f and g are positive,
or where both are negative. y = f(x)g(x) has singularities where f has a singularity
and g is non-zero, and vice versa.

Exercise 3 Use the information in note 5 and knowledge of the plots of the functions
exp(x), 1/x, x, x2 to sketch the following sets of functions

1. y = exp(x), y = exp(−x), y = exp(−ax) with a > 1, y = −b exp(−ax)− c with
b > 0, c > 0, all on the same plot.

2. y = x, y = 1/x, y = x+ 1/x, all on the same plot.

3. y = x2, y = 1/x, y = x2 + 1/x, all on the same plot.

4. y = x2, y = 1/x, y = 1/(x− 1), y = x2/(x− 1), all on the same plot.

5. y = x2, y = 1/x, y = x2/x, all on the same plot.

6. y = 1/x, y = 1/(x+ 1), y = exp(x)/(x+ 1), all on the same plot.

Separation of variables and integrating factors

Unless stated otherwise, all differential equations you are asked to solve in this course
can be solved by separation of variables. It is therefore worth formalizing the method.
It can be stated generally as follows:

1. Let y be the dependent variable in the differential equation and x be the inde-
pendent variable

2. Write the differential equation in the form

dy

dx
= f(x)g(y).

If this factorization (or separation of variables) is not possible, then the method
cannot be used.

3. Divide both sides by g(y):
1

g(y)

dy

dx
= f(x).
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4. Integrate both sides with respect to x:∫
1

g(y)

dy

dx
dx =

∫
f(x) dx.

5. Change variables on the left, so∫
1

g(y)
dy =

∫
f(x) dx.

6. Evaluate the integrals on both sides, not forgetting a constant of integration.

7. The left-hand side is then a function of y, and the right-hand side a constant of
x. Solve the resulting equation for y.

8. The solution for y contains a constant of integration. This must be found be
applying a boundary condition: a piece of physical information not contained
in the differential equation.

Exercise 4 Decide whether the following differential equations can be solved by sep-
aration of variables, and if they can, find a general solution and sketch it. Comment
on any unusual attributes the solutions may have.

1.
dv

dt
= t+ v

2.
dv

dt
= −(t+ vt+ v + 1)

3.
dv

dt
= −2tv

4.
dv

dt
= −2tv + 1

5.
dv

dt
= tv2

6.
dv

dt
= t exp(v) + t

(You may need the result that 1/(exp(x) + 1) = exp(−x)/(1 + exp(−x)))
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7.
dv

dt
= exp(v + t).

Exercise 5 For each of the differential equations in exercise 4, determine the con-
stant of integration and write down the actual solution corresponding to v(0) = 1.

Related to separation of variables but applicable to somewhat different differential
equations is the method of integrating factors. While separation of variables can be
used for equations in the form

dy

dx
= f(x)g(y), (7)

integrating factors are used to solve equations of the form

dy

dx
= f(x)y + h(x). (8)

The method works as follows.

1. Re-write the equation as
dy

dx
− f(x)y = h(x).

2. The trick is to multiply both sides by a specially-chosen function I(x),

I(x)
dy

dx
− I(x)f(x)y = I(x)h(x) (9)

so that the left-hand side can be turned into a single derivative by running the
product rule in reverse.

3. To do that, remember that the product rule says

d

dx
[I(x)y(x)] = I(x)

dy

dx
+ y(x)

dI

dx
.

We can make that equal to the left-hand side of (9) by requiring the function
I(x) to satisfy

y(x)
dI

dx
= −I(x)f(x)y(x), (10)

or, cancelling y,
dI

dx
= −I(x)f(x).
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4. This can be solved by separation of variables:

1

I

dI

dx
= −f.

Integrating both sides gives

log(I) = −
∫
f(x) dx.

We could add a constant of integration but do not need to — all we need is a
function I that satisfies (10). Exponentiating gives

I(x) = exp

(
−
∫
f(x) dx

)
.

5. With (10) satisfied, (9) becomes

d

dx
[I(x)y(x)] = I(x)h(x).

This can now be solved by simply integrating

I(x)y(x) =

∫
I(x)h(x) dx

and

y(x) =
1

I(x)

∫
I(x)h(x) dx.

6. The right-hand side will generate a constant of integration through the integral∫
I(x)h(x) dx. This needs to be determined using an initial condition.

Exercise 6 Some problems can be solved by either separation of variables or by in-
tegrating factors. These take the form

dy

dx
= f(x)y + cf(x), (11)

This is of the form (7) with g(y) = y + c, and of the form (8) with h(x) = cf(x).
Equation (3) can be written in the form of (11). Use the method of integrating factors
to re-derive the solution (6).

Exercise 7 Re-consider the differential equations in exercise 4. Determine which
ones can be solved by integrating factors, and solve them. All can be solved by either
separation of variables or by integrating factors. At least two can be solved by both
methods.
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Exercise 8 Consider the falling object model again, but now assume that the air it is
falling through is moving up and down (for instance on a windy day, where there are
eddies in the air). The drag is really proportional to the velocity of the object relative
to that of air, so the drag force is −C(v− vair), where we assume that vair is a known
function of time. In that case

m
dv

dt
= −mg − C(v − vair(t))

Solve this for the case where you are given that vair(t) = w0 cos(ωt), with w0 and ω
being constants. Use v(0) = v0 as your initial condition again. Sketch the solution
(don’t worry about finding all the zeros, which you cannot do analytically — but figure
out in what parameter range you expect to have infinitely many zeros).

Deriving a differential equation: pressure in the at-

mosphere

Our previous differential equation example was relatively simple to construct because
we had Newton’s laws to rely on. In reality, Newton’s law turned out to be a differen-
tial equation in which we just needed to supply the right F . The real work was then
in solving the equation.

Often, the hard part is in constructing the right differential equation; once you
have formulated an equation in a standard form like (7) or (8) above, solving that
equation can turn into exercise in ‘cranking the handle’: you simply have to follow a
standard set of steps and not make a mistake. That may be hard work — there may
be a lot of steps to take, and you can’t let errors slip in — but it is not necessarily
very inventive.

To illustrate the process of formulating a differential equation whose form isn’t
handed to you in the shape of Newton’s laws, consider the question of how deonsity
and pressure vary with elevation in the atmosphere. Experience tells us that both
must go down as you go up in elevation, as you will know if you have ever climbed a
tall enough mountain: the air gets thinner. But how fast?

You could argue that it is pointless to try to write down equations for this, and
that you should just make measurements. That partly misses the point, however.
Measurements and models have different purposes. A model is useful if you want to
make a prediction for something that will happen in the future, or in an inaccessible
place. It is also useful if you want to see if you understand why something works
the way it does: you can represent mathematically the physics you believe to be
behind an observable phenomenon (like pressure and density drop with elevation in
the atmosphere), and then see if the solution of that mathematical model agrees with
actual measurements. Seen from this perspective, the role of measurements is then
to test the validty of a model, or help determine the parameter values in the model.

17



In order to construct a model for how pressure varies with elevation in the atmo-
sphere, we need to know in what kind of physics the variable ‘pressure’ might appear.
You will know pressure as ‘force over area’, so pressures are associated with forces.

Exercise 9 Why do we define pressure as ‘force over area’? Why not ‘force over
square root of area’ or something else?

The obvious starting point is to consider the balance of forces in the atmosphere.
If we take a ‘blob’ of atmosphere, we expect forces to result from gravity acting on
the blob, and from pressure acting on the surface of the blob, where the rest of the
atmosphere presses inward on it. When we add these forces, Newton’s second law
tells us that we should get mass times acceleration for the blob.

Accounting for that acceleration would make life quite difficult, so we start by
making some simplifying assumptions. We assume that any acceleration that occurs
is small, so that the forces on a blob of atmosphere approximately balance. We also
want to keep the geometry simple, so we assume that pressurep and density ρ (this is
the Greek letter ‘rho’, not a funny p) depend only on elevation above the ground, z.
We also assume that the atmosphere has a limited extent compared with the radius of
the planet. This means we neglect the curvature of the planet, and treat gravitational
acceleration g as constant.

With these five simplifications, life becomes much easier, but we still need to
compute gravitational forces and pressure forces on the ‘blob’ to make progress. This
is difficult for two reasons. First, if the density varies wth elevation, how can we
compute the mass and hence the gravitational force on the blob? If pressure varies
with elevation, how can we compute the pressure force on the possibly uneven surface
of the blob?

These questions actually go to the heart of what we mean by ‘density’ and ‘pres-
sure’. You will get a lot more detail on the idea of ‘density’ when we talk about
volume integrals in the next part of the course; for a similar treatment for ‘pressure’,
you will need a continuum of fluid mechanics course. However, here, it suffices if you
realize that we can compute the mass of the blob if the extent of the blob is small
enough for ρ(z) to be treated as constant.

Note 6 Saying that the blob is small enough to be treated as having constant density
is analogous to what we did in saying that displacement δx could be computed as v(t)δt
over time intervals δt that are short enough for v to be treated as constant.

To compute forces, it also makes sense to choose the blob to have surfaces that
make pressure forces easy to compute. As pressure is a function of z, this is easiest
if the main surfaces are flat and have constant elevations. This means it is easiest to
look at a thin slice of the atmosphere, lying between z and z+ δz and with base area
A (see figure 2).
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Figure 2: A thin slice of the atmosphere: panel a) shows a three-dimensional view,
panel b) a side-on view with the forces acting on the slice.

Pressure forces then act on the surfaces of the slice (at z and z + δz) due to
interactions with the atmosphere above and below the slice, and gravity acts on the
interior of the slice. The forces due to pressure are given by pressure times surface
area, and taking upward forces as positive, we have a positive force p(z)A due to the
atmosphere below the slice pushing up, and a negative force p(z + δz)A due to the
atmosphere above pushing down. In addition, the gravitational force on the slice is
mass times acceleration due to gravity. Mass can be approximated as density of the
slice times its volume, so the force due to gravity is ρ(z) × Aδz × (−g). The minus
sign in front of g reflects that gravity acts downwards.

Summing these forces to zero, we have

p(z)A− p(z + δz)A− ρ(z)× Aδzg = 0. (12)

The next step is key: it requires recognition that we have a difference between p
evaluated at z and at z+ δz on the left of (12), and that this is the pattern we expect
to see in a derivative. We cancel the A’s on both sides immediately to give

−ρ(z)δzg = p(z + δz)− p(z).

To turn the right into a derivative, we simply need to divide by δz,

ρ(z)g =
p(z + δz)− p(z)

δz
.

so that
dp

dz
= −ρg, (13)

which must hold at any height z in the atmosphere.
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Exercise 10 Why is it essential that δz is small? How would you compute the mass
of a slice of the atmosphere between z and z + ∆z if ∆z was not small?

The point about (13) is that it is a differential equation: it contains the unknown
p as a derivative. This differential equation must be solved to find pressure as a
function of z. For an ‘atmosphere’ with constant density ρ this is simple, as we can
just integrate,

dp

dz
= −ρg ⇒ p(z) =

∫
−ρg dz = −ρgz + C.

The constant of integration must be determined from some extra piece of information
that is not supplied by the differential equation (13). For instance, suppose we know
that the atmosphere had constant density ρ and an upper surface at z = h where
pressure is zero. In that case, pressure is given at any elevation z by p(z) = −ρgz+C
as shown above. This must therefore also be true at z = h, so p(h) = C−ρgh. But we
also know that pressure at z = h is zero, so p(h) = 0. Equating the two expressions
for p(h) then gives us an equation that must be satisfied by C, which we can solve

0 = −ρgh+ C, C = ρgh.

Once we have found C, we have to put this back into the expression for general p(z),

p(z) = ρg(h− z).

Note 7 what we have just derived is in fact the high school formula ‘p = ρgh’. If we
sit at the bottom of the ‘atmosphere’, we are at z = 0, and the depth of fluid above
us is h. The pressure is ρgh. The fact that the solution formula says p = ρg(h − z)
reflects the fact that, as we go up and z increases above zero, the depth of fluid above
us decreases to h− z.

Variable density: the need for a constitutive rela-

tion

In general, differential equations are not as simple as the example with a constant
density. For instance, in the atmosphere we know that density is not constant, but
decreases with height. This decrease is actually the result of pressure also decreasing
with height — so density and pressure are in fact coupled.

The differential equation (13) is based on one simple principe — that forces on
any slice of the atmosphere balance. This comes from the principle of conervation of
momentum, if we add tha additional assumption that there are no acceleration terms.
The equation is not solveable by itself, as we have two unknowns (p and ρ) but only
one equation. We therefore need another equation, a constitutive relation, in order
to be able to solve the problem
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Note 8 Our previous assumption, that ρ is constant and known, is in fact a consti-
tutive relation, although a very simple one.

One model for the relationship between density and pressure is the ideal gas law,

ρ =
mp

RT
(14)

where m is the mass of one mole of gas, T is absolute temperature (in Kelvins) and
R is a constant. Another expression for constitutive relation in this case would be
equation of state, which means the same thing here for practical purposes.

One complication here is that density depends not only on pressure, but also on
a further variable, temperature, for which we also need a model. To start with, let
us make our job easier and pretend that temperature is constant at T = T0 in the
atmosphere (this is reasonable provided temperature in the atmosphere does not vary
by much, when measured in kelvins). Then (13) becomes

dp

dz
= − mg

RT0
p. (15)

To solve this, we can use either separation of variables or integrating factors If we
know atmospheric pressure p0 at sea level, z = 0, then the solution becomes

p(z) = p0 exp

(
− mg

RT0
z

)
. (16)

Exercise 11 Derive (16) using separation of variables and by using integrating fac-
tors.

Exercise 12 As we mentioned previously, models are always mathematical idealiza-
tions of reality. It is important to know the ‘weak points’ of models: what assumptions
made in constructing a model are most questionable? The first step is of course to be
aware of all the assumptions that have gone into a model. (15) is a model for pres-
sure distribution in the atmospher, and anumber of assumptions have already gone
into constructing (13). List the most important assumptions in words, and identify
the ones that you think are most likely to be violated in reality.

Exercise 13 Take the molar weight of air to be 29 g mol−1 and R = 8.314 J K−1 mol−1,
g = 9.8 m s−2, and assume an atmospheric temperature of T0 = 273 K. Over what
height does atmospheric pressure decrease by 50 %?

Exercise 14 Instead of putting T = T0 in (14), assume that temperature decreases
linearly above sea level at a constant lapse rate c, so that

T = T0 − cz. (17)
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Rewrite (13) using (14) with this description of temperature. Use separation of vari-
ables to solve this differential equation. If atmospheric pressure at z = 0 is p0, show
that

p(z) = p0

(
1− cz

T0

)mg
Rc

.

Does pressure decrease slower or faster than in the model with constant temperature?
What is the physical reason for this? What is an obvious problem with the temperature
model (17)?

.

Exercise 15 Assuming a fixed lapse rate is not necessarily ideal; after all, why should
the lapse rate do what it does. Below, we consider a model that assumes that the rela-
tionship between temperature, pressure and density in a planetary atmosphere is that
the atmosphere behaves adiabatically.3 For an ideal gas that behaves adiabatically,
pressure is proportional to density to a fixed power γ (which in turn is determined by
the heat capacity, and hence the molecular structure, of the gas):

p ∝ ργ. (18)

Here γ is a constant that is greater than one.

1. Turn the relation (18) into an equation involvin a constant of proportionality.

2. Let z be height in the atmosphere. Denoting atmospheric pressure at sea level
(z = 0) by p0 and the corresponding atmospheric density at sea level by ρ0,
compute the constant of proportionality in the relationship (18) in terms of p0, ρ0
and γ. Write down a differential equation for pressure p(z) in the atmosphere.
What does this differential equation assume about forces on any slice of the
atmosphere?

3. Use the method of separation of variables to solve the differential equation, and
find the constant of integration that you obtain.

4. Given p0, ρ0, γ and acceleration due to gravity g, is there again a height z at
which the atmosphere ends?

3This means that temperature in the atmosphere is neither constant, nor decreases in a prescribed
way with height in the atmosphere. Instead, temperature is related to density and pressure because
changes in the volume of a sample of gas in the atmosphere (and hence a change in its density)
correspond to mechanical work being done on the gas. This changes the heat content of the sample,
and therefore its temperature. For an ideal gas, in which density is related to temperature and
pressure through

ρ(p, T ) =
mp

RT
,

this means that density can be written as a function of pressure alone.
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5. For an atmosphere that is made of a diatomic gas (like nitrogen or oxygen),
statistical physics gives γ = 7/5. Take p0 = 105 Pa, ρ0 = 1.2 kg m−3, g =
9.8 m s−2 for the atmosphere on Earth. At what height does p(z) drop to one-
third its value at the surface z = 0?

6. From part 2 above, you should have an equation relating ρ and p, involving
constants γ, p0 and ρ0. Suppose you also have the ideal gas law

ρ =
mp

RT
.

Eliminate ρ between these equations to find a relationship between p and T that
involves (apart from p(z) and T (z)) only the constants γ, ρ0, p0, R and m).
Using your solution in part 3 above, use this relationship to solve for T (z) as a
function of z (where this function again involves only the constants γ, ρ0, p0,
R and m). Show that you actually end up predicting a constant lapse rate. If
m = 29 g mol−1, what is the temperature at sea level (z = 0)? If the lapse rate
is defined as −dT

dz
, what is that lapse rate?

Exercise 16 Consider again an adiabatic atmosphere as in exercise 15, but assume
now that the thickness of the atmosphere is not small compared with the radius r0 of
the planet which it surrounds. In that case, acceleration due to gravity can no longer
be treated as constant. Now we need to solve the following:

dp

dr
= −ρg

p(r) ∝ ρ(r)γ

g(r) = g0r
2
0/r

2,

where r measures distance from the centre of the planet and r0 is the radius of the
solid part of the planet (and therefore a constant). The atmosphere extends upward
from r = r0 (i.e., r > r0 in the atmosphere). g0 is acceleration due to gravity at
r0. Assume again that, at the surface of the planet (r = r0), p = p0 and ρ = ρ0 to
compute the constant of proportionality.

1. Draw a diagram of the geometry in question.

2. Derive an equation relating p to ρ that involves p0 and ρ0. Then derive a
differential equation containing p(r) as the only dependent variable. This will
involve the constants g0, r0, p0, ρ0 and γ.

3. Solve this differential equation using separation of variables. What is the initial
condition you need to apply to determine your constant of integration?
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4. Find the radius rs at which pressure drops to zero. The thickness of the atmo-
sphere is now rs − r0. Take the thickness you computed in part (4) of exercise
15. Put g = g0 into that expression. Is the thickness computed in exercise 15
greater or smaller than the thickness you have just computed here? Does this
make sense physically?

Exercise 17 So far, we have assumed that pressure and density are both known at
the base of the atmosphere z = 0. In exercise 15, assume you know the mass m0 of the
atmosphere per unit surface area of the planet, and you know the surface temperature
T0 of the planet. Find ρ0 and p0. Hint. Given a solution ρ(z), you need to figure
out how to compute the mass of atmosphere that sits above a unit area of planet
surface from that function ρ. Think about how we computed the mass of a slice of
atmosphere between elevations z and z + δz and work from there.

Exercise 18 Consider a liquid which is slightly compressible, so

ρ = ρ0 × (1 + cp)

where ρ0 is a constant density, c is a constant expansion coefficient and p is pressure.
Let z measure height above the bottom of a tank filled with the liquid, and let the
surface of the liquid be at z = h, where pressure p = 0.

1. Using the method of separation of variables, find pressure in the liquid as a
function of z.

2. If the tank is a cuboid with base area A, what is the mass of fluid in the tank?
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