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Overview

These notes cover the following:

• Converting an integral conservation law to a partial differential equation

• The divergence of a vector field

• The divergence theorem

Local form of a conservation law and the divergence

of a vector field

In the notes on surface integrals, conservation of mass was written in the form

d

dt

∫
V

ρ dV = −
∫
S

q · n̂ dS. (1)

In words, the rate at which the mass content of a volume V increases is rate at which
mass flows into the volume, which is written here as minus the rate at which mass
flows out of the volume. This equation must hold for any volume V . Instead of
saying that, you will often hear that the equation must hold for an ‘arbitrary’ volume
V . This means precisely that it must hold for any volume V , however that may be
shaped, so long as V is finite.1

Equation (1) is clearly an equation that links changes in the density ρ tot he
flux q. The problem in making sense of this equation, or more precisely, in using

1Technically, V must also have a sufficiently smooth surface for the surface integral to be defined.

1



it to predict exactly how ρ changes in time, is that it involves an integral over an
unspecified volume V and its surface S. What we would like to do is turn it into an
equation that does not involve such integrals. Ideally, this alternative equation would
only involve ‘local’ information about the function ρ and flux q — for instance, these
functions themselves, or their derivatives. In other words, we would like a differential
equation, in large part because we know more about how to deal with them than with
equations of the form (1).

A strategy we can adopt is similar to how we dealt with describing pressure dis-
tribution with elevation in the atmosphere. Because V is arbitrary — meaning it
can take any shape we choose — we can make it a cuboid with corners (x, y, z),
(x + δx, y, z), x, y + δy, z), (x, y, z + δz) etc. (see figure 1), and assume that δx, δy
and δz are all small. This means the cuboid has a small volume of size δxδyδz, and
we approximate the mass of the cuboid by∫

V

ρ dV ≈ ρ(x, y, z, t)δxδyδz

on the grounds that ρ should be approximately constant over the cuboid. Therefore

d

dt

∫
V

ρ dV ≈ ∂ρ

∂t
δxδyδz. (2)

Note that the ordinary derivative on the left is an ordinary derivative because, for a
given volume V , the integral depends on time t only, position having disappeared when
computing the definite triple integrals. On the right, we need to turn the ordinary
derivative back into a partial partial derivative because (x, y, z) have reappeared. The
reason for this reappearance is that (x, y, z) actually tells us where the specific volume
V we are looking at is located.

This still leaves the surface integral −
∫
S

q̂ dS. To deal with that, we will again
want to use the fact that δx, δy and δz are small, so that we can treat the integrands
as approximately constant. Before we can do so, we need to understand that the
surface of the cuboid consists of six rectangles. Two of them are perpendicular to the
x-axis, two are perpendicular to the y-axis, and two to the z-axis. We can look at
these three pairs separately.

Look at the surfaces perpendicular to the x-axis first. These are at x and x+ δx,
on the left and right of the cuboid in figure 1. The figure is an attempt to show the
three-dimensional geometry of the cuboid and may be somewhat confusing. Figure 2
shows a side-on view looking directly along the y-direction, so the left- and right-hand
edges of the rectangle in figure 2 correspond to the surfaces in question, whereas the
rectangle corresponds to the cuboid itself. Let the surfaces at x and x+δx be labelled
as S1 and S2, as indicated in figure 2.

The integrand in all cases is q · n̂. This is the normal component of q, taken in the
outward-pointing direction. Physically, think of it as the comonent of q that actually
carries material out of the volume. To be definite, let

q(x, y, z, t) = qx(x, y, z, t)i + qy(x, y, z, t)j + qz(x, y, z, t)k.
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Figure 1: A small cuboid volume V , and the normal components of flux on its faces.
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Figure 2: A side-on view of the small cuboid volume V .
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Take the face S1 located at x, meaning the left-hand edge of the rectangle in figure
2. The normal component of q is clearly parallel to the x-direction, as the face is
perpendicular to that direction. However, in order for this to be the component that
takes material out of the volume, we need to take the negative x-component −qx
rather than qx. We have a · n̂ = −qx. Taking the integral of q · n̂ over S1, we can use
the fact that S1 is very small, and so approximate the integrand q · n̂ ≈ −qx(x, y, z)
as approximately constant. Now the face S1 has size δyδz. Treating the integrand as
constant, we can calculate the integral as approximately∫

S1

q · n̂ dS ≈ −qx(x, y, z)δyδz.

This is the rate at which mass flows out of the volume V through the face S1; of
course, this is the same as saying that qx(x, y, z)δyδz is the rate at which mass flows
into the volume.

Now take the counterpart to S1, the surface S2 on the right of the rectangle in
figure 2. We can follow the same steps as before. The only difference is that we now
need to take the positive x-component of q, namely qx, as the integrand, and that
this must be evaluated at x+ δx rather than at x. Therefore∫

S2

q · n̂ dS ≈ qx(x+ δx, y, z)δyδz.

Labelling the bottom and top of the cuboid in figure 1 as surfaces S5 and S6,
respectively (see also figure 2), we can follow the same steps as above but switch the
roles of x and z, so that ∫

S5

q · n̂ dS ≈ −qz(x, y, z)δxδy,

and ∫
S6

q · n̂ dS ≈ qz(x, y, z + δz)δxδy,

Similarly, if front and back of the cuboid are surfaces S3 and S4, we have∫
S3

q · n̂ dS ≈ −qy(x, y, z)δxδz,

and ∫
S4

q · n̂ dS ≈ qz(x, y + δy, z)δxδz,

The integral over the whole surface is given by the sum of these six integrals,
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which we can write as∫
S

q · n̂ dS =

∫
S1

q · n̂ dS +

∫
S2

q · n̂ dS

+

∫
S3

q · n̂ dS +

∫
S4

q · n̂ dS

+

∫
S5

q · n̂ dS +

∫
S6

q · n̂ dS

=− qx(x, y, z)δyδz + qx(x+ δx, y, z)δyδz

− qy(x, y, z)δxδz + qy(x, y + δy, z)δxδz

− qz(x, y, z)δxδy + qz(x, y, z + δz)δxδy (3)

Note that the pairs of integrals have the same pattern: the first two have the same
area term δyδz and the same flux components qx, except that hte flux components
are evaluated a distance δx apart and have opposite signs. We can recongize this as
being similar to taking a derivative: take for instance

−qx(x, y, z)δyδz + qx(x+ δx, y, z)δyδz = [qx(x+ δx, y, z)− qx(x, y, z)]δyδz

The right-hand side looks like a partial derivative of δx, except that it lacks the
necessary division by δx. This is easy to remedy: we can divide by δx and multiply
by δx again, so

[qx(x+ δx, y, z)− qx(x, y, z)]δyδz =
qx(x+ δx, y, z)− qx(x, y, z)

δx
δxδyδz.

With δx small, this allows us to write

−qx(x, y, z)δyδz+qx(x+δx, y, z)δyδz =
qx(x+ δx, y, z)− qx(x, y, z)

δx
δxδyδz ≈ ∂qx

∂x
δxδyδz

as an approximation to the sum of the integrals over S1 and S2. Applying the same
procedure to the remaining integrals, we have

−qy(x, y, z)δxδz + qy(x, y + δy, z)δxδz ≈ ∂qy
∂y

δyδxδz

and

−qz(x, y, z)δxδy + qz(x, y, z + δz)δxδy ≈ ∂qz
∂z

δzδxδy.

Substituting these back into (3) gives us∫
S

q · n̂ dS ≈∂qx
∂x

δxδyδz +
∂qy
∂y

δyδxδz +
∂qz
∂z

δzδxδy

=

(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
δxδyδz. (4)

5



Now we need to go back to our original equation (1). The left-hand side is given
by (2), and the right-hand side by (4). Substituting gives

∂ρ

∂t
δxδyδz = −

(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
δxδyδz.

We can cancel the volume of the cuboid δxδyδz on both sides to give

∂ρ

∂t
= −

(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
or, rearranging,

∂ρ

∂t
+
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

= 0.

Note that there is a pattern to the partial derivatives of the components of q =
qxi + qyj + qzk that appears: take the derivative of the x-component, qx, with respect
to the x-coordinate, and add the derivative of the y-component qy with respect to the
y-coordinate and the derivative of the z-component with respect to the z-coordinate.

This combination of partial derivatives occurs very frequently and has its own
name: it is called the divergence of the vector field q. It is usally written in an
abbreviated form,

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

Take this to be the definition of what we mean by the notation ∇ · q when q takes
the form q = qxi + qyj + qxk. The ‘upside down triangle’ ∇ is often called the ‘nabla’
or ‘del’ operator. An alternative notation, which we will not use here, writes

div q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

Again, this is a defintiion of what we mean by ‘div q’.

Note 1 Think of ∇ as being a vector differential operator

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (5)

Then ∇ · q as defined above is a natural interpretation of the ‘scalar product’ of ∇
and q, as for a vector field q = qxi + qyj + qzk, we have

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

However, this is no ordinary product, as we are differentiating, not multiplying. For
an ordinary scalar product a · b, we have commutativity, a · b = b · a. This is not
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the case for the divergence, where we cannot write ∇ · q = q · ∇. The latter would
presumably have to mean

q · ∇ = qx
∂

∂x
+ qy

∂

∂y
+ qz

∂

∂z
,

so the components of q are not being differentiated. Exercise 2 will make more sense
of this.

The operator ∇ also occurs in different forms. For instance, we will later come
across the gradient of a scalar field like ρ, defined as

∇ρ =
∂ρ

∂x
i +

∂ρ

∂y
j +

∂ρ

∂z
k. (6)

Again, this is the natural application of the vector differential operator ∇ given by (5)
to a scalar ρ, analogous to the multiplication of a vector (∇) by a scalar (ρ), except
that we once again have a derivative rather than an ordinary product.

With this notation, conservation of mass therefore leads to the partial differential
equation

∂ρ

∂t
+∇ · q = 0. (7)

This is known as the local form of the conservation law (1).

The divergence of a vector field

As stated above, the divergence of a vector field q(x, y, z) = qx(x, y, z)i+qy(x, y, z)j+
qz(x, y, z)k is defined as

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

Obviously, ∇ · q defined in this way is a scalar field.
To get some understanding of what the operator means, look at the following two

observations.

Note 2 Note that the right-hand side of (4) can be written as(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
V

where V = δxδyδz is the volume of the cuboid. The combination of partial derivatives

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z
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can therefore be though of as approximately equal to

∇ · q =
1

V

∫
S

q · n̂ dS (8)

This combination of derivatives is therefore a measure of how much net flow the flux
q causes out of the surface S enclosing the small cuboid. This explains why this
combination of derivatives is called the divergence of the vector field.

Another way of understanding the same thing is to say that q · n̂ is the outward-
pointing normal component of flux q at any point on the surface S. Obviously q · n̂
is not, in general, constant over the surface of S. Taking the integral over q · n̂
and dividing by V effectively gives an ‘average’ over the normal component. If the
divergence is positive, that average is positive: on average, flux points out of the
surface rather than into it.

Note 3 Each of the terms making up the divergence can be understood in terms of
whether the flow in a particular direction is speeding up or slowing down in the flow
direction. Take

∂qx
∂x

.

This is positive if qx increases with x: that is, if the flow in the x-direction gets
faster as we move along the x-direction. Similarly, ∂qy/∂y is positive if th flow in the
y-direction gets faster as we move along the y-direction, and similarly for ∂qz/∂z.

These terms show up because we are looking at the net rate at which mass flows out
of the cuboid in figure 1, as described in the previous note. The net rate of flow out
of the faces S1 and S2 can be thought of as the rate at which mass flows out through
faces S2 minus the rate at which it flows in through face S1, qx(x+δx, y, z)δyδz minus
qx(x, y, z)δyδz. It is the difference between flux qx(x + δx, yz) out on the right and
flux in qx(x, y, z) on the left that gives the term ∂qx/∂x. Similar terms show up for
flow out through faces S4 minus flow in through face S3, and flow out through faces
S6 minus flow in through face S5.

Example 1 Let q = x2yi−y2xj. This is of the form q = qxi+qyj+qzk if we identify
qx = x2y, qy = −y2x, qz = 0. Therefore

∇ · q =
∂(x2y)

∂x
+
∂(−y2x)

∂y
+
∂(0)

∂z
= 2xy − 2yx = 0.

Exercise 1 Compute ∇ · q for

1.

q =
xi + yj + zk

[x2 + y2 + z2]3/2
,

2.
q = yi− xj,
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3.
q = x2yi− y2xj,

4.
q = −xi− yj

5.
q = x2i + y2j

6.
q = 2xi− yj.

7.
q = −xi + yj

8.
q = xi + yj + zk.

9. Draw the vector fields (using arrows) defined under points 2–7 above. Consider
the shape of the vector fields near the origin. For which ones is it obvious that
divergence is definitely positive or negative at the origin from these plots alone?
Why? (Hint. Think of how the components of the vector field change with x
and y — can you tell when these rates of change are positive or negative? Then
look at the definition of divergence in terms of the partial derivatives of the
components of q.)

10. Look at the plots in figure 3. Which panels show vector fields with positive
divergences at the origin? Negative divergences? Give a reason for your answer
— you should do this in much the same way as the previous problem.

Exercise 2 Again, we can think of the divergence operator as an extension of an
ordinary derivative, and chain and product rules have extensions here too. The basic
idea behind this follows an exercise in the notes on heat flux, which we illustrate with
the following example: Let q(x, y, z) = ρ(x, y, z)v(x, y, z). Then we can show that

∇ · q = ρ∇ · v + v · ∇ρ

where ∇ρ is the gradient of ρ, defined in (6) above. To do this, write write v in
component form as v = vxi + vyj + vzk, where vx, vy and vz are functions of x, y and
z whose form is determined by the vector field v.2 Then we have

q = ρvxi + ρvyj + ρvzk,

2To see this note that we can identify vx(x, y, z) = v(x, y, z) · i, and similarly for vy and vz.
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Figure 3: Various examples of vector fields, shownv at a number of grid points. Iden-
tify those examples for which the divergence ∇·q is definitely positive or negative at
the origin. To do this, consider how the x- and y-components of the vector field shown
change with x and y, and identify examples for which you can see that ∂qx/∂x > 0,
∂qy/∂y > 0 at the origin, or the equally, for which ∂qx/∂x < 0, ∂qy/∂y < 0 at the
origin. To make this easier, you can try to sketch how qx(x, y) depends on x for y = 0
(i.e, along the x-axis), and similarly, you can sketch how qy(x, y) depends on y for
x = 0 (i.e., along the y-axis).
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and so

∇ · q =
∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z
.

But now we can apply the product rule to each term on the right-hand side, e.g.,

∂(ρvx)

∂x
=
∂ρ

∂x
vx + ρ

∂vx
∂x

and similarly for ∂(ρvy)/∂y and ∂(ρvz)/∂z. Hence

∇ · q =
∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z

=

(
∂ρ

∂x
vx + ρ

∂vx
∂x

)
+

(
∂ρ

∂y
vy + ρ

∂vy
∂y

)
+

(
∂ρ

∂z
vz + ρ

∂vz
∂z

)
=

(
ρ
∂vx
∂x

+ ρ
∂vy
∂y

+ ρ
∂vz
∂z

)
+

(
∂ρ

∂x
vx +

∂ρ

∂y
vy +

∂ρ

∂z
vz

)
= ρ∇ · v + v · ∇ρ.

The derivation above shows a that, when trying to derive results that involve the
differential operator ∇, it is usually necessary to write out the relevant expressions
explicitly in terms of partial derivatives, and to manipulate these using the standard
differentiation rules you already known about.

Using a similar approach, as well as the specific result we have just derived, show
the following:

1. Let q(x, y, z) = q(r)r̂ where r =
√
x2 + y2 + z2 and r̂ = (xi + yj + zk)/r and

q(r) is a function. Using the product rule result above, show that

∇ · q =
1

r2

d(r2q)

dr
.

Explain what this result is relevant for. What type of geometry / symmetry does
the vector field q have? Sketch an example of such a vector field.

2. Let q = q(φ(x, y, z)). Show that

∇ · q =
dq

dφ
· ∇φ,

where, if q = qxi + qyj + qzk, then the ‘ordinary derivative’ on the right-hand
side is given by

dq

dφ
=

dqx
dφ

i +
dqy
dφ

j +
dqz
dφ

k.
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3. Let q1(x, y, z) and q2(x, y, z) be two different vector fields, and c1 and c2 be
constants. Define q(x, y, z) = c1q1(x, y, z) + c2q2(x, y, z). Show that

∇ · q = c1∇ · q1 + c2∇ · q2.

Exercise 3 Consider the divergence of a vector field in two dimensions, q = qx(x, y)i+
qy(x, y)j, so that

∇ · q =
∂qx
∂x

+
∂qy
∂y

.

Now transform to a rotated coordinate system (x′, y′), in which

x′ = x cos(θ) + y sin(θ), y′ = y cos(θ)− x sin(θ),

where θ is a constant angle of rotation (see the notes on mathematical background).
Define the unit vectors in the x′y′-coordinate system by

i′ = i cos(θ) + j sin θ, j′ = −i sin(θ) + j cos(θ).

Use this to define components of q in the x′y′-coordinate system so that

q = q′x′i
′ + q′y′j

′.

1. Express q′x′ and q′y′ in terms of qx, qy and θ.

2. Using the chain rule and your answer above, show that

∂qx
∂x

+
∂qy
∂y

=
∂q′x′

∂x′
+
∂q′y′

∂y′
.

Why is this important?

The local form of a conservation revisited

In deriving the mass conservation equation (7) from (1), we skated over some technical
detail. For instance, in writing down (3), we approximated the surface integral over
the left-hand face S1 by ∫

S1

q · n̂ dS = −qx(x, y, z)δyδz,

and the integral over S2 by∫
S2

q · n̂ dS = −qx(x+ δz, y, z)δyδz
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on the basis that we had moved a distance δx along the x-axis. This does give the
right answer, but if you think about what we did carefully, you realize that we might
not just want to worry about changes in going from x to x + δx. When integrating
over S1 and S2, the other two coordinates also vary, from y to y + δy and z to
z + δz, and yet we are treating these coordinates as being constant when writing the
flux components as −qx(x, y, z) and −qx(x + δz, y, z). Why not, for instance, write
−qx(x, y + δy, z) and qx(x+ δx, y, z + δz)?

A better, more detailed way, of doing the same calculation would have been to
write the integrals over S1 and S2 explicitly as∫

S1

q · n̂ dS =

∫ y+δy

y

∫ z+δz

z

−qx(x, y′, z′) dz′ dy′

and ∫
S2

q · n̂ dS =

∫ y+δy

y

∫ z+δz

z

qx(x+ δx, y′, z′) dz′ dy′

where y′ and z′ are the relevant dummy variables — we cannot use y and z simulta-
neously as limits and as integration variables.

Adding the two gives∫
S1

q · n̂ dS +

∫
S2

q · n̂ dS =

∫ y+δy

y

∫ z+δz

z

qx(x+ δx, y′, z′)− qx(x, y′, z′) dz′ dy′

=

∫ y+δy

y

∫ z+δz

z

qx(x+ δx, y′, z′)− qx(x, y′, z′)
δx

δx dz′ dy′

≈
∫ y+δy

y

∫ z+δz

z

∂qx
∂x

(x, y′, z′)δx dz′ dy′,

and treating the partial derivative as approximately constant over the range y < y′ <
y + δy, z < z′ < z + δz, we get back∫

S1

q · n̂ dS +

∫
S2

q · n̂ dS ≈ ∂qx
∂x

δxδyδz, (9)

and we can do the same to the other faces of the cuboid in figure 1. Our original
derivation therefore still works, but has become a lot more messy. There is a better
approach that uses a very general and maybe surprising result that links surface
and volume integrals. That result is the divergence theorem, also known as Gauss’s
theorem.

The divergence theorem

The divergence theorem states that, for a volume V with a sufficiently smooth surface
S and a sufficiently smooth vector field q,∫

S

q · n̂ dS =

∫
V

∇ · q dV,

13
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Figure 4: Geometry of the surface S of the volume V in the ‘proof’ of the divergence
theorem.

where n̂ is the outward-pointing unit normal to S. As will become clearer below, we
can think of the divergence theorem as a generalization of the fundamental theorem
of calculus.

We will not present a general proof of the divergence theorem here. Instead, we
simply demonstrate a brief calculation that shows that the divergence theorem is a
plausible result for general geometries and vector fields, not just for the parallel-sided
slab example above.

Let V be the volume between an upper surface Smax given by z = hmax(x, y) and
a lower surface Smin given by z = hmin(x, y), which meet at a common boundary
whose projection onto the xy-plane is a curve that can be divided into two parts,
y = ymin(x) and y = ymax(x) (figure 4). Consider then the integral over V of the
divergence of some vector field q = qxi + qyj + qzk, which we can write as∫

V

∇ · q dV =

∫
V

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

dV

=

∫
V

∂qx
∂x

dV +

∫
V

∂qy
∂y

dV +

∫
V

∂qz
∂z

dV

Next, we focus only on the last integral,
∫
V
∂qz
∂z

dV , in the expectation that there is
nothing special about the x- or y-directions. But, in terms of multiple integrals, we

14



can write the volume integral as∫
V

∂qz
∂z

dV =

∫ xmax

xmin

[∫ ymax(x)

ymin(x)

(∫ hmax(x,y)

hmin(x,y)

∂qz
∂z

dz

)
dy

]
dx.

Next, we can recognize that the innermost integral is the integral with respect to z
of a partial derivative with respect to z. Using the fundamental theorem of calculus,
we can evaluate this integral, and are left with∫

V

∂qz
∂z

dV =

∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, z, hmax(x, y))− qz(z, x, hmin(x, y)) dy

]
dx

=

∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, z, hmax(x, y)) dy

]
dx

−
∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, z, hmin(x, y)) dy

]
dx. (10)

At this point, we have to recall the formula for the integral of the normal compo-
nent of a flux field q over a surface z = h(x, y):∫
S

q·n̂ dS =

∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, y, h(x, y))− qx(x, y, h(x, y))
∂h

∂x
− qy(x, y, h(x, y))

∂h

∂y
dy

]
dx

(11)
if n̂ is upward-pointing from S (i.e., upward-pointing relative to the z-axis) , and the
same expression but with the signs on the right-hand side reversed if n̂ is downward-
pointing. But we know that the outward-pointing unit normal n̂ is upward-pointing
on Smax and downward-pointing on Smin, and so we can recognize∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, z, hmax(x, y)) dy

]
dx =

∫
Smax

qzk · n̂ dS

as well as ∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, z, hmin(x, y)) dy

]
dx =

∫
Smax

qzk · n̂ dS.

From (10), we therefore have∫
V

∂q

∂z
dV =

∫
Smax

qzk · n̂ dS +

∫
Smin

qzk · n̂ dS

=

∫
S

qzk · n̂ dS (12)
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Now, if there is nothing special about the z-direction, then by symmetry, we
should also have ∫

V

∂qx
∂x

dV =

∫
S

qxi · n̂ dS (13a)∫
V

∂qy
∂y

dV =

∫
S

qyj · n̂ dS. (13b)

In fact, we should be able to reformulate volume and surface integrals by describing
for instance the surface of S through its height above, say the xz-plane and integrating
with respect to y first for the ∂qy/∂y term, and subsequently integrating with respect
to z and x, and similarly for the ∂qx/∂x term. Each of these computations would
then be perfectly analogous to how we showed that (12) holds, except with the roles
of z and y or z and x reversed.3

Adding (13) to (12) then gives∫
V

∇ · q dV =

∫
V

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

dV

=

∫
S

[qxi + qyj + qzk] · n̂ dS

=

∫
S

q · n̂ dS,

which is the divergence theorem.

Exercise 4 Verify the divergence theorem if V is the tetrahedron with vertices at
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) and q = x2i + y2j + z2k. That is, compute∫
S

q · n̂ dS and
∫
V
∇ · q dV and verify that they are the same.

3To make this work, the surface of V would need to consist not only of a single upper and lower
surface when view from the xy-plane but also from the xz-planes and yz-planes. Howver, as note
4 demonstrates, we can use the fact that the divergence theorem holds for simple volumes that do
not fold back on themselves to show that it also holds for volumes that do fold back on themselves
and do not have single upper and lower surfaces, so this is not the main issue.

Harder to see is that the formulation of the surface integral with z given on the surface as a
function of x and y (so we are integrating over x and y) is indeed equivalent to formulating the
surface as having y given as a function of x and z. This can be done by applying a change of
variable to (11), but this is not trivial: what is required is a change of variables from y to z for the
qy∂h/∂y term in the integrand in (11), and similarly a change of variables from x to z for the term
qx∂h∂x. This can be done by recognizing that we basically have z = h(x, y) and so we expect that
we can put ∫ ∫

qy∂h/∂y dy dx =

∫ ∫
qy dz dx.

This however still requires careful handling of the change of variable, because the sign of ∂h/∂y and
∂h/∂x will generally change summer along the original upper and lower surfaces Smax and Smin.
These are not complications worth discussing in detail here. As before, our aim is not mathematical
rigour but physical understanding of why calculus is useful and what various operations represent
physically.
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Exercise 5 Often you can use the divergence theorem to compute surface integrals
much more easily. Let

q =
xi + yj + zk

(x2 + y2 + z2)3/2
.

If S is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), and n̂ is the upward-
pointing unit normal, show that

∫
S

q·n̂ dS = π/2. Hint: Apply the divergence theorem
to the volume lying between the surface S and the part of the sphere with radius 1 that
lies in the positive octant (i.e., for which x > 0, y > 0 and z > 0). Draw a diagram
to understand this better.

Exercise 6 Use the divergence theorem to compute
∫
S

q · n̂ dS if S is the surface of
the tetrahedron in example 4 above, and q = (x− y − z)i + (x+ y)j + (z − x− y2)k.

Note 4 The divergence theorem still holds if the volume V does not have a single
upper and lower surface. Consider the volume in figure ??, which folds back on itself.
We can show that the divergence theorem holds for this volume by using the fact that it
holds for volumes that do not fold back on themselves. Consider the split of V into the
volumes V1 and V2 shown. Both of V1 and V2 have a single upper and lower surface,
so we know the divergence theorem holds for each. When splitting V , we create a new
surface Sint. Sint is both, part of the boundary S1 of V1 and part of the boundary S2

of V2, but the outward-pointing normals n̂1 and n̂2 are equal and opposite in the two
cases.

The surface integral over the surface S of V is related to the surface integrals over
S1 and S2 through∫

S

q · n̂ dS =

∫
S1

q · n̂1 dS −
∫
Sint

q · n̂1 dS +

∫
S2

q · n̂ dS −
∫
Sint

q · n̂2 dS,

the subtraction being necessary to remove the contribution from the newly-created
cuts. But, as n̂2 = −n̂1, we have

−
∫
Sint

q · n̂1 dS −
∫
Sint

q · n̂2 dS = −
∫
Sint

q · (n̂1 − n̂2) dS = 0

and so ∫
S

q · n̂ dS =

∫
S1

q · n̂1 dS +

∫
S2

q · n̂ dS;

the contributions from the two sides of the cut cancel. But we can apply the divergence
theorem to V1 and V2, ∫

S1

q · n̂1 dS =

∫
V1

∇ · q dV∫
S2

q · n̂2 dS =

∫
V2

∇ · q dV
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so ∫
S

q · n̂ dS =

∫
V1

∇ · q dV +

∫
V2

∇ · q dV =

∫
V

∇ · q dV,

the last equality holding because V1 and V2 do not overlap and together make up the
volume V . Therefore we have the divergence theorem for V ,∫

S

q · n̂ dS =

∫
V

∇ · q dV,

Note 5 The divergence theorem gives us a way of generalizing the interpretation we
gave for a divergence in 2, which referred only to s mall cuboids δxδyδz. If we take the
volume integral of a divergence over a very small volume V , we have approximately∫

V

∇ · q dV ≈ (∇ · q)V,

treating ∇ · q as approximately constant over V . However, from the divergence theo-
rem, we also have ∫

V

∇ · q dV =

∫
S

q · n̂ dS,

where S is the surface of ∆V . Hence

∇ · q ≈ 1

V

∫
S

q · n̂ dS,

or better,

∇ · q = lim
V→0

1

V

∫
S

q · n̂ dS.

The divergence of a flux is the rate at which flux leads to mass flow out of a small
volume, divided by the size of that volume, no matter the shape of the volume.

Exercise 7 The result of the previous note often gives a quick way for determining
the form of a divergence in a coordinate system that is not Cartesian. Take for
instance a cylindrical polar coordinate system with coordinates (r, θ, z) linked to the
Cartesian coordinates (x, y, z) through

x = r cos(θ), y = r sin(θ).

In the polar coordinate system, a vector field would typically be represented in terms
of unit vectors that are aligned with the coordinate axes. We will denote these by r̂ ,
θ̂ and ẑ. Unlike in a Cartesian system, where the coordinate axes point in the same
direction regardless of where a point (x, y, z) is located, the unit vectors r̂ and θ̂ point
in different directions at different points in space; they depend on r and θ. In fact,
these unit vectors are related to the fixed unit vector i, j and k through

r̂ = i cos(θ) + j sin(θ), θ̂ = −i sin(θ) + j cos(θ), ẑ = k.

18



If we write a vector field q in the form

q(r, θ, z) = qr(r, θ, z)r̂ + qθ(r, θ, z)θ̂ + qz(r, θ, z)ẑ, (14)

the divergence of q will then not be given

∇ · q =
∂qr
∂r

+
∂qθ
∂θ

+
∂qz
∂z

.

It is easy to see that this cannot be right on dimensional grounds alone. Imagine that
q has the units of a mass flux, so kg m−2 s−1. The divergence then has units of kg
m−3 s−1, because differentiation with respect to a spatial coordinate like x, y or z leads
to the units being divded by m. This means ∂qr/∂r and ∂qz/∂z would have the right
units. ∂qθ/∂θ on the other hand would not — angles essentially have no units (they
are ratios of two distances) and so ∂qθ/∂θ has units of kg m−2 s−1.

Part 1 in exercise 2 gives you a flavour of how to be sure you get the right formula
for divergence by starting from the definition

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

in a Cartesian system, performing a change of variables and using the chain rule. In
that exercise r̂, is a radial unit vector in a spherical polar coordinate system, meaning
a unit vector pointing radially away from the origin at a given point (x, y, z), and r
is the distance from the origin to that point. However, by assuming that the vector
field takes the form q = q(r)r̂, the exercise assumes a certain symmetry, so it does
not give you a complete formula for the coordinate transformation.

That said, we can pursue the same approach here by writing (14) in Cartesian
form. Substituting for r̂, θ̂ and ẑ in terms of i, j and k gives

q(r, θ, z) = [qr(r, θ, z) cos(θ)− qθ(r, θ, z) sin(θ)] i

+ [qθ(r, θ, z) cos(θ) + qr(r, θ, z) sin(θ)] j + qz(r, θ, z)k

so that

qx = qr(r, θ, z) cos(θ)− qθ(r, θ, z) sin(θ), qy = qθ(r, θ, z) cos(θ) + qr(r, θ, z) sin(θ),

qz = qz(r, θ, z),

and the divergence becomes

∇ · q =
∂

∂x
[qr(r, θ, z) cos(θ)− qθ(r, θ, z) sin(θ)]

r +
∂

∂y
[qθ(r, θ, z) cos(θ) + qr(r, θ, z) sin(θ)] +

∂qz
∂z

. (15)
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There is a second, simpler way. If, as the divergence theorem tells us,

∇ · q = lim
V→0

1

V

∫
S

q · n̂ dS

regardless of the shape of the small volume V (so long as it is ‘small’ in all directions),
then we can pick a volume shape that makes the computation of the surface integral
easy and leads to simple derivatives as we also did in (4) (or better, as we did in (4),
though that is harder). The obvious thing to do is to pick a small volume, shaped so
that any point (r, θ, z) inside that volume satisfies r0 < r < r0 + δr, θ0 < θ < θ0 + δθ,
z0 < z < z0 + δz for some fixed r0, θ0, z0 and δr, δθ, δz.

1. Sketch the r, θ coordinate plane with lines of constant r and θ indicated by dashed
lines. This is like looking at the (r, θ, z) coordinate system down the z-axis. Plot
what the volume V looks like in this perspective.

2. By looking the size faces of the the volume just described, show that we have∫
S

q · n̂ dS ≈(r0 + δr)δθδzq(r0 + δr, θ0, z0)− (r0 + δr)δθδzq(r0 + δr, θ0, z0)

+ δrδzqθ(r0, θ0 + δθ, z0)− δrδzqθ(r0, θ0, z0)

+ rδθδrqz(r0, θ0, z0 + δz)− rδθδrqz(r0, θ0, z0)

Be careful to show why the factors multiplying the flux components should take
the form they do — remember these factors describe the surface areas these flux
components pass through. Show also that

V ≈ rδθδrδz.

Therefore show that

∇ · q =
1

r

∂(rqr)

∂r
+

1

r

∂qθ
∂θ

+
∂qz
∂z

. (16)

3. Apply the chain rule to (15) to show directly that (16) holds.

Exercise 8 Adapt the method used in part 2 above to a spherical polar coordinate
system (r, θ, φ), with r the radial coordinate, θ the longitude and φ the colatitude, to
show that

∇ · q =
1

r2

∂(r2qr)

∂r
+

1

r sinφ

∂qθ
∂θ

+
1

r sin(φ)

∂(sin(φ)qφ)

∂φ
.

Note that some texts define θ as co-latitude, meaning π radians or 90 degrees minus
the ordinary latitude, and φ as longitude, in which case the roles of θ and φ are
switched.
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Deriving local forms of conservation laws using the

divergence theorem

One of the main applications of, and our main motivation for introducing, the di-
vergence is to turn integral conservation laws of the form (1) into partial differential
equations. We already have such a differential equation in (7). Here, we will see an
alternative derivation of the same equation using a more general method.

Based on what we have done above, this is now quite easy. Applying the divergence
theorem to (1), we get

d

dt

∫
V

ρ dV = −
∫
V

∇ · q dV. (17)

The last thing that is needed is to recognize that we can turn the derivative of an
integral on the left-hand side into the integral of a derivative. To do so, remember
how a derivative is defined: in general

df

dt
= lim

δt→0

f(t+ δt)− f(t)

δt
.

Here, f is given by an integral,

f(t) =

∫
V

ρ(x, y, z, t) dV

where the volume V does not change with time, and the defintie integration over the
fixed volume V makes sure that f does not depend on x, y or z. Using the definition
of the derivative, we have

d

dt

∫
V

ρ dV = lim
δt→0

∫
V
ρ(x, y, z, t+ δt) dV −

∫
V
ρ(x, y, z, t) dV

δt
.

Rearranging the right-hand side, we get

d

dt

∫
V

ρ dV = lim
δt→0

∫
V

ρ(x, y, z, t+ δt)− ρ(x, y, z, t)

δt
dV.

Now, in theory there are technical issues associated with taking the limit inside the
integral — basically, the integral is already a limit itself (through the Riemann sum),
and one could worry about whether the order in which limits are teken matters.
However, in keeping with the rest of the course, we will not address this here. For
sufficiently smooth functions, the order of taking limits can be interchanged, and so

d

dt

∫
V

ρ dV =

∫
V

lim
δt→0

ρ(x, y, z, t+ δt)− ρ(x, y, z, t)

δt
dV =

∫
V

∂ρ

∂t
dV.

Armed with this, we can then finally turn (17) into the form∫
V

∂ρ

∂t
+∇ · q dV = 0. (18)
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Now all we have to do is recognize that V can again be any volume we like. So if
there was a region in which the integrand was positive,4 we could make V be that
region and the integral would be positive, in contradiction to (18). This means there
cannot be a region in which the integrand is positive. The same argument can be
made to show that there cannot be a region in which the integrand is negative. If
there are no regions in which the integrand is positive or negative, it must be zero
everywhere. 5. As a result,

∂ρ

∂t
+∇ · q = 0. (19)

This is once again the local form of the conservation law (1).

Note 6 A simpler way of saying the same thing is: we need (18) to hold for any
volume V , so we can pick a very small volume V = δV . For a very small volume, we
can approximate the integrand as constant — provided the integrand is continuous,
i.e., has no abrupt jumps — and so∫

∆V

∂ρ

∂t
+∇ · q dV ≈

[
∂ρ

∂t
+∇ · q

]
δV.

However, by (18), this must equal zero. Dividing by δV , we get

∂ρ

∂t
+∇ · q = 0.

The steps in this derivation can be summed up as

1. Start with the integral form

d

dt

∫
V

ρ dV = −
∫
S

q · n̂ dS

2. Turn the left-hand side into the integral over the derivative,

d

dt

∫
V

ρ dV =

∫
V

∂ρ

∂t
dV

3. Use the divergence theorem on the right to turn the surface integral into a
volume integral,

−
∫
S

q · n̂ dS = −
∫
V

∇ · q dV

4f is positive if f > 0, not f ≥ 0.
5A more technical statement would be: we assume that the integrand is continuous. If it were

positive at some point, we could make V a sufficiently small volume around that point such that the
integrand remains positive in V , so (18) would not hold for that V . Similarly, if the integrand were
negative at some point, we could find an analogous small volume so the integrand remains negative
in V , and (18) would not hold for that volume. Consequently, there cannot be any points at which
the integrand is postive or negative, and it must therefore be zero.
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4. Combine the last two steps to give∫
V

∂ρ

∂t
dV = −

∫
V

∇ · q dV,

or, as a single integral ∫
V

∂ρ

∂t
+∇ · q dV = 0.

5. This is the conceptually hard step: if the integral is zero for any shape and size
of volume V , the integrand cannot be positive or negative anywhere (because
we could make the integral positive or negative as a result). If the integrand is
not positive or negative, it must be zero:

∂ρ

∂t
+∇ · q = 0.

Of course, once we have the local form (19), it is possile to work backwards
through these steps to get the original integral form (1), that is, the local form of the
conservation law ensures that the integral form (1) holds for any volume V .

Exercise 9 Remember that the mass flux q was given by q = ρv, so (19) is the same
as

∂ρ

∂t
+∇ · (ρv) = 0

Assume the material is incompressible, so ρ is a constant. Find a differential equation
satisfied by v alone (meaning, a differential equation that does not contain ρ). Write
that equation out explicitly in terms partial derivatives of the components vx, vy and vz
of v. Suppose you have a flow that slows in one direction (for instance, vx decreases in
the x-direction). What can you say about the other components? Describe a practical,
everyday manifestation of this.

23


