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Overview

These notes cover the following:
e Converting an integral conservation law to a partial differential equation
e The divergence of a vector field

e The divergence theorem

Local form of a conservation law and the divergence
of a vector field

In the notes on surface integrals, conservation of mass was written in the form

4 pdV:—/q-ﬁdS. (1)
S

dt Jy

In words, the rate at which the mass content of a volume V' increases is rate at which
mass flows into the volume, which is written here as minus the rate at which mass
flows out of the volume. This equation must hold for any volume V. Instead of
saying that, you will often hear that the equation must hold for an ‘arbitrary’ volume
V. This means precisely that it must hold for any volume V', however that may be
shaped, so long as V is finite.!

Equation (1) is clearly an equation that links changes in the density p tot he
flux q. The problem in making sense of this equation, or more precisely, in using

!Technically, V must also have a sufficiently smooth surface for the surface integral to be defined.



it to predict exactly how p changes in time, is that it involves an integral over an
unspecified volume V' and its surface S. What we would like to do is turn it into an
equation that does not involve such integrals. Ideally, this alternative equation would
only involve ‘local” information about the function p and flux q — for instance, these
functions themselves, or their derivatives. In other words, we would like a differential
equation, in large part because we know more about how to deal with them than with
equations of the form (1).

A strategy we can adopt is similar to how we dealt with describing pressure dis-
tribution with elevation in the atmosphere. Because V' is arbitrary — meaning it
can take any shape we choose — we can make it a cuboid with corners (z,y, z),
(x + 0z, y,2), x,y + 0y, 2), (z,y,z + 02) etc. (see figure 1), and assume that dx, dy
and ¢z are all small. This means the cuboid has a small volume of size dxdydz, and
we approximate the mass of the cuboid by

/ pdV = p(x,y, z,t)0xdydz
1%

on the grounds that p should be approximately constant over the cuboid. Therefore

% ; pdV =~ %(héydz. (2)
Note that the ordinary derivative on the left is an ordinary derivative because, for a
given volume V', the integral depends on time ¢ only, position having disappeared when
computing the definite triple integrals. On the right, we need to turn the ordinary
derivative back into a partial partial derivative because (x,y, z) have reappeared. The
reason for this reappearance is that (z,y, z) actually tells us where the specific volume
V' we are looking at is located.

This still leaves the surface integral — [ ¢QqdS. To deal with that, we will again
want to use the fact that dx, dy and dz are small, so that we can treat the integrands
as approximately constant. Before we can do so, we need to understand that the
surface of the cuboid consists of six rectangles. Two of them are perpendicular to the
r-axis, two are perpendicular to the y-axis, and two to the z-axis. We can look at
these three pairs separately.

Look at the surfaces perpendicular to the z-axis first. These are at x and = + dx,
on the left and right of the cuboid in figure 1. The figure is an attempt to show the
three-dimensional geometry of the cuboid and may be somewhat confusing. Figure 2
shows a side-on view looking directly along the y-direction, so the left- and right-hand
edges of the rectangle in figure 2 correspond to the surfaces in question, whereas the
rectangle corresponds to the cuboid itself. Let the surfaces at x and x4+ dx be labelled
as S1 and 9, as indicated in figure 2.

The integrand in all cases is q-n. This is the normal component of q, taken in the
outward-pointing direction. Physically, think of it as the comonent of q that actually
carries material out of the volume. To be definite, let

a(z,y, z,t) = @z, y, 2, )i+ q(z,y, 2, t)j + ¢.(z,y, 2, k.

2



qz(x,y,z+dz)

!

I
|
(x.y,z+dz) | qy(xy+dyz)
|
| /
q,(x..2) | Gy (x+dx,y,2)
— > | — >
/ [
qy(x3.2) 7] !
Gy+dyz) -
(.2) | vy

qz(x,2)

Figure 1: A small cuboid volume V', and the normal components of flux on its faces.
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Figure 2: A side-on view of the small cuboid volume V.



Take the face Sy located at x, meaning the left-hand edge of the rectangle in figure
2. The normal component of q is clearly parallel to the z-direction, as the face is
perpendicular to that direction. However, in order for this to be the component that
takes material out of the volume, we need to take the negative z-component —gq,
rather than ¢,. We have a-n = —¢q,. Taking the integral of q - n over S;, we can use
the fact that S; is very small, and so approximate the integrand q - n ~ —¢,(z,y, 2)
as approximately constant. Now the face S has size dydz. Treating the integrand as
constant, we can calculate the integral as approximately

/ q-ndS ~ —q.(v,y,2)0ydz.
S1

This is the rate at which mass flows out of the volume V' through the face Si; of
course, this is the same as saying that g, (x,y, 2)0ydz is the rate at which mass flows
into the volume.

Now take the counterpart to S7, the surface S; on the right of the rectangle in
figure 2. We can follow the same steps as before. The only difference is that we now
need to take the positive x-component of q, namely ¢,, as the integrand, and that
this must be evaluated at x + dx rather than at x. Therefore

/ q-ndS = q.(z+ ox,y, 2)0ydz.
Sa

Labelling the bottom and top of the cuboid in figure 1 as surfaces S; and S,
respectively (see also figure 2), we can follow the same steps as above but switch the
roles of x and z, so that

/ q-8dS ~ —q.(z,y, 2)526y,
Ss

and
/ q-ndS = q.(z,y,z+ 02)dzdy,
Se

Similarly, if front and back of the cuboid are surfaces S3 and Sy, we have
/ q-ndS ~ —q,(z,y,2)dzdz,
S3

and
[ a-ds ~ au(oy + 0y, 2)608,
Sa

The integral over the whole surface is given by the sum of these six integrals,



which we can write as

/q-ﬁdS:/ q-ﬁdS+/ q-1dS
S S1 Sa
+/ q-fld5+/ q-ndS
53 S4

+/ q-fld5+/ q-ndS
55 SG

== qw('xa Y, Z)éy(sz + Q:v(x + 537, Y, z)5y5z
— qy(7,y,2)026z + q,(v,y + 0y, 2)6x62
— ¢:(2,y, 2)0x6y + q:(z,y, = + z)dxdy (3)

Note that the pairs of integrals have the same pattern: the first two have the same
area term dydz and the same flux components ¢, except that hte flux components
are evaluated a distance dx apart and have opposite signs. We can recongize this as
being similar to taking a derivative: take for instance

—qz(2,y,2)0y02 + (2 + 02y, 2)0yd2 = [qu(x + 0, y, 2) — ¢z(2,y, 2)]0ydz

The right-hand side looks like a partial derivative of dx, except that it lacks the
necessary division by dx. This is easy to remedy: we can divide by dx and multiply
by dx again, so

Qz(x + 5377 Y, Z) B qv’c(‘fu Y, Z)
ox

With dx small, this allows us to write

T+ 5$,y,2) - qx(l',y,Z)
ox

as an approximation to the sum of the integrals over S; and S5. Applying the same
procedure to the remaining integrals, we have

—q(z,y, 2)0ydz+q.(x+0x,y, 2)dydz = 4 dxdydz = %53}51;52

—qy(x,y, 2)0xdz + qy(z,y + dy, 2)dxdz ~ %53;5:652
Y

and

—q.(7,y,2)0x0y + q.(z,y, 2 + 62)0xdy ~ %(5&53:(5,7;.

Substituting these back into (3) gives us

/ q-ndS %%51353452 + %&/(M(&z + 94 0z0xdy
S

Ox dy 0z
9qx  Oqy | 0g:
S e L A . 4
<8x + Dy + 82)535(5@;5,2 (4)



Now we need to go back to our original equation (1). The left-hand side is given
by (2), and the right-hand side by (4). Substituting gives

¢z | Ogqy | g
ox * oy + 0z

dp
Eéwéyéz =— (

) 0xdydz.

We can cancel the volume of the cuboid dxdydz on both sides to give

dp  (9qz Oqy | Og.
ot (6x+8y+8z

or, rearranging,
Op  9¢:  Oqy  9q. _
o odr 0Jdy 0z

Note that there is a pattern to the partial derivatives of the components of q =
¢.1+ quj + ¢k that appears: take the derivative of the z-component, ¢,, with respect
to the z-coordinate, and add the derivative of the y-component g, with respect to the
y-coordinate and the derivative of the z-component with respect to the z-coordinate.

This combination of partial derivatives occurs very frequently and has its own
name: it is called the divergence of the vector field q. It is usally written in an
abbreviated form,

dq, 0 dq.
=Tk Ty T
Jor Oy 0z
Take this to be the definition of what we mean by the notation V - q when q takes
the form q = ¢,i+ q,j + ¢, k. The ‘upside down triangle’ V is often called the ‘nabla’

or ‘del” operator. An alternative notation, which we will not use here, writes

V-q

9q  Oqy | 0Og:
or Oy 0Oz

divg =

Again, this is a defintiion of what we mean by ‘div q’.

Note 1 Think of V as being a vector differential operator

.0 .0 9]
V—la—x—l—Ja—y—i-k&. (5)

Then V - q as defined above is a natural interpretation of the ‘scalar product’ of V
and q, as for a vector field q = q,i + q,j + ¢.k, we have

0q. O 0q.
_ 94 94y Oq

v.q_ﬁx dy 0z

However, this is no ordinary product, as we are differentiating, not multiplying. For
an ordinary scalar product a - b, we have commutativity, a-b = b -a. This is not
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the case for the divergence, where we cannot write V -q = q - V. The latter would
presumably have to mean

.V = 24_ 24_ —
q — q:Eax any Qz 32’

so the components of q are not being differentiated. Ezercise 2 will make more sense
of this.
The operator V also occurs in different forms. For instance, we will later come
across the gradient of a scalar field like p, defined as
dp., Op. Op
Vp=_—i+—j+ =—k. 6
P ox ay'] 0z (6)
Again, this is the natural application of the vector differential operator V given by (5)
to a scalar p, analogous to the multiplication of a vector (V) by a scalar (p), except
that we once again have a derivative rather than an ordinary product.

With this notation, conservation of mass therefore leads to the partial differential
equation

dp B
E"‘V'Q—O. (7)

This is known as the local form of the conservation law (1).

The divergence of a vector field

As stated above, the divergence of a vector field q(z,y, 2) = ¢.(z, y, 2)i+ g, (v, y, 2)j+

q.(z,y, z)k is defined as

_0q. | Oq,  0Og.
vq_@x—i_@y—i_az'

Obviously, V - q defined in this way is a scalar field.
To get some understanding of what the operator means, look at the following two
observations.

Note 2 Note that the right-hand side of (4) can be written as

(8% L9 8qz) ”

Jor Oy 0z

where V= dxdydz is the volume of the cuboid. The combination of partial derivatives

_ 0 94y 04

v-a Jor Jdy 0z




can therefore be though of as approximately equal to
1
V.-q= = -ndS 8
q4= 7 /S q-h (8)

This combination of derivatives is therefore a measure of how much net flow the flux
q causes out of the surface S enclosing the small cuboid. This explains why this
combination of derivatives is called the divergence of the vector field.

Another way of understanding the same thing is to say that q - 0 is the outward-
pointing normal component of flur q at any point on the surface S. Obuviously q - n
is not, in general, constant over the surface of S. Taking the integral over q - n
and diwviding by V' effectively gives an ‘average’ over the normal component. If the
divergence is positive, that average is positive: on average, flux points out of the
surface rather than into it.

Note 3 Fach of the terms making up the divergence can be understood in terms of
whether the flow in a particular direction is speeding up or slowing down in the flow
direction. Take

94z

or’

This is positive if q, increases with x: that is, if the flow in the x-direction gets
faster as we move along the x-direction. Similarly, 0g,/0y is positive if th flow in the
y-direction gets faster as we move along the y-direction, and similarly for 0q,/0z.

These terms show up because we are looking at the net rate at which mass flows out
of the cuboid in figure 1, as described in the previous note. The net rate of flow out
of the faces Sy and Sy can be thought of as the rate at which mass flows out through
faces Sy minus the rate at which it flows in through face S1, q.(x+0x,y, 2)0ydz minus
q:(x,y,2)0ydz. It is the difference between flux q.(x + dx,yz) out on the right and
flux in q.(x,y, z) on the left that gives the term Oq,/Ox. Similar terms show up for
flow out through faces Sy minus flow in through face S, and flow out through faces
S¢ minus flow in through face Sj.

Example 1 Let q = 2®yi—y?xj. This is of the form q = q,i+ q,j+¢.k if we identify
¢ = 2%y, ¢y = —y*x, ¢z = 0. Therefore

O(z?y)  O(=y*x)  9(0)

4 ox + Jy + 0z ey
Exercise 1 Compute V - q for
1. . .
_ rityj+zk
[IQ + yQ + 22]3/2’
2.

q:yi_xja



q = 2%yi — y°7j,

4.

q=—zi—yj
5.

q=z"i+y’
6.

q = 2xi — yj.
7.

q = —2i+yj
8.

q=uri+yj+ zk.

9. Draw the vector fields (using arrows) defined under points 2-7 above. Consider
the shape of the vector fields near the origin. For which ones is it obvious that
divergence is definitely positive or negative at the origin from these plots alone?
Why? (Hint. Think of how the components of the vector field change with x
and y — can you tell when these rates of change are positive or negative? Then
look at the definition of divergence in terms of the partial derivatives of the
components of q.)

10. Look at the plots in figure 3. Which panels show wvector fields with positive
divergences at the origin? Negative divergences? Give a reason for your answer
— you should do this in much the same way as the previous problem.

Exercise 2 Again, we can think of the divergence operator as an extension of an
ordinary derivative, and chain and product rules have extensions here too. The basic
tdea behind this follows an exercise in the notes on heat flux, which we illustrate with
the following example: Let q(z,vy,z) = p(x,y, 2)v(x,y, z). Then we can show that

V-q=pV-v+v-Vp

where Vp is the gradient of p, defined in (6) above. To do this, write write v in
component form as v = v i+v,j+v.k, where vy, v, and v, are functions of x, y and
2 whose form is determined by the vector field v.2 Then we have

q = pugi + puyj + pu:k,

2To see this note that we can identify v, (z,y,2) = v(z,y, 2) - i, and similarly for v, and v,.
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Figure 3: Various examples of vector fields, shownv at a number of grid points. Iden-
tify those examples for which the divergence V - q is definitely positive or negative at
the origin. To do this, consider how the x- and y-components of the vector field shown
change with z and y, and identify examples for which you can see that dq,/0z > 0,
Jq,/0y > 0 at the origin, or the equally, for which dg,/0z < 0, 0¢,/0y < 0 at the
origin. To make this easier, you can try to sketch how ¢,(z,y) depends on x for y = 0
(i.e, along the z-axis), and similarly, you can sketch how ¢,(x,y) depends on y for
x =0 (i.e., along the y-axis).
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and 5o opus)  Dpvy)  Dpv.)
pU puy pu.
Ox + dy + 0z

But now we can apply the product rule to each term on the right-hand side, e.q.,

d(pv:)  Op OV,

ox :%vx+p8:ﬂ

and similarly for 0(pv,)/0y and O(pv,)/0z. Hence

Ipvs) | Opvy) | O(pv:)
ox * dy * 0z

(9P, 4 )2 (924, 4 0 (92,00
- \oz ” p@x oy Y p@y 0z ° paz

= (p %y O O (0, 00, 0P,
~\Por p@y oz or " oy? ‘

=pV-v+v-Vp.

V.q=

The derivation above shows a that, when trying to derive results that involve the
differential operator V, it is usually necessary to write out the relevant expressions
explicitly in terms of partial derivatives, and to manipulate these using the standard
differentiation rules you already known about.

Using a similar approach, as well as the specific result we have just derived, show
the following:

1. Let q(z,y,z) = q(r)t where r = /2?2 +y?> + 22 and t = (zi + yj + zk)/r and
q(r) is a function. Using the product rule result above, show that

1 d(r%q)
r2 dr

Explain what this result is relevant for. What type of geometry / symmetry does
the vector field q have? Sketch an example of such a vector field.

2. Let q = q(¢(z,y,2)). Show that

dq
V-q—ﬁ-vqb,

where, if q = q,i + q,j + ¢k, then the ‘ordinary derivative’ on the right-hand
side is given by
dq  dg.,

dg, .
b do T do

dg.
d¢?

do

_|_
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3. Let qi(x,y,z) and qo(x,y,2) be two different vector fields, and ¢, and cy be
constants. Define q(z,y, z) = c1q1(z,y, 2) + c2qa(z,y, 2). Show that

V-q=caV- -q+cV-q.

Exercise 3 Consider the divergence of a vector field in two dimensions, q = q.(x,y)i+

qy(7,y)j, so that
_ 0q,  Ogy
Oz + oy

Now transform to a rotated coordinate system (z',y'), in which

V-q

x' =z cos(h) + ysin(f), y' = ycos(f) — xsin(6),

where 0 is a constant angle of rotation (see the notes on mathematical background).
Define the unit vectors in the x'y’-coordinate system by

i =icos(f) + jsinb, j/ = —isin(0) + jcos().
Use this to define components of q in the z'y'-coordinate system so that
a=qyi +q,j"
1. Express q,, and q,, in terms of q., q, and 0.

2. Using the chain rule and your answer above, show that

d¢. | Oqy 9y | Ody
oxr  dy  ox Oy

Why is this important?

The local form of a conservation revisited

In deriving the mass conservation equation (7) from (1), we skated over some technical
detail. For instance, in writing down (3), we approximated the surface integral over
the left-hand face S; by

/ q-ndS = —q.(z,y, 2)dydz,
S1
and the integral over Sy by

/ q-ndS = —q.(r+02,y,2)0ydz
Sa
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on the basis that we had moved a distance dx along the z-axis. This does give the
right answer, but if you think about what we did carefully, you realize that we might
not just want to worry about changes in going from x to x + dx. When integrating
over S7 and S5, the other two coordinates also vary, from y to y + dy and z to
z+ 0z, and yet we are treating these coordinates as being constant when writing the
flux components as —q,(x,y, z) and —q,(x + 0z,y, z). Why not, for instance, write
—q.(z,y + Oy, 2) and q,(x + dx,y, 2 + §2)?

A better, more detailed way, of doing the same calculation would have been to
write the integrals over S; and S5 explicitly as

y+dy z+0z
/ q-ndS = / / —qo(z, 9y, 2')d2" dy
S1 y z

y+y z+0z
/ q-ndsS = / / Ge(z + oz, 9y, 2" ) d2' Ay
Sa y z

where v’ and 2’ are the relevant dummy variables — we cannot use y and z simulta-
neously as limits and as integration variables.
Adding the two gives

y+dy z+0z
/ q~ﬁd5+/ q~f1dS—/ / Q(x + 0,y ") — qu(x, 9/, 2') d2’ Ay
S1 Sa Yy z

:/y+6y /z+5z qz(x + 6x,y/721) . qx(x,y’,z’) 5 dz/ dy/
y ; ox

y+oy  pz+oz aq
%/ / —=(z,y,2)dxdz dy,
y R ox

and treating the partial derivative as approximately constant over the range y < y’ <
y+ 0y, z <2 < z+4 9z, we get back

/q-ﬁdS+/ q-0ds ~ 2% 50652 9)
51 52 a

and

Xz

and we can do the same to the other faces of the cuboid in figure 1. Our original
derivation therefore still works, but has become a lot more messy. There is a better
approach that uses a very general and maybe surprising result that links surface
and volume integrals. That result is the divergence theorem, also known as Gauss’s
theorem.

The divergence theorem

The divergence theorem states that, for a volume V' with a sufficiently smooth surface
S and a sufficiently smooth vector field q,

/q.ﬁdsz/v-qdv,
S 1%

13



Figure 4: Geometry of the surface S of the volume V' in the ‘proof’ of the divergence
theorem.

where n is the outward-pointing unit normal to S. As will become clearer below, we
can think of the divergence theorem as a generalization of the fundamental theorem
of calculus.

We will not present a general proof of the divergence theorem here. Instead, we
simply demonstrate a brief calculation that shows that the divergence theorem is a
plausible result for general geometries and vector fields, not just for the parallel-sided
slab example above.

Let V be the volume between an upper surface Sp,q: given by z = hpe.(x,y) and
a lower surface Sy, given by z = hy,(z,y), which meet at a common boundary
whose projection onto the xy-plane is a curve that can be divided into two parts,
Y = Ymin(x) and y = Ypma(z) (figure 4). Consider then the integral over V' of the
divergence of some vector field q = ¢,i + ¢,j + ¢.k, which we can write as

(9&0

= %dv+/ adeV+

0q.

SV

99z

Next, we focus only on the last integral, fv dV, in the expectation that there is
nothing special about the z- or y-directions. But, in terms of multiple integrals, we

14



can write the volume integral as

a . Tmax ymaw(z) hmam(m,y) a .
qu:/ / / e 4, dy| dx.
Next, we can recognize that the innermost integral is the integral with respect to z

of a partial derivative with respect to z. Using the fundamental theorem of calculus,
we can evaluate this integral, and are left with

8qz Tmaz Ymaz (T)
0z dV = / / Qz(xazahmax(x7y)) —qz(z,x, hmm(x,y))dy dz
|4 Tmin

L Ymin ()
Tmax [ ymuz(x)
= / / qz(x,z,hmax(a?,y))dy dx
Tmin L ymzn(x)

Tmazx Ymazx (Q?)
Tmin Ymin (T)

At this point, we have to recall the formula for the integral of the normal compo-
nent of a flux field q over a surface z = h(x,y):

. Tmazx Ymaz () 8h 8h
S Tmin y T Y

min ()

(11)
if n is upward-pointing from S (i.e., upward-pointing relative to the z-axis) , and the
same expression but with the signs on the right-hand side reversed if n is downward-
pointing. But we know that the outward-pointing unit normal n is upward-pointing
on Syae and downward-pointing on S,,;,, and so we can recognize

Tmazx Ymax (1')
/ / Qz(x7z7hmam(may))dy] dor = / ¢.k-ndS
Tmin Ymin (I) Smaz

as well as

Tmax Ymaz (T)
/ / q-(, 2, hpin (2, ) dy] dz = / ¢.k-ndS.
Tmin (:E) Smaz

Ymin

From (10), we therefore have

/@dvz/ qzk-ﬁdSJr/ ¢k -ndsS
Vaz mazx Smin

- /quk-ﬁdS (12)
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Now, if there is nothing special about the z-direction, then by symmetry, we
should also have

8%

v — / i hdS (13a)
S

/a% dv = /qyj~f1dS. (13b)
S

In fact, we should be able to reformulate volume and surface integrals by describing
for instance the surface of S through its height above, say the zz-plane and integrating
with respect to y first for the dg,/Jy term, and subsequently integrating with respect
to z and z, and similarly for the 0g,/0x term. Each of these computations would
then be perfectly analogous to how we showed that (12) holds, except with the roles
of z and y or z and x reversed.?

Adding (13) to (12) then gives

37;

= / [qzi + qyj + qzk] -ndS
S

:/q-ﬁdS,
S

Exercise 4 Verify the divergence theorem if V' is the tetrahedron with vertices at
(0,0,0), (1,0,0), (0,1,0) and (0,0,1) and q = x*i + y*j + z°k. That is, compute
qu -ndS and fv V - qdV and verify that they are the same.

which is the divergence theorem.

3To make this work, the surface of V would need to consist not only of a single upper and lower
surface when view from the zy-plane but also from the xz-planes and yz-planes. Howver, as note
4 demonstrates, we can use the fact that the divergence theorem holds for simple volumes that do
not fold back on themselves to show that it also holds for volumes that do fold back on themselves
and do not have single upper and lower surfaces, so this is not the main issue.

Harder to see is that the formulation of the surface integral with z given on the surface as a
function of x and y (so we are integrating over z and y) is indeed equivalent to formulating the
surface as having y given as a function of x and z. This can be done by applying a change of
variable to (11), but this is not trivial: what is required is a change of variables from y to z for the
¢yOh/0y term in the integrand in (11), and similarly a change of variables from z to z for the term
¢z0h0z. This can be done by recognizing that we basically have z = h(x,y) and so we expect that

we can put
//qyah/aydydxz//qydzdz.

This however still requires careful handling of the change of variable, because the sign of 9h/dy and
Oh/0x will generally change summer along the original upper and lower surfaces Spq, and Spin.
These are not complications worth discussing in detail here. As before, our aim is not mathematical
rigour but physical understanding of why calculus is useful and what various operations represent
physically.
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Exercise 5 Often you can use the divergence theorem to compute surface integrals
much more easily. Let

_ Tityjt+zk

o (:ch + yz + 22)3/2‘
If S is the triangle with vertices (1,0,0), (0,1,0) and (0,0,1), and n is the upward-
pointing unit normal, show that fs q-ndS = 7/2. Hint: Apply the divergence theorem
to the volume lying between the surface S and the part of the sphere with radius 1 that
lies in the positive octant (i.e., for which x >0, y > 0 and z > 0). Draw a diagram
to understand this better.

Exercise 6 Use the divergence theorem to compute fsq -ndS if S is the surface of
the tetrahedron in example 4 above, and q = (x —y — 2)i+ (z +y)j + (z — v — yH)k.

Note 4 The divergence theorem still holds if the volume V does not have a single
upper and lower surface. Consider the volume in figure 77, which folds back on itself.
We can show that the divergence theorem holds for this volume by using the fact that it
holds for volumes that do not fold back on themselves. Consider the split of V' into the
volumes Vi and Vo shown. Both of Vi and V5 have a single upper and lower surface,
so we know the divergence theorem holds for each. When splitting V', we create a new
surface Sint. Sine 18 both, part of the boundary S1 of Vi and part of the boundary Ss
of Vo, but the outward-pointing normals ny and Ny are equal and opposite in the two
cases.

The surface integral over the surface S of V' s related to the surface integrals over

S1 and Sy through

/q-ﬁdS:/ q~f11dS—/ q-ﬁ1d5+/ q-ﬁdS—/ q-nydS,
s S Sint Sa Sint

the subtraction being necessary to remove the contribution from the newly-created
cuts. But, as ho = —1ny, we have

Sint Sint S’int

/q-fldS:/ q~ﬁ1d5+/ q-nds;
S S1 Sa

the contributions from the two sides of the cut cancel. But we can apply the divergence
theorem to Vi and V5,

and so

/ q-ndS= [ V.-qdV
Sl Vl

/ q-hdS= [ V-qdv
Sa
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SO
/q-ﬁdS: V.qdV + V~qu:/V-qu,
S \%4

1%1 Vs
the last equality holding because Vi and Vs do not overlap and together make up the
volume V. Therefore we have the divergence theorem for V,

/q-ﬁdS:/V-qu,
S 1%

Note 5 The divergence theorem gives us a way of generalizing the interpretation we
gave for a divergence in 2, which referred only to s mall cuboids dxdydz. If we take the
volume integral of a divergence over a very small volume V', we have approximately

/V-qdevqm
1%

treating V - q as approximately constant over V. However, from the divergence theo-

rem, we also have
/V-qu:/q-ﬁdS,
v S

where S is the smface OfA[/ . Hence
~ 1 / N S
y q~ Vv g q-n d )

or better,
.1 .
V~q—‘l/1£n>ov/sq'nd5.

The divergence of a flux is the rate at which flux leads to mass flow out of a small
volume, divided by the size of that volume, no matter the shape of the volume.

Exercise 7 The result of the previous note often gives a quick way for determining
the form of a divergence in a coordinate system that is not Cartesian. Take for
instance a cylindrical polar coordinate system with coordinates (r,0,z) linked to the
Cartesian coordinates (x,y, z) through

x = rcos(), y = rsin(6).

In the polar coordinate system, a vector field would typically be represented in terms
of unit vectors that are aligned with the coordinate axes. We will denote these by t
0 and z. Unlike in a Cartesian system, where the coordinate axes point in the same
direction regardless of where a point (x,vy, z) is located, the unit vectors t and 0 point
in different directions at different points in space; they depend on r and 6. In fact,
these unit vectors are related to the fized unit vector i, j and k through

I =1icos() + jsin(6), 6 = —isin(6) + jcos(6), z=k.
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If we write a vector field q in the form
a(r,0,z) = q.(r, 0, 2)F + qo(r,0,2)0 + ¢.(r, 0, 2)z, (14)
the divergence of q will then not be given

_ ¢,  Oge | Og:
Cor 00 0z

V-q

It is easy to see that this cannot be right on dimensional grounds alone. Imagine that

q has the units of a mass flux, so kg m=2 s~'. The divergence then has units of kg

m~3 571, because differentiation with respect to a spatial coordinate like z, y or z leads
to the units being divded by m. This means 0g,./0r and 0q,/0z would have the right
units. 0qe/00 on the other hand would not — angles essentially have no units (they
are ratios of two distances) and so Oqy/00 has units of kg m—2 s71.

Part 1 in exercise 2 gives you a flavour of how to be sure you get the right formula

for divergence by starting from the definition

V - q= % + % + %
Jdr Oy 0z

in a Cartesian system, performing a change of variables and using the chain rule. In
that exercise t, is a radial unit vector in a spherical polar coordinate system, meaning
a unit vector pointing radially away from the origin at a given point (z,vy,z), and r
is the distance from the origin to that point. However, by assuming that the vector
field takes the form q = q(r)t, the exercise assumes a certain symmetry, so it does
not give you a complete formula for the coordinate transformation.

That said, we can pursue the same approach here by writing (14) in Cartesian
form. Substituting for r, 0 and z in terms of i, j and k gives

q(r,0,z) =[q.(r,0,2) cos(0) — qo(r,0, z) sin(f)] i
+ [qo(7, 0, 2) cos(0) + q,(r, 0, z) sin(6)] j + q.(r, 0, 2)k
so that

Gz = q-(1,0,2) cos(0) — qo(r,0, z) sin(6), ¢y = qo(r, 0, 2) cos(0) + ¢,(r,0, z) sin(6),

qZ = qg(/r7 07 z)?

and the divergence becomes

V-q :% [qr (7,0, 2) cos(8) — qo(r, 0, 2) sin(6)]
0q.

T+ 9 [q0(r, 0, 2) cos(0) + ¢,(r,0, z) sin(0)] + 5,

dy
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There is a second, simpler way. If, as the divergence theorem tells us,
V.q=1 ! ndsS
1= VILI%) Vv S a-n

regardless of the shape of the small volume V' (so long as it is ‘small’ in all directions),
then we can pick a volume shape that makes the computation of the surface integral
easy and leads to simple derivatives as we also did in (4) (or better, as we did in (4),
though that is harder). The obuvious thing to do is to pick a small volume, shaped so
that any point (r,0, z) inside that volume satisfies ro <1 < 1o+ 0T, 0y < 0 < 09+ 00,
20 < 2z < zg+ 0z for some fized rg, 6y, zo and or, 660, dz.

1. Sketch ther, 0 coordinate plane with lines of constant r and 0 indicated by dashed
lines. This is like looking at the (1,0, z) coordinate system down the z-axis. Plot
what the volume V' looks like in this perspective.

2. By looking the size faces of the the volume just described, show that we have

/ q-ndS =(rg + 07)500zqro + 01,00, 20) — (10 + 61)0052q(10 + 1, 69, 20)
S

+ drdzqe(ro, Oy + 00, z0) — drd2q9(10, B0, 20)
+ 1806rq, (10, 0o, 20 + 02) — 18067rq, (10, 00, 20)

Be careful to show why the factors multiplying the flux components should take
the form they do — remember these factors describe the surface areas these fluzx
components pass through. Show also that

V & rdfordz.
Therefore show that

10(rg,) 185 g
_10(rg,) 104 Oq

V-q r Or r 00 0z

(16)

3. Apply the chain rule to (15) to show directly that (16) holds.

Exercise 8 Adapt the method used in part 2 above to a spherical polar coordinate
system (r,0, @), with r the radial coordinate, 6 the longitude and ¢ the colatitude, to

show that ) .
19(rq,) 1 99 1 O(sin()gy)
r2  Or rsing 00  rsin(¢) dop
Note that some texts define 6 as co-latitude, meaning m radians or 90 degrees minus

the ordinary latitude, and ¢ as longitude, in which case the roles of 6 and ¢ are
switched.

V.q=
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Deriving local forms of conservation laws using the
divergence theorem

One of the main applications of, and our main motivation for introducing, the di-
vergence is to turn integral conservation laws of the form (1) into partial differential
equations. We already have such a differential equation in (7). Here, we will see an
alternative derivation of the same equation using a more general method.

Based on what we have done above, this is now quite easy. Applying the divergence

theorem to (1), we get

d
T pdV— /V qdV. (17)

The last thing that is needed is to recognize that we can turn the derivative of an
integral on the left-hand side into the integral of a derivative. To do so, remember
how a derivative is defined: in general

df . flt+dt)— f(t)
T 5t '

Here, f is given by an integral,

f(t) = /Vp(x,ymt) dv

where the volume V' does not change with time, and the defintie integration over the
fixed volume V makes sure that f does not depend on x, y or z. Using the definition
of the derivative, we have

d [ p(zy, 2z, t+0t) AV — [, p(z,y,z,t) dV

at ), ” dv = lim, St

Rearranging the rlght—hand side, we get

t+0t) — t
pdV i [ P® Y20 —p(ay 2 )
de 5t—0 [, ot

Now, in theory there are technical issues associated with taking the limit inside the
integral — basically, the integral is already a limit itself (through the Riemann sum),
and one could worry about whether the order in which limits are teken matters.
However, in keeping with the rest of the course, we will not address this here. For
sufficiently smooth functions, the order of taking limits can be interchanged, and so

d t+ o0t t
[ pav = /lim Py, 2,0 400 = pl@,y )y /apdv
dt VStHO ot

Armed with this, we can then finally turn (17) into the form
0
/—p+V~qu:0. (18)
v ot
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Now all we have to do is recognize that V' can again be any volume we like. So if
there was a region in which the integrand was positive,* we could make V be that
region and the integral would be positive, in contradiction to (18). This means there
cannot be a region in which the integrand is positive. The same argument can be
made to show that there cannot be a region in which the integrand is negative. If
there are no regions in which the integrand is positive or negative, it must be zero
everywhere. 5. As a result,

dp
6t+v q=0. (19)

This is once again the local form of the conservation law (1).

Note 6 A simpler way of saying the same thing is: we need (18) to hold for any
volume V', so we can pick a very small volume V = 6V . For a very small volume, we
can approximate the integrand as constant — provided the integrand is continuous,
i.e., has no abrupt jumps — and so

dp dp
/AV§+V qdV ~ {aJrv-q](sv.

However, by (18), this must equal zero. Dividing by 0V, we get

dp
6t+v q=0.

The steps in this derivation can be summed up as

1. Start with the integral form

d

AV =— [ q-nds
@)’ /Sqn

2. Turn the left-hand side into the integral over the derivative,
pdV = / % gy

3. Use the divergence theorem on the right to turn the surface integral into a

volume integral,
—/q-ﬁdS:—/V-qu
S 1%

4f is positive if f > 0, not f > 0.

5A more technical statement would be: we assume that the integrand is continuous. If it were
positive at some point, we could make V a sufficiently small volume around that point such that the
integrand remains positive in V', so (18) would not hold for that V. Similarly, if the integrand were
negative at some point, we could find an analogous small volume so the integrand remains negative
in V, and (18) would not hold for that volume. Consequently, there cannot be any points at which
the integrand is postive or negative, and it must therefore be zero.

dt
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4. Combine the last two steps to give
/%dV:—/V~qu,
v Ot 1%

dp
/‘/E—FV'qu—O.

or, as a single integral

5. This is the conceptually hard step: if the integral is zero for any shape and size
of volume V', the integrand cannot be positive or negative anywhere (because
we could make the integral positive or negative as a result). If the integrand is
not positive or negative, it must be zero:

dp
—+V.-q=0.
ot V4
Of course, once we have the local form (19), it is possile to work backwards
through these steps to get the original integral form (1), that is, the local form of the
conservation law ensures that the integral form (1) holds for any volume V.

Exercise 9 Remember that the mass flur q was given by q = pv, so (19) is the same
as

dp B
E+V~(pv)—0

Assume the material is incompressible, so p is a constant. Find a differential equation
satisfied by v alone (meaning, a differential equation that does not contain p). Write
that equation out explicitly in terms partial derivatives of the components vy, v, and v,
of v. Suppose you have a flow that slows in one direction (for instance, v, decreases in
the x-direction). What can you say about the other components? Describe a practical,
everyday manifestation of this.
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