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Overview

These notes cover the following:

• Gradient of a scalar field

• Conductive heat flux and the gradient of temperature: Fourier’s law

• Heat capacity

• Derivation of the heat equation

Conservation of energy revisited

We have previously seen how to formulate conservation of energy in integral form

d

dt

∫
V

ε dV = −
∫
S

εv · n̂ dS −
∫
S

qc · n̂ dS +

∫
V

a dV. (1)

and as a differential equation that is equivalent to the integral form (meaning the
integral form requires the partial differential equation to hold, and if the partial
differential equation holds, then so too must the integral form for any volume V ):

∂ε

∂t
+∇ · (εv) +∇ · qc − a = 0. (2)

We have two fluxes here: the advective flux εv and the conductive flux qc.

∗except figure 4
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We have also seen that this equation as stated contains too many unknows to be
solved. Our stated aim is to relate both, thermal energy density ε and conductive
heat flux qc to the temperature field T (x, y, z, t). We begin by looking at conduction.
Conduction of heat is the exchange of thermal energy between different bits of ma-
terial. This flow of heat is driven by temperature differences : heat flows from hot to
cold. We need to quantify this. By ‘quantify’, we mean that we need to come up with
a plausible mathematical model. Whether the model works or not can in practice
only be determined by experiment.

Intuitively, conduction of heat requires the bits of material exchanging thermal en-
ergy to be in contact with each other. We would like to say that a larger temperature
difference will lead to faster conduction of heat between the bits of material. How-
ever, in a continuum, there are no readily-defined ‘bits of material’ such that we can
compute the temperature difference between them. In fact, temperature T (x, y, z, t)
is a smoothly-varying field without abrupt jumps that would define a ‘difference’, and
we need to move a finite distance in order to experience a finite temperature change.

The point is not just that larger temperature differences will drive faster conduc-
tion, but that the distance over which those temperature differences occur matters.
Going from a point (x, y, z, t) in any given direction, we expect that the change δT
in temperature is proportional to the distance travelled δs, so long as δs is small.
Heat should then preferentially flow in the direction in which the temperature change
|δT | corresponding to a given distance δs is as large as possible. As heat flows from
hot to cold, the direction also needs to be such that δT is negative. The rate of
heat flow should depend on δT/δs: the larger this ratio, the bigger the temperature
difference δT between two different bits of material spaced a distance δs apart. To
compute δT/δs easily, we need a derivative of T that takes into account the direction
associated with the distance δs. This derivative is the gradient of T .

The gradient of a scalar field

The gradient of the temperature field T is the quantity that allows us to determine
both, the rate at which temperature changes with distance and the dependence of
that rate on direction. The gradient of T (x, y, z, t) is defined as

∇T =
∂T

∂x
i +

∂T

∂y
j +

∂T

∂z
k. (3)

Note that while T is a scalar vector field, ∇T is a vector field.

Note 1 The gradient ∇T defined in this way is the natural application of the vector
differential operator

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
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to a scalar field T (x, y, z, t), Note that gradient ∇T is a vector field. We can contrast
this with the divergence of a vector field. The divergence is ∇ · q is one natural way
of applying ∇ to a vector field q(x, y, z, t), and turns that vector field into a scalar
field.

The gradient of T has a number of useful attributes. The most important is this:
consider the temperature change in going from a point with a general position vector

r = xi + yj + zk

to another nearby point with position vector

r + δr = (x+ δx)i + (y + δy)j + (z + δz)k.

so δr = δxi+δyj+δzk. Let δT be the temperature difference between the two points,

δT = T (x+ δx, y + δy, z + δz, t)− T (x, y, z, t).

Then δT is related to δr through the gradient as

δT ≈ ∇T · δr, (4)

provided δr is very short.
This is easy to demonstrate if we write

δT =T (x+ δx, y + δy, z + δz, t)− T (x, y, z, t)

=T (x+ δx, y + δy, z + δz)− T (x+ δx, y + δy, z)

+ T (x+ δx, y + δy, z)− T (x+ δx, y, z)

+ T (x+ δx, y, z)− T (z, y, z)

=
T (x+ δx, y + δy, z + δz)− T (x+ δx, y + δy, z)

δz
δz

+
T (x+ δx, y + δy, z)− T (x+ δx, y, z)

δy
δy

+
T (x+ δx, y, z)− T (z, y, z)

δx
δx

But the terms after the last equality can be recongized as being approximately equal
to partial derivatives, so

δT ≈ ∂T

∂z

∣∣∣∣
(x+δx,y+δy,z)

δz +
∂T

∂y

∣∣∣∣
(x+δx,y,z)

δy +
∂T

∂x

∣∣∣∣
(x,y,z)

δy,

where the subscripts (x,y,z) indicate where the derivative is evaluated. But, if the
partial derivatives are continuous, then for small δx, δy,

∂T

∂z

∣∣∣∣
(x+δx,y+δy,z)

≈ ∂T

∂z

∣∣∣∣
(x,y,z)

,
∂T

∂y

∣∣∣∣
(x+δx,y,z)

≈ ∂T

∂y

∣∣∣∣
(x,y,z)
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and we can evaluate all three derivatives at (x, y, z), so the subscripts become obsolete.
We have

δT =
∂T

∂x
δx+

∂T

∂y
δy +

∂T

∂z
δz.

With ∇T given by (3) and δr = δxi + δyj + δzk, we have

δT =
∂T

∂x
δx+

∂T

∂y
δy +

∂T

∂z
δz = ∇T · δr

as promised.

Note 2 If you are familiar with Taylor expansions of functions of three variables,
you will know that

T (x, y, z) = T (x0, y0, z0)+
∂T

∂x

∣∣∣∣
(x0,y0,z0)

(x−x0)+
∂T

∂y

∣∣∣∣
(x0,y0,z0)

(y−y0)+
∂T

∂z

∣∣∣∣
(x0,y0,z0)

(z−z0)+. . .

where ‘. . .’ stands for terms that are quadratic and higher order polynomials in (x−x0),
(y − y0), (z − z0). A bit of relabelling, putting δx = x− x0, δy = y − y0, δz = z − z0
so that (x, y, z) = (x0 + δx, y0 + δy, z0 + δz), gives

T (x0 + δx, y0 + δy, z0 + δz)− T (x0, y0, z0) =
∂T

∂x
δx+

∂T

∂y
δy +

∂T

∂z
δz

where the partial derivatives are evaluated at (x0, y0, z0). (4) is therefore nothing
more than retaining only the linear terms in a Taylor expansion of T about the point
(x, y, z).

We can also express δT in terms of the distance between the two points r and
r + δr. Define that distance

δs = |δr| =
√
δx2 + δy2 + δz2.

Also define a unit vector in the direction of the displacement δr. We denote this unit
vector by t̂,

t̂ =
δr

|δr|

so that δr = t̂δs. Then (4) becomes

δT =
(
∇T · t̂

)
δs. (5)

With (5), we can now show the following attributes of ∇T

1. ∇T points in the direction in which T increases most rapidly (in the direction
of ‘steepest ascent’)
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2. The magnitude |∇T | is the derivative of T with distance in that direction

3. ∇T at (x, y, z) is perpendicular to the temperature contour that passes through
that point

To show the first of these, note that for a distance δs travelled, the temperature
change δT depends on the direction of travel t̂ through

δT = ∇T · t̂δs = |∇T ||t̂|δs cos(θ) = |∇T |δs cos(θ) ≤ |∇T |δs

where θ is the angle between the gradient ∇T and the unit vector t̂ in the direction
of the displacement δr. The last inequality becomes an equality if the angle θ is zero:
that is, when the direction of travel is the same as the direction of thegradient ∇T .
This maximizes the temperature difference δT .

The second follows immedaitely. With θ = 0, we have

δT = |∇T |δs,

and dividing by δs,

|∇T | = δT

δs
To see that the third is true, consider moving from (x, y, z) to another point (x+

δx, y+δy, z+δz) that lies on the same contour. The displacement δr = δxi+δyj+δzk
is then parallel to the contour, and the direction vector n̂ = δr/|δr| is a unit tangent
to the contour. Also, if the two points lie on the same contour, they are at the same
temperature, so T (x + δx, y + δy, z + δz, t) = T (x, y, z, t) and δT = 0, But δT = 0
means

∇T · t̂δs = 0,

so the gradient ∇T is perpendicular to the tangent of the contour t̂.

Note 3 Items 1 and 2 can be interpreted in two ways: We can either say that we
move a certain distance δs in a direction t̂ that can be varied. Choosing the direction
in which the temperature difference δT is largest, we find that the magnitude of the
gradient ∇T is the derivative as δT/δs.

Alternatively, we could fix a temperature difference δT : we could say that the point
(x, y, z) lies on the contour T = T (x, y, z, t), and we will look at points that lie on
a nearby contour with contour level T + δT . The distance between a point on that
contour and the original point (x, y, z) is then given by

δs =
δT

∇T · t̂
.

We minimize that distance by making the denominator as large as possible, so when
we move in a direction t̂ that is parallel to ∇T (and therefore, as point 3 shows,
perpendicular to the contours). In that case, the minimal distance is

δs =
δT

|∇T |
.
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0

r=(x,y,z)

r

r+  r=(x+  x,y+  y,z+  z)

T=T(x,y,z) contour

Figure 1: Illustration of the difference in temperature between position r and r + δr.
The circle indicates what happens if the length of δr is kept constant but the direction
t̂ is changed. The maximum temperature difference between r and r + δris achieved
when t̂ is perpendicular to the T (x, y, z) contour. No temperature difference occurs
when |t̂| is parallel to the contour.
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0

r=(x,y,z)

r

r+  r=(x+  x,y+  y,z+  z)

T=T(x,y,z) contour

T=T(x,y,z)+  T contour

Figure 2: If we keep the temperature difference δT between r and r+ δr constant, we
force the point r+ δr to lie on a given contour different from the T (x, y, z). Changing
the direction t̂ then changes the length δs = |δr| as is indicated by the dashed arrows.
The minimum distance (which we would probably call the ‘distance between the two
contours’) is attained when t̂ is perpendicular to the contour.
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In other words, for a small contour interval δT , that distance is proportional to the
contour interval, and 1/|∇T | is the constant of porportionality

1

|∇T |
=
δs

δT

Where ∇T is large, contours are closely spaced.

Example 1 Let T (x, y) = x2 − y2, so

∇T = 2xi− 2yj.

The contours to this vector field are the hyperbolae

y = ±
√
x2 + c

where c is the contour level, see the example on sketching contour lines in the notes
on volume integrals. We can also compute streamlines for the problem, if we put

dx

dt
= ∇T,

so that
dx

dt
=
∂T

∂x
= 2x,

dy

dt
=
∂T

∂y
= −2y.

We can combine these into a single equation by dividing

dy

dx
=

dy

dt
/

dx

dt
= −y

x
.

Separating variables and integrating gives log(y) = − log(x) + C = log(C ′/x), where
C = log(C ′). Therefore streamlines are given by

y =
C ′

x

Figure 3 shows contours of T along with ∇T as vectors on the left, and contours of
T along with the streamlines of ∇T on the right. The properties of ∇T derived above
should be evident: ∇T goes from high to low T , and the magnitude of ∇T is largest
where the contours of T are highly bunched. The direction of ∇T as indicated by the
streamlines is also perpendicular to the contours.

Exercise 1 Compute the gradients for the following functions

1. T (x, y) = xy

2. T (x, y) = x2 + y2
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Figure 3: Contour lines of T = x2 − y2 are shown as solid lines in both plots. High
values of T lie along the x-axis, both in the positive and negative x-direction. Low
values lie along the y-axis. The panel on the left shows ∇T as blue vectors, the panel
on the right shows streamlines.

3. T (x, y) = cos(x)− sin(y)

Exercise 2 Sketch the contours of the functions in exercise 1, and sketch the vector
field ∇T as arrows.

Exercise 3 The gradient of a scalar field is an extension of the idea of a derivative
of a function of a single variable. Perhaps unsurprisingly, there are analogues of the
usual differentiation rules, like product and chain rule. As an example, take the case
where T = f(g(x, y, z)). We can then show that

∇T =
df

dg
∇g.

To see this, recall that

∇T =
∂T

∂x
i +

∂T

∂y
j +

∂T

∂z
k.

But now we can apply the chain rule for partial derivatives1 to each term in this sum,

1If this is unfamiliar, recall that a partial derivative is simply an ‘ordinary’ derivative with all the
independent variables but one held constant, and use the chain rule as it applies to that ‘ordinary’
derivative. In other words, treating y and z as constants and defining

δg = g(x+ δx, y, z)− g(x, y, z),
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i.e.
∂T

∂x
=
∂f(g)

∂x
=

df

dg

∂g

∂x
.

Similar results obviously apply to ∂T/∂y and ∂T/∂z, so that

∇T =
∂T

∂x
i +

∂T

∂y
j +

∂T

∂z
k

=
df

dg

∂g

∂x
i +

df

dg

∂g

∂y
j +

df

dg

∂g

∂z
k

=
df

dg

[
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k

]
=

df

dg
∇g,

as required. In other words, to derive general results (so-called ‘identities’) involving
the differential operator ∇, it can be useful to write out each expression in terms of
partial derivatives, and to apply the usual calculus rules to these partial derivatives.
Using a similar approach, as well as the chain rule result above, show the following:

1. If r =
√
x2 + y2 + z2 and T = T (r), show that

∇T =
dT

dr
r̂

where r = xi + yj + zk and r̂ = r/r.

2. Let T = f(x, y, z)g(x, y, z). Show that

∇T = g∇f + f∇g.

3. Let f1(x, y, z) and f2(x, y, z) be two different scalar fields, and let c1 and c2 be
constants. Define f(x, y, z) = c1f1(x, y, z) + c2f2(x, y, z). Show that

∇f = c1∇f1 + c2∇f2.

we have

∂f(g(x, y, z))

∂x
= lim
δx→0

f(g(x+ δx, y, z))− f(g(x, y, z))

δx

= lim
δx→0

f(g(x+ δx, y, z))− f(g(x, y, z))

g(x+ δx, y, z)− g(x, y, z)

g(x+ δx, y, z)− g(x, y, z)

δx

= lim
δx→0

f(g + δg)− f(g)

δg

g(x+ δx, y, z)− g(x, y, z)

δx

=
df

dg

∂g

∂x
.
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Exercise 4 The gradient also appears in the product rule for divergences. Let v =
vx(x, y, z, t)i + vy(x, y, z, t)j + vz(x, y, z, t)k and φ = φ(x, y, z, t). Use the definition of

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

and the definition of the gradient to show that the chain rule holds in the following
form

∇ · (φv) = φ(∇ · v) + v · (∇φ).

Exercise 5 Consider the gradient in two dimensions,

∇T =
∂T

∂x
i +

∂T

∂y
j.

Now transform to a rotated coordinate system (x′, y′), in which

x′ = x cos(θ)− y sin(θ), y′ = y cos(θ) + x sin(θ),

where θ is a constant angle of rotation (see the notes on mathematical background).
Define the unit vectors in the x′y′-coordinate system by

i′ = i cos(θ) + j sin θ, j′ = −i sin(θ) + j cos(θ).

Using the chain rule, show that

∂T

∂x
i +

∂T

∂y
j =

∂T

∂x′
i′ +

∂T

∂y′
j′.

Why is this important?

Gradients and normals to surfaces

The fact that ∇T is perpendicular to contours of T can be used to construct normal
vectors to known surfaces. Recall that in the notes on surface integrals, we constructed
the upward-pointing normal to the surface z = h(x, y) as

n̂ =
k− ∂h

∂x
i− ∂h

∂y
j√

1 +
(
∂h
∂x

)2
+
(
∂h
∂y

)2 . (6)

We did so by tiling the surface with small parallelograms, and using the edges of the
parallelograms to compute the normal direction.

We could equally use the gradient to compute the same normal. A contour of a
function T (x, y, z) is nothing more than an implicitly defined surface, given by

T (x, y, z) = C,
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where C is a constant, which then has normal n = ∇T , or unit normal

n̂ =
∇T
|∇T |

. (7)

If we already have an explicit formula like z = h(x, y), we can re-write it in the form
T (x, y, z) = C by defining

T (x, y, z) = z − h(x, y)

and putting C = 0. Taking T defined in this way, we get

∇T = −∂h
∂x

i− ∂h

∂y
j + k, |∇T | =

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

,

and hence n̂ = ∇T/|∇T | takes the form of (6).
Writing the normal in the form (7) allows us to compute normals more easily in

cases where the explicit formula z = h(x, y) is complicated but an implicit formula
is not. Take for instance the normal to a circle of radius R about the origin. This
surface is most easily written implicitly as

x2 + y2 + z2 = R2

The left hand side is the square of the distance of a point (x, y, z) from the origin.
This is set equal to the square of the radius of the circule. The equation above defines
a contour of the function T (x, y, z) = x2 + y2 + z2 with C = R2. We have

∇T = 2(xi + yj + zk), |∇T | = 2
√
x2 + y2 + z2

Hence

n̂ =
xi + yj + zk√
x2 + y2 + z2

. (8)

If we define the position vector of a point as r = xi + yj + zk, with r = |r| =√
x2 + y2 + z2, we get

n̂ =
r

r
= r̂

where r̂ is the unit vector in the direction of r. Of course, to be on the x2+y2+z2 = R2

sphere, we cannot treat x, y and z as independent above. We could go back and write
z as a function of x and y,

z =
√
R2 − x2 − y2,

which would give us

n̂ =
xi + yj +

√
R2 − x2 − y2k
R

.

or we can keep the symmetric form (8) on the understanding that x, y and z are also
linked through

x2 + y2 + z2 = R2.

Exercise 6 Consider the surface x2 + y2 − z2 = R2. Compute the normals to this
surface.
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Heat conduction and the temperature gradient: Fourier’s

law

We have seen that∇T gives the direction in which temperature increases most rapidly,
and its magnitude |∇T | is the rate of temperature increase with distance. It follows
that −∇T gives the direction in which temperature decreases most rapidly as well as
the rate of temperature decrease with distance. At any given point, we expect heat to
flow in that direction — from hot to cold, in the direction in which T decreases most
rapidly — and the rate to heat flow to be greater when T decreases more rapidly
with distance. A plausible model assumes that the conductive heat flux qc is simply
proportional to −∇T , so

qc = −k∇T
This is Fourier’s law. k is called the thermal conductivity, with units of W m−1 K−1,
and its value depends on the material present. An insulating material will have a
low thermal conductivity, while a good thermal conductor will have a high thermal
conductivity. We will usually treat k as constant. In some materials, k actually varies
slightly as temperature changes, in which case k = k(T ) is a function of temperature.

Note that, despite the name containing the word ‘law’, Fourier’s law is no Newton’s
law — meaning there is no fundamental reason why it must hold other than that it
conforms to our intuition about heat flow.

Exercise 7 Design an experiment that would allow you to test whether Fourier’s law
holds for a particular material, and to determine k. The only pieces of equipment
you are allowed are polystyrene, cut to any shape you like (this is a good insulator),
a constant voltage power supply, a resistor of known strength, a thermometer and a
plentiful supply of the material you are meant to test, which can be cut to any shape
you like (and you can have as many pieces of it as you like).

Exercise 8 This exercise is about heat flow through a window. Glass has a thermal
conductivity of k = 1.05 W m−1 K−1. For a single glass window pane of thickness 1
cm with a temperature of 20 C on one side and 5 C on the other, what is the heat
flux through the glass? If the area of the window is 1.5 m2, what is the rate of heat
loss through the window?

Exercise 9 Let T = xy + z2, and let S be the surface of the prism with vertices at
(0, 0, 0), (1, 0, 0), (0, 0, 1) and at (0, 1, 0), (1, 1, 0) and (0, 1, 1). If k = 1 and qc is
given by Fourier’s law, calculate

∫
S

qc · n̂ dS, where n̂ is the outward-pointing unit
normal.

Energy density

In general, we expect thermal energy density ε to increase with temperature. The
precise form of that relationship depends on the material and can, in general, only be
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established by measurement. A simple and frequently made assumption is that the
material in question has a constant specific heat capacity.

You probably know specific heat capacity c of a given material as ‘the amount of
energy it takes to raise 1 kg of the material by 1 K’. This is fine for our purposes if we
can treat c as a constant, and all the energy goes into what we have termed ‘thermal
energy’.2 Consider the mass δm contained in a small volume δV . If c is constant,
then we know that the energy required to raise a mass δm to a temperature T is
cTδm, and therefore

ε(T ) =
δe

δV
=
cTδm

δV
=
δm

δV
cT = ρcT

Exercise 10 Let V be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(1, 0, 0), and let T (x, y, z) = x2 + y2. With ρ = c = 1, compute the total thermal
energy content of V .

The thermal energy density ε appears in (2) in the first two terms only. If we
substitute for ε, we get get

∂ε

∂t
+∇ · (εv) =

∂(ρcT )

∂t
+∇ · (ρcTv). (9)

There is a trick that allows us to simplify this using the equation for conservation of
mass,

∂ρ

∂t
+∇ · (ρv) = 0. (10)

We can recognize that derivatives of ρ and ρv occur in both, and apply the product
rule to get the same derivatives from (9) as we have in (10):

∂ε

∂t
+∇ · (εv) =

∂(ρcT )

∂t
+∇ · (ρcTv)

=
∂ρ

∂t
cT + ρc

∂T

∂t
+∇ · (ρv)cT + ρcv · ∇T

= cT

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρc

∂T

∂t
+ ρcv · ∇T

= ρc
∂T

∂t
+ ρcv · ∇T, (11)

using (10) to derive the last equality.

2We have discussed the slightly artifical distinction between ‘chemical potential’ and ‘thermal
energy’ before; in thermodynamics, you would simply talk about changes in internal energy rather
than separating it into a chemical and a thermal part. The point is that none of the energy should
go into mechanical work or kinetic energy.
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Exercise 11 If specific heat capacity is not constant, c is defined through

c =
d

dT

(
ε

ρ

)
, (12)

assuming that ε/ρ depens only on T .3

The definition above allows us to make sense of ‘specific heat capacity’ when c is
not necessarily a constant. Take c to be defined as above. Write ε = ρ × (ε/ρ) and
substitute into the first two terms of (2). Apply the product and chain rules to show
that

∂ε

∂t
+∇ · (εv) =

ε

ρ

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρc

∂T

∂t
+ ρcv · ∇T

and then use (10) to show that

∂ε

∂t
+∇ · (εv) = ρc

∂T

∂t
+ ρcv · ∇T

This generalizes (11) to the case of non-constant specific heat capacity.

Note 4 There are simple situations in which ε = ρcT cannot hold, even in an ap-
proximate sense. When a material goes through a phase change, its internal energy
content changes by a finite amount without any temperature change at all. For in-
stance, it takes 3.35 × 105 J to turn 1 kg of ice at 0 C into 1 kg of water at 0 C. In
that case, the heat capacity as defined by (12) is actually infinite.

Next, we put together our models for conductive flux qc and thermal energy
density ε to derive a single equation for temperture T , the heat equation.

The heat equation

With ε = ρcT and qc = −k∇T , the energy conservation equation (2) becomes

∂(ρcT )

∂t
+∇ · (ρcTv)−∇ · (k∇T ) = a (13)

and we can identify the advective heat flux as ρcTv and the conductive heat flux is
−k∇T .

3If you are familiar with with thermodynamics, you will know that in general it is important
to specify which other variables are held constant when T is varied. Given our formulation of the
energy conservation law in (2), it turns out the derivative is taken at constant ρ — or at ‘constant
volume’ in the language of thermodynamics — so

c =
1

ρ

(
∂ε

∂T

)
ρ

.

15



We can apply (11) to the first two terms and get a slightly simpler form

ρc
∂T

∂t
+ ρcv · ∇T −∇ · (k∇T ) = a. (14)

In many ways, we should call this equation the ‘heat equation’, because it tells us
about the flow of heat in a fairly general way. In mathematics, the name heat equation
is however usually used for a more restrictive version of this equation.

If we assume that there is no motion of material (for instance, if we have a solid
that does not deform) and the thermal conductivity is constant, then we can simplify
(14) to

ρc
∂T

∂t
− k∇ · ∇T = a.

The combination ∇·∇T is the divergence of the gradient of T . This occurs frequently
enough that it gets is own symbol,

∇ · ∇T = ∇2T,

called the Laplacian of T . With this notation, we get

ρc
∂T

∂t
− k∇2T = a.

This is the heat equation.

Exercise 12 Write out the gradient ∇T of T in terms of partial derivatives of T .
Then take the divergence of the gradient, again writing this out in terms of partial
derivatives. This will give you a formula for ∇2T . Then do the same to write ∇ ·
(k∇T ) in terms of partial derivatives with respect to x, y and z.

Exercise 13 Figure 4 shows a sketch of temperature contours in a subducting oceanic
plate. The lines with arrows in the left-hand figure are streamlines of v. Assume the
the slab moves at constant speed as shown, with the direction of motion parallel to the
surface of the slab. Copy out the figure twice, showing temperture contours and the
outline of the slab. On one copy sketch the advective heat flux ρcTv, on the other
sketch the conductive heat flux −k∇T . Obviously you do not have the parameter
values ρ, c or k, but all they do is scale the arrows you draw.

1. Assume there is no conversion of other forms of energy into thermal energy.
Suppose you had only advective heat flux but no conductive heat flux. On the
plot where you have sketched advective heat flux, indicate where temperature
would be going up or down as a result of the advective heat flux field you have
sketched.
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Figure 4: The temperature field in a subducting oceanic plate. Figure from England
and Katz, Nature, 467, 700703, 2010. Note that panel b does not show the same
region as panel a, but enlarges the box at top left in panel a marked as ‘Region
enlarged in b’ in the figure. Note also that there is no motion v = 0 in the ‘overriding
plate’.
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2. Next, suppose you had only conductive heat flux but no advective heat flux. On
the plot where you have sketched advective heat flux, indicate where temperature
would be going up or down as a result of the conductive heat flux field you have
sketched.

3. Explain how, when you combine advective and conductive heat flux, the temper-
ature field can be steady in time (i.e., how advective and conductive heat flow
together can ensure that the temperature field remains as shown in the figure).

4. If there really was no conduction but only advection, what would a steady tem-
perature distribution look like? That is, if there was no conduction but only
advection and you waited for a long time, what would temperature distribution
would eventually evolve?

5. If there really was no advection but only convection, what would a steady tem-
perature distribution look like? That is, if there was no advection but only
conduction and you waited for a long time, what would temperature distribution
would eventually evolve?

6. For ρ = 3300 kg m−3, c = 1000 J kg−1 K−1, k = 2 J m−1 K−1 and a subduc-
tion velocity of 5 cm per year, estimate the magnitudes of maximum advective
and conductive heat fluxes for the situation shown in the figure (in standard SI
units).
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