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Overview

These notes cover the following:

• The steady state heat equation in one dimension

• Solving by separation of variables and applying boundary conditions

• Other geometries with simple symmetries: cylinders and spheres

• A note on point sources

The heat equation in one dimension

In the previous set of notes, we derived a conservation law for energy in the form

ρc
∂T

∂t
+ ρcv · ∇T −∇ · (k∇T ) = a. (1)

In the case where there is no motion of material, v = 0, and therefore no advective
heat flux ρcTv, this can be reduced to

ρc
∂T

∂t
−∇ · (k∇T ) = a. (2)

Technically, we also have to put k equal to a constant in order to arrive at the ‘heat
equation’ that you will see in mathematics courses,

ρc
∂T

∂t
− k∇2T = a, (3)

∗except figure 3
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where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is called the Laplacian.
Writing down differential equations without ever solving them is a reasonably

pointless exercise, so we will now try to solve some heat flow problems. In their
most general form, none of the differential equations we have written down above can
be solved exactly using pencil and paper, and so-called numerical methods become
necessary. Numerical methods are not the point of this course: they are a large and
non-trivial subject in their own right.

In order to allow us to find exact solutions, we will look at a number of special cases
that allow us to turn the partial differential equations above into ordinary differential
equations.

Note 1 Partial differential equations are equations that involve the partial rather
than ordinary derivatives of the unknown, in this case the temperature T (x, y, z, t)

This will generally involve two steps: first, we assume that the temperature field
is in steady state, meaning it does not change over time. In other words T = T (x, y, z)
does not depend on t. This ensures that the time derivative ∂T/∂t = 0. Second, we
assume a spatial symmetry that allows us to turn the partial derivatives in x, y and
z into a derivative with respect to a single variable.

The first step turns (2) into

−∇ · (k∇T ) = a, (4)

or with k constant, we would get

−k∇2T = a. (5)

(5) in particular occurs often enough that, like the heat equation (3), it has a name:
Poisson’s equation.

Wether the assumptions we are making are valid of course depends on the partic-
ular heat flow problem we are interested in. They may well not be, and comparison of
results with actual observations can be a useful guide as to whether the assumptions
we have made are valid.

Note 2 We will generally start with (4), and then assume that we have some spatial
symmetry. In starting with (4), we are already assuming that temperature is in steady
state, and that velocity v = 0. These two assumptions are part of the list of possibly
questionable assumptions we are making.
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The easiest symmetry to work with is to assume that T , as well as k (if we do not
assume it to be constant to begin with) and a depend only on one spatial variable,
say x. In that case

qc = −k∇T = −k∂T
∂x

i.

In fact, since T depends only on x but not on y or z, and we have assumed that T is
also in a steady state, so T does not depend on t either, we have

qc = −kdT

dx
i

and

−∇ · (k∇T ) = ∇ · qc = − d

dx

(
k

dT

dx

)
.

Equation (4) then becomes

− d

dx

(
k

dT

dx

)
= a, (6)

where T , k and a can only be functions of x but not y, z or t.

Note 3 We have now moved on from original derivation of the heat conservation
problem (1), so the connection to the original conservation law may seem remote. It
is actually easy to derive (6) from first principles. Consider a thin slab of material
lying between x and x+ δx, as show in figure 1. We can compute the net amount of
heat that flows out of the slab in time δt as the amount of heat that flows out at the
top (at x+ δx) minus the amount that flows out at the bottom (at x). If the base area
of the slab is A, we get

qc(x+ δx)Aδt− qc(x)Aδt, (7)

where qc is the conductive heat flux. Note that the quantity we have just calculated
is in fact equal to

∫
S
qc · n̂ dS; this follows from the normal direction n̂ on the two

surfaces and the fact that the heat flux qc is uniform on each surface.
In steady state, the amount of heat that flows out must be the amount of heat that

is produced. If the rate of production per unit volume is a, then with a volume Aδx,
the amount of heat produced in time δt is

aAδxδt.

Equating this to the amount of heat that flows out of the slab, we get

qc(x+ δx)Aδt− qc(x)Aδt = aAδxδt,

so
qc(x+ δx)− qc(x)

δx
= a,
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Figure 1: Geometry for deriving the heat equation. Note that A represents an area.

or, recognizing the left-hand side as a derivative,

dqc
dx

= a. (8)

In one dimension, Fourier’s law is simply that heat flux qc depends on the tem-
perature gradient as

qc = −kdT

dx
and so

− d

dx

(
k

dT

dx

)
= a

Exercise 1 The derivation of (8) is analogous to how we derived the pressure equa-
tion

dp

dz
= −ρg.

Show which quantities are analogous to each other in the derivations.

Solving the heat equation: examples

Equation (6) is a second-order ordinary differential equation, meaning it contains
second derivatives of the unknown, T . This is slighlty more complicated than the
first-order problems we have met so far, but we will generally only deal with problems
where the same methods we are already familiar with can be applied.

We can always think of (6) as a set of two first-order problems,

dqc
dx

= a, (9a)

−kdT

dx
= qc. (9b)
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Often (but not always) we can solve them in sequence, finding qc first and then T .
The easisest case is that of a and k constant. We can then simply integrate (9a)

once to find
qc(x) = ax+ C1,

where C1 is a constant of integration. Then substitute into (9b),

−kdT

dx
= ax+ C1,

divide by −k and integrate again

T = −ax
2

2k
− C1x

k
+ C2, (10)

where C2 is another constant of integration.

Note 4 There is no reason why the constants of integration should be the same —
they have different units to begin with — so do not use the same symbol for both.

The procedure we have just followed is straightforward to adapt to cases where
a depends on x, k depends on x or k depends on T , see the exercises below. In all
cases, we have to integrate twice because the heat flow problem (6) contains a second
derivative of T . This means we get two different constants of integration that we still
need to determine. This is done using boundary conditions. Boundary conditions are
extra equations that tell us about the physics of the surfaces of the slab of material,
and play a similar role to the initial conditions we encountered in the simpler first-
order differential equations we have previously studied. There are two very common
types of boundary conditions, called Dirichlet and Neumann conditions:

1. Dirichlet conditions prescribe temperature at a surface

2. Neumann conditions prescribe heat flux at a surface

More complicated boundary conditions, for instance coupling flux at a surface to
temperature, also exist. The heat equation requires one boundary condition on each
surface of the ‘domain’ of the problem.

Note 5 By domain we simply mean the region in space in which temperature T is to
be computed.

Example 1 gives an example of how to implement boundary conditions. You need
to identify where your boundaries are, and what conditions you will apply. Then it
is a relatively straightforward case of substituting both, the position of the boundary
for x, and the known value of the quantity given on the boundary — here T or qc —
into the general solution.
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x = h

x = 0

x

− d
dx

(
k dT

dx

)
= a

−k dT
dx

= qgeo

T = Ts
air

ice

bedrock

k, a, qgeo, Ts, h are constant parameters

Find T (x)

Figure 2: The set-up for the problem to be solved in example 1. It is worth drawing
a sketch like this before you start calculating things, showing the shape of the region
in which you are going to compute the solution T , and showing which equations hold
where.

Example 1 The following example shows how boundary conditions can fix the con-
stants of integration C1 and C2. Consider the following question: an ice sheet of
thickness h = 2000 m with a constant rate of heat production per unit volume of
a = 2.6×10−6 W m−3 and a surface temperature Ts = -40 C. Ice has a thermal con-
ductivity of k = 2.2 W m−1 K−1. If geothermal heat flux going into the base of the
ice sheet is qgeo = 0.04 W m−2, what is the temperature at the base of the ice?

The basic steps in the solution are:

1. We assume that (6) describes the temperature profile in the ice sheet. We need
to define a coordinate system, and ideally we should make a quick sketch of the
domain in which we are trying find T , of what the boundary conditions are, and
where they hold. Here, the obvious coordinate system to choose has the x-axis
pointing across the ice (so, uncharacteristically, upwards), with x = 0 at the
base of the ice and x = h at the surface. See figure 2.

2. We find a general solution to the heat flow problem. Because a and k are
constant, we can follow the steps that lead to (10) exactly, so we get

q =− kdT

dx
= ax+ C1. (11a)

T (x) = −ax
2

2k
− C1x

k
+ C2, (11b)

You should not try to memorize these formulae but understand how to derive
them. In general, if a or k are not constant, the formulae above will not hold,
but the same method of solution is likely to give you the correct, alternative
formulae.
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3. Always use letters to denote parameter values. Do not substitute their numerical
values. You may later want to change those values, and not have to go through
all the computations again.

4. One boundary condition tells us that this flux at the base is qgeo, so

qc(0) = qgeo.

From the formula (11a) for flux, q at the base of the ice (x = 0) is

qc(0) = C1.

5. Substitute this value of C1 into the temperature solution (11b):

T (x) = − a

2k
x2 − qgeo

x
x+ C2. (12)

6. At the surface we have x = h and T = Ts. Making sure that the function T (x)
given by (12) satisfies this,

T (h) = −ah
2

2k
− qgeoh+ C2 = Ts.

Hence C2 must be

C2 = Ts +
qgeoh

k
+
h2

2
.

7. Substituting C2 back into equation (12) gives the solution for the temperature
field T (x), without any unknown constants of integration:

T (x) = Ts +
qgeo(h− x)

k
+
a(h2 − x2)

2k
.

8. At the base of the ice, x = 0, and

T (0) = Ts +
qgeoh

k
+
ah2

2k
. (13)

With the values of Ts, qgeo, h and k given, this predicts

T (0) = −1.3 C.

Note that this is actually above the melting point of ice at a depth of 2000 m (the
melting point of solids is pressure-dependent. For ice, it decreases with pressure).
This means that the boundary conditions of fixed heat flux at the base are actually
unrealistic. In reality, we should instead apply a temperature equal to the melting
point at depth, and use the difference between the flux into the ice and the geothermal
heat flux arriving at the base of the ice to compute a rate at which the base of the ice
sheet melts.
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Exercise 2 Suppose you were not given numerical values for any of the parameters
in example 1. Work through the steps required to sketch the solution: intercepts,
maxima / minima, singularities etc. Bear in mind that we only need the solution
in the interval 0 < x < h that is actually occupied by ice. Identify conditions under
which features you identify, like maxima / minima etc., actually lie in that interval.

Note 6 It may seem like it would also be possible to apply two boundary conditions on
one boundary. It turns out that this is an artifcat of having reduced our problem to one
spatial dimension. If you tried to have prescribed temperature and heat flux on one
boundary and no boundary condition on the other in the more general heat equation
(4), you would generally get unphysical solutions in which temperature becomes infinite
inside your domain. This actually tells you something about physics: you generally
cannot simultaneously impose temperature and heat flux at a single surface.

Exercise 3 This question is about dealing with heat production rates a(x) that are
not constant but depend on x. Ice sheets produce heat as they flow, but unlike what
was assumed above, the rate of heat production is not usually distributed evenly with
depth. Forces are greatest near the ice sheet bed, and so is heat production. For an
ice sheet with thickness h, the rate of heat heat production above the ice sheet base
x = 0 can be modelled as

a(x) = α(h− x)n+1, (14)

where α and n are positive constants that describe the flow of the ice. Assume that
temperature at the ice sheet bed is fixed at some value Tb, while surface temperature is
fixed at a different value Ts. Treat all of these parameters as known constants. Their
numerical values will be given later.

If the temperature field in the ice sheet is in steady state and k denotes thermal
conductivity, answer the following questions:

1. Write down the steady state heat equation for this problem.

2. Find the general solution analogous to (10) for the temperature field in the ice
in terms of h, k, α and n and two constant of integration, by the same method
by which we found (10). Do not yet apply boundary conditions.

3. Apply boundary conditions to find the constants of integration in terms of Tb
and Ts as well as h, k, α and n.

4. Write down formulae for T (x) and qc(x) in terms of T, Ts, h, k, α and n.

5. Sketch the solution. Make sure to find intercepts, maxima etc.

6. If α = 1.2 × 10−17 W m−7, n = 3, h = 2000 m, k = 2.2 W m−1 K−1, Tb = 0 C,
Ts = −40 C, calculate the heat flux q at the base of the ice sheet and at the top
surface.
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7. Take a column of ice between x = 0 and x = h with a base area of A. What is
the rate at which thermal energy is produced in this column (i.e., this volume)
in terms of h, α and n, and what is its numerical value?

8. Compute the difference between the rate of heat flow out at the top of the ice
and heat flow in at the base, qc(h)A − qc(0)A. Compare with your answer in
part 7. How does this relate to equation (9a)?

Fourier’s law, qc = −k∇T with constant thermal conductivity k, is not completely
general. The microscopic processes that lead to heat conduction can be affected for
instance by temperature, so thermal conductivity may not be a constant but can for
some materials depend on temperature. This isn’t too problematic, however, as our
derivation of (4) and therefore of (6) did not rely on constant k. We can therefore
treat k = k(T ) as a function of temperature. The following exercise shows that
steady state solutions to the heat equation with non-constant thermal conductivity
can sometimes be compute following the same method as we followed above.

Exercise 4 The thermal conductivity of ice depends on temperature, and a good
model for k in ice is k = k0 exp(−βT ) where k0 = 9.8 W m−1 K−1 and β =
5.7 × 10−3 K−1. T here must be expressed in Kelvins. Consider an ice sheet of
thickness h = 2000 m with surface temperature Tsurface = −50 C, and with a geother-
mal heat flux qgeo = 0.04 W m−2 flowing into its base. Assuming that the rate of heat
production in the ice is given by (14) with α = 1.2 × 10−17 W m−7 and n = 3, and
that temperature is in steady state, answer the following questions:

1. Write down (9), but with k a function of T .

2. Follow the same procedure as we did to find (10). On the second integration
step, make sure to remember how and why separation of variables works for
first-order ordinary differential equations.

3. Apply boundary conditions and find the constants of integration.

4. What is the temperature at the base of the ice sheet?

5. By what percentage does thermal conductivity at the base of the ice sheet differ
from conductivity at the surface? How necessary was it to allow k to depend on
T in our model?

Exercise 5 Remember that models always leave out some physics, and should be
checked against data. Example 1 and exercises 3 and 4 try to compute the temperature
field T (x) as a function of position in the ice. Temperatures in ice sheets are however
known from borehole measurements. Some examples are given in figures 3. They are
plotted in an unusual way, with position plotted on the veritcal axis, and temperature
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Figure 3: Temperature profiles measured in real ice sheets. Temperature is plotted
horizontally, depth below the surface is plotted vertically. When plotting your results
for T (x) vs. x, it is likely that you will intuitively plot T on the vertical and x on the
horizontal, so remember that you have to flip this graph on its side to compare with
your own results.
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on the horizontal. Sketch your solutions to to exercises 3 and 4 in the same way. Do
they look similar to observed temepratures, even approximately (or qualitatitvely)? If
not, what is the main qualitative difference? If we treat k as constant, equation (6)
says

−kd2T

dx2
= a

where the heat production rate a is positive. Even without knowing anything about
the distribution of a, or the value of k or the boundary conditions, what does this
equation tell you about the shape of the solution curve? Can it ever look like any of
the solution curves in figure 3?

Exercise 6 There are some boundary conditions that do not make sense physically
with equation (6), and this is reflected in the mathematics. Consider the following
problem: You have a parallel-sided slab between x = 0 and x = h with constant thermal
conductivity k, heat production a = a0 also constant, and temperature T = T (x)
dependent on x only. Let flux qc(0) = qb is prescribed at the base of the slab, and flux
qc(h) = qs is prescribed at the top of the slab.

1. Assume (6) holds. Find a general solution for T (x) including two constants of
integration.

2. Apply boundary conditions. What problem do you find mathematically?

3. Interpret this problem physically. What conditions must be satisfied in order for
a solution to exist? Is this solution unique?

4. Equation (6) was based on a number of assumptions that simplified an earlier,
more general equation. If we now have a problem that has no solution, which of
these assumptions might have been wrong? How might ‘undoing’ the assump-
tions fix the problem of having no solution? (Think physically.)

Other geometries with symmetry: spheres

Most of our work has been in Cartesian coordinate systems. For some geometries,
other types of coordinate systems are more useful because they make better use of
possible symmetries. Obvious cases are spheres and cylinders, in which spherical and
cylindrical polar coordinate systems are the obvious choice. For instance, for a sphere
of radius R, we would have a surface defined by r = R instead of

√
x2 + y2 + z2 = R,

where r is the distance from the origin to a given point. In some of the exercises in
the notes on divergences and gradients, we have touched on polar coordinate systems
to a limited extent. We will build on these here.

Consider a temperature field with rotational symmetry: temperature T at a point
(x, y, z), depends only on distance r =

√
x2 + y2 + z2 of the point from the origin, but
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not on its ‘latitude’ or ‘longitude’. This situation is likely to arise when conduction
occurs in a sphere, provided the production rate density a and boundary conditions
preserve the symmetry of the sphere.

Note 7 Note that, even though we are talking about a sphere, r is not in general
the radius of the sphere. Instead, it is the distance from the origin to a general point
inside the sphere, so r is typically less than the radius of the sphere. We will use a
different symbol, for instance R, to denote the radius of the sphere.

If T = T (r), one of the exercises in the notes on gradients is to use the chain rule
to show that

∇T =
dT

dr
∇r =

dT

dr
r̂. (15)

where r̂ is the unit vector pointing in the direction from the origin to the point
(x, y, z),

r̂ =
xi + yj + zk√
x2 + y2 + z2

,

so that conductive heat flux can be written in the form

qc = −k∇T = −kdT

dr
r̂.

Assuming that T depends only on r only makes sense if thermal conductivity k is
either constant or depends on r only. With T = T (r), dT/ dr is also a function of r
only, so we can write the flux as

qc = qc(r)r̂, qc(r) = −kdT

dr
.

One of the exercises in the notes on the divergence theorem is to demonstrate using
the product and chain rules that

∇ · (qc(r)r̂) =
1

r2
d(r2qc)

dr
(16)

Exercise 7 Derive (15) and (16) if you have not done so yet.

Equation (4) states that

∇ · qc = −∇ · (k∇T ) = a.

With T and k dependent only on r, we can substitute from above to get

1

r2
d

dr

(
r2qc(r)

)
= a, qc(r) = −kdT

dr
, (17)
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r

r(x,y,z)

(0,0,0)

R r

Figure 4: The position vector r of a point and the corresponding unit vector r̂, with
the tail of the vector located at the point (x, y, z). Note that r̂ is normal to the
spherical surface of radius r = |r| about the origin, so n̂ = r̂ for this surface. If
we have heat conduction in a sphere, this surface of radius r does not have to be
the outer surface of the sphere: r is the distance from the origin to any given point
(x, y, z) in the sphere, and the dashed spherical surface is the set of points that are
at the same distance from the oriigin as (x, y, z). The outer surface of the sphere is
at some fixed radius R. In deriving the heat equation for a sphere, we assume that
each temperature contour is a spherical surface like the dashed surface shown, with
every point on the surface at the same distance r from the origin.
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n̂

n̂
q(r)r̂

q(r + δr)r̂

r r + δr

Figure 5: A spherical shell

or as a single second-order equation,

− 1

r2
d

dr

(
r2k

dT

dr

)
= a. (18)

This is a differential equation for T (r). In order to obtain a solution that genuinely
depends only on r, we have to assume that a is also a function of r only, if it depends
on position at all.

Note 8 We have derived (17) and (18) by using a number of non-trivial manipula-
tions involving gradients and divergences. This does not make the physical origin of
these equations very clear. It is actually not that difficult to derive the same equations
from first principles, by adapting with what we did in note 3.

First, if T depends only on r, then temperature contours are concentrical spherical
surfaces centered on the origin. From the properties of the gradient, we know that ∇T
and therefore the heat flux qc = −k∇T is oriented perpendicularly to the contours.
This means that heat flows in a radial direction. We also know, again from the
properties of the gradient, that the magnitude of the temperature gradient ∇T is the
derivative of temperature with distance in the direction perpendicular to the contours:
the magnitude of ∇T is the derivative of T with respect to r. So the result

∇T =
dT

dr
r̂, qc = −kdT

dr
r̂

follows directly from the properties of the gradient.
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Knowing that heat flux is oriented radially with magnitude

qc(r) = −kdT

dr

in the outward-pointing direction, we can then enforce conservation of energy. The
easiest thing to do in a spherical geometry is to look at a spherical shell between radii
r and r + δr, meaning the volume that lies between the spherical surfaces of radii r
and r+ δr. This is the equivalent of looking at a slab between elevations x and x+ δx
as we did previously when T depended only on x.

The flux field is prependicular to the surfaces of the shell, and, because qc depends
only on r, the magnitude of flux is also uniform over each of the two surfaces. This
means we can compute the amount of heat that flows into the shell from within in
time δt as flux times area times time elapsed, or

qc(r)4πr
2δt,

and similarly, the amount of heat that flows out through the outer surface is

qc(r + δr)4π(r + δr)2δt.

The net amount of heat that flows out of the shell is therefore

qc(r + δr)4π(r + δr)2δt− qc(r)4πr2δt.

This formula is equivalent to (7) for a thin slab in note 3, and is equal to
∫
S
q · n̂ dSδt

for the surface S of the thin shell.
In steady state, we need to equate the amount of heat that flows out of the shell to

the amount of thermal energy produced within it. This is given by a times the volume
of the shell. The volume of the shell is the difference between the volumes of a sphere
of radius r + δr and a sphere of radius r, or

4

3
π(r + δr)3 − 4

3
πr3.

There are various ways of simpifying this. Here we use basic ideas of differentiation,
writing

4

3
π(r + δr)3 − 4

3
πr3 =

4

3
π

(r + δr)3 − r3

δr
δr ≈ 4

3
π

dr3

dr
δr = 4πr2δr.

This should not be surprising: the volume of the shell is the surface area of the shell
times its thickness. This we could have intuited if we had split the surface of the shell
into lots of pieces δS, each of which corresponds to a piece of the shell that has base
area δS and thickness δr, giving a volume

∑
δS δSδr = Sδr.
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Multiplying roduction rate density by volume and time elapsed, we get the amount
of thermal energy generated as

a4πr2δr.

Equating this to the net amount of heat that flows out of the shell, we get

qc(r + δr)4π(r + δr)2δt− qc(r)4πr2δt = a4πr2δr.

Rearranging,

a =
1

r2
qc(r + δr)(r + δr)2 − qc(r)r2

δr
.

Recalling the definition of a derivative,

df

dr
= lim

δr→0

f(r + δr)− f(r)

δr
,

we see that the fraction on the right-hand side corresponds to the derivative of f(r) =
r2qc(r), so

a =
1

r2
d(r2qc)

dr
.

Solving the steady state heat equation (18) for a sphere is a bit harder to do than
for its equivalent for a slab (6). The key is to use separation of variables. How to do
this is easiest to recognize if we again write it as a system of equations, this time in
the slightly altered form

1

r2
dQ

dr
= a (19a)

Q = r2q = −r2kdT

dr
. (19b)

Here Q is simply a variable we have invented to make the separation of variables
clearer. Physically, Q has units of watts. In fact, 4πQ would be the rate at which
heat flows out through a spherical surface of radius r, as we have 4πQ = 4πr2q(r).

We will work through this for the simplest case of constant k and a. Start with
(19a). Separating variables gives

dQ

dr
= r2a,

and integrating gives

Q =
ar3

3
+ C1. (20)

Next, substitute for (19b) to find

r2q = −r2kdT

dr
=
ar3

3
+ C1. (21)
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Once again, separate variables,

dT

dr
= −ar

3k
− C1

kr2
.

Now we can integrate again to give

T = −ar
2

6k
+
C1

kr
+ C2 (22)

Equation (22) is the general solution of (18) for constant k and a. The procedure
we have followed can also be adapted to cases where k and a are not constant. As in
the case of equation(10) for slabs, we have two unknown constants, C1 and C2, which
must be fixed through boundary conditions.

Again, we can consider Dirichlet or Neumann conditions (known flux or temper-
ature), or more complicated physics. If our domain is a solid sphere with radius R,
then we generally have a problem, however. We have only one boundary, the surface
of the sphere at r = R. Suppose we have a known surface temperature T (R) = Ts.
This will give us one equation, but we need to determine two constants.

The key to this is to realize that the centre of the sphere is not a surface, but that
we still need a sensible solution to hold there. Our general solution (22) in general
predicts that temperature T will become infinite as r → 0 because it contains the
term C1/(kr), and 1/r becomes infinite at r = 0.

Exercise 8 Assume that C1 > 0, and a > 0, k > 0 (which is physically necessary).
Sketch the solution (22).

The only way to avoid this is to put C1 = 0, in wich case (22) becomes

T = −ar
2

6k
+ C2

and we have only one constant left to determine. Putting T (R) = Ts gives

Ts = −aR
2

6k
+ C2

or

C2 = Ts +
aR2

6k
.

The solution then becomes

T (r) =
a(R2 − r2)

6k
+ Ts. (23)

Exercise 9 Sketch the solution (23), first by plotting the graph of T (r) against r,
and then by plotting the contours of T as a function of x and y (putting z = 0).
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Figure 6: Heat production in the Earth and geothermal heat flux.

Note that there is a much deeper explanation of why in general we must have
C1 = 0 above, and what the physical meaning of C1 is when we do not set it equal to
zero. This is discussed at the end of these notes.

Exercise 10 This question is about solving the steady-state heat equation in a solid
sphere, and about heat transport in the interior of the Earth. Conductive heat flux
reaching the surface of the Earth from below is calle geothermal heat flux.

Assume geothermal heat flux at the Earth’s surface is a uniform qgeo = 0.04 W m−2,
and that the Earth has a surface temperature of Ts = 280 K. Assume also that the
Earth is a perfect sphere of radius R = 6380 km, and that it has uniform thermal
conductivity k = 2 W m−1 K−1. Let heat be produced at a uniform rate a0 per unit
volume inside the Earth, and suppose the Earth is in a thermal steady state. The aim
of the question is to find a0 and the temperature profile T (r) inside the Earth.

1. Keep all your calculations in terms of symbols (k, a0, R, qgeo, Tsurf etc.) until
told to substitute numerical values.

2. Write down the steady-state heat equation inside the Earth.

3. By analogy with the case of the cylindrical steady-state heat equation, find a
general solution for T (r), involving two constants of integration C1 and C2.

4. Find a condition involving the limit r → 0 that allows you to compute one of
the constants of integration C1 and C2.

5. What boundary conditions can you apply at r = R, again using symbols not
numbers?

6. Use one of these conditions to find a0 in terms of qgeo and R. Evaluate a
numerical answer.

7. How could you have found a0 directly from conservation of energy for the whole
sphere (meaning, not the differential equation (1) but its integral form

d

dt

∫
V

ε dV = −
∫
S

εv · n̂ dS −
∫
S

qc · n̂ dS +

∫
V

a dV,
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when we take into account the assumption that we have made in our model
(no motion of material, steady state, a0 spatially uniform, qc points in a radial
direction).

8. Use the other condition at r = R to find the remaining constant of integration
in terms of a0, k and Ts

9. Write down the temperature profile T (r) inside the Earth in terms of r, k, a0,
R and Ts.

10. Find a numerical value for temperature at the centre of the Earth, and at a
distance of 3000 km from the centre of the Earth.

11. The outer core of the Earth has a radius of approximately 2900 km. Assume
that no rock can remain solid above 5000 K at pressures found inside the Earth’s
mantle. Comment. What is wrong with the model? Suggest something the model
may be missing.

Exercise 11 This exercise is a harder variation of exercise 10, allowing for varia-
tions in thermal conductivity due to either a dependence on temperature or an ex-
plicit dependence on radial position (for instance because of chemical variations).
The problem below is to find the degree of variation in k required to achieve a certain
temperature at the centre of the Earth.

Assume as before that the rate of heat production a = a0 is constant in the Earth,
which has radius R and has a geothermal heat flux qgeo at its surface. Assume also
that the Earth is thermally in a steady state, and that its temperature field as well
its thermal conductivity depend only on r radial distance from the centre of the earth
but not on angular position (latitude, longitude). Let the surface temperature of the
Earth be a uniform value Tsurf .

1. Show that the rate of heat production a0 required to account for the geothermal
heat flux qgeo is the same as in the previous question, regardless of whether k is
constant or not.

2. Let k be of the form
k = k0 exp [(R− r)/R0] ,

where k0 and R0 are constants (and R is the radius of the Earth). For given
values of k0, a0, Tsurf and R, find an equation that must be satisfied by R0 to
ensure a temperature at the centre of the Earth of Tc.

1 This equation cannot
be solved analytically, but for given parameter values can be solved numerically
or graphically. If k0 = 2 W m−1 K−1, Tsurf = 280 K and Tc = 3000 K, and
a0 and R as in exercise 10, what is R0 to three significant figures? Sketch the
corresponding temperature distribution in the Earth.

1Recall that the integral
∫
x exp(x) dx can be done through integration by parts.
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3. Let k be of the form
k = k0 exp [(T − Tsurf)/T0]

where T0 is a constant. For given values of k0, a0, Tsurf and R, find an equation
that must be satisfied by T0 in order to produce a a temperature at the centre
of the Earth of Tc? If k0 = 2 W m−1 K−1, Tsurf = 280 K and Tc = 3000 K,
and a0 and R as in exercise 10, find T0 to three significant figures. Sketch the
corresponding temperature distribution in the Earth.

More geometries with symmetry: cylinders

Cylindrical geometries work much the same way as spherical geometries. If we have
heat conduction in a cylinder, we may expect that temperature depends only on
distance from the centreline of the cylinder. If we align that centreline with the
z-axis, that distance is equal to

r =
√
x2 + y2.

Unfortunately, this is the same symbol as we used for distance from the origin for
spherical geometries; which version of r is meant therefore depends on context.2

We therefore assume that T = T (r), and similarly that k and a can depend at
most on r. With r =

√
x2 + y2 and a radial unit vector defined now as

r̂ =
xi + yj√
x2 + y2

,

we can now show that

∇T =
dT

dr
r̂, ∇ · (q(r)r̂) =

1

r

d(rq(r))

dr
. (24)

Substituting into the steady state heat equation (4) gives

−1

r

d

dr

(
rk

dT

dr

)
= a. (25)

Exercise 12 Use the product and chain rules to demonstrate that (24) holds.

Exercise 13 We can also derive (25) from first principles, following notes 3 and 8.
Assume T = T (r) as above, with r distance from the cylinder centreline, and r̂ the
radial unit vector pointing away from the centreline.

By analogy with note 8, show that the properties of the gradient ensure that qc =
−k dT

dr
r̂. Let

qc(r) = −kdT

dr
.

2This is not a deliberate attempt to be confusing: we are following standard notation here.
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Show for a cylinrical shell with inner radius r, outer radius r + δr and height h that
the net amount of heat conducted out of the shell in time δt is

qc(r + δr)2π(r + δr)hδt− qc(r)2πrhδt,

and that the amount of thermal energy generated in the shell is

a2πrhδt,

and derive (25).

Solving the heat equation in a cylindrical geometry follows the procedure for
spherical geometries almost exactly. The following exercise will give you practice
doing this.

Exercise 14 Assume k and a are constant in (25). Show that a general solution
takes the form

T (r) = − a
2
r

4k
− C1

k
log(r) + C2.

Consider the following two cases:

1. Assume the cylinder is solid, from r = 0 to an outer boundary r = R. Assume
the temperature on the outer boundary is prescribed as T (R) = Ts, Find C1 and
C2, and write down the full solution for T (r) in terms of a, k, R.

2. Assume that you have a pipe with inner radius R1 and outer radius R2. Assume
that the inner temperature is T1 and the outer temperature is T2, and that no
heat is produced in the pipe. Find T (r) in terms of T1, T2, R1, R2 and k.
Compute the rate at which heat is lost from a length h of the pipe.

Point sources

Recall that in the general solution for temperature in a sphere, equation (22), we
had a term −C1/(kr) that we decided needed to be excluded by setting C1 because
temeprature would otherwise become infinite. There is actually a real reason why
this term appears, and we can attach physical meaning to it. To understand this, we
need to back up a little from the general solution.

Remember that we are solving the steady state heat equation with constant ther-
mal conductivity k, which can be written as (5),

−k∇2T = a.
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Under the assumption that T and a depend on position only through distance r to
the origin, this can be written as (18), or in turn as a system of equations

1

r2
d(r2q(r))

dr
= a

q(r) = −kdT

dr
,

where q is heat flux. Separating variables in the first of these equations gives

d(r2q(r))

dr
= ar2,

and integrating gives

r2q(r) =
ar3

3
+ C1

assuming that a is constant; variable a would lead to a similar result.
It follows that

q(r) =
ar

3
+
C1

r2
.

The problem is therefore not just that T becomes infintie if we do not set C1 to zero,
but q(r) does too. In fact, q(r) goes to infinity as 1/r2. This is often called an inverse
square law.

What does this mean physically? Remember that q(r) is a flux, a rate of heat
transfer per unit area. More precisely, q(r) is the flux at a distance r from the origin,
and it passes at right angles through a spherical surface around the origin that has
area 4πr2. We can therefore calculate that rate at which heat passes through that
spherical surface as flux times area,

Q = 4πr2q(r),

with units of watts.3 Substituting for q(r), we get

Q =
4

3
πr3 + 4πC1.

The first term on the right is easy to interpret. 4pir3/3 is the volume enclosed by
the spherical surface, and

4

3
πr3a

is the rate at which thermal energy is generated due to the production rate density a
in that volume. So what is 4πC1 doing on the right-hand side?

3This Q is slightly different from the Q we defined previously in (19); the two differ by a factor
of 4π.
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The answer to this lies in shrinking the volume to zero radius, that is taking the
limit r → 0. The term 4πr3a/3 obviously goes away, so we are left with

lim
r→0

Q = 4πC1.

This the rate at which heat passes through a spherical surface of infinitely small radius
around the origin. The only possible interpretation is that 4πC1 is the strength of
a point source of heat located at the origin. Setting C1 = 0 is equivalent to saying
there is no such point source.

Exercise 15 Consider the heat conduction problem in a cylinder, in the form

1

r

d(rq(r))

dr
= a,

q(r) = −kdT

dr
.

Show that

q(r) =
ar

2
+
C1

r
, (26)

and consider the rate at which heat is conducted through a cylinder of radius r and
length h. Interpret the two terms on the right-hand side. Show that 2πC1 is the
strenght of a line source at the centreline of the cylinder.

Now we know that q(r) = C1/r
2 corresponds to a heat source at the origin. As

Q0 = 4πC1 is the strength of the heat source, we can write the flux alternatively as
Q0/(4πr

2). From here, we can generalize to multiple heat sources at different loca-
tions. We focus on the steady state heat equation with constant thermal conductivity,
for which Poisson’s equation (5) holds:

−k∇2T = a (27)

Recall that the temperature field corresponding to q(r) = C1/r
2 is

T (r) = − Q0

4πkr
+ C

where C is a constant, so that q(r) = −k dT/ dr. We can re-write this temperature
field as

T = − Q0

4πk|r|
+ C

where r = xi+ yj+ zk is the position vector of the point at which we want to find T .
Now imagine that the heat source is located not at the origin but at another point
(x0, y0, z0). If we write the position vector of that point as r0 = x0i + y0j + z0k, the
distance from (x, y, z) to the source is no longer r = |r| =

√
x2 + y2 + z2, but

|r− r0| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.
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It turns out that the temperature field to this differently point heat source can be
written as

T (x, y, z) = − Q0

4πk|r− r0|
,

and the flux field can be written as

q(x, y, z) =
Q0

4π|r− r0|2
r− r0
|r− r0|

.

This simply corresponds to translating the original flux field

q =
Q0

4πr2
r̂ =

Q0

4π|r|2
r

|r|

by a displacement r0. The next two exercises will confirm that this works.

Exercise 16 Draw a diagram showing the origin and the points (x, y, z) as well as
(x0, y0, z0). Indicate the position vectors r and r0 as well as the vector r− r0. Placing
the tail of the vector at the point (x, y, z), also draw the unit vector

r− r0
|r− r0|

.

Exercise 17 To look at point sources for the steady state heat equation that are not
located at the origin, let

T (x, y, z) = − Q0

4πk|r− r0|
+ C,

where r = xi + yj + zk and r0 = x0i + y0j + z0k is a fixed position vector. Let k be a
constant. First use the definition of the gradient and divergence to show that

∇|r− r0| =
r− r0
|r− r0|

and
∇ · (r− r0) = 3.

Next, use the chain rule for gradients to show that

qc = −k∇T =
Q0

4π|r− r0|2
r− r0
|r− r0|

.

provided r 6= r0 (that is, we are not located at the point source itself, so that (x, y, z) 6=
(x0, y0, z0)). Then use the product and chain rules for divergences to show that

−k∇2T = ∇ · qc = 0,
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provided again that r 6= r0. This shows that no heat is produced at any points away
from the point source: if we substitute this into (27), we find a = 0 provided r 6= r0.

Next, for any spherical surface S around the point (x0, y0, z0), defined through

|r− r0| = R,

we have ∫
S

qc · n̂ dS = Q0.

To do this, first write down the normal vector. To construct the normal vector,
remember that the unit normal to a surface defined through f(x, y, z) = 0 can be
written in the form

n̂ = ± ∇f
|∇f |

.

Use the normal you have computed to show that

qc · n̂ =
Q0

4πR2

and therefore that ∫
S

qc · n̂ dS = Q0.

The results above hold if we still have spherical symmetry, except that symmetry
is about the point (x0, y0, z0) rather than the origin. We can go a step further and
look at the case where we have multiple point sources, which breaks the spherical
symmetry. Provided we have no boundaries at which any boundary conditions hold,
we can show that, if we have point sources of strength Qi (i = 1, 2 . . . n) at points
(xi, yi, zi) with position vectors ri = xii + yij + zik, then the temperature field is
simply the sum of temperature fields due to individual point sources

T (x, y, z) =
∑
i

Qi

4πk|r− ri|
+ constant (28)

and the flux field is

q =
∑
i

Qi

4π|r− ri|2
r− ri
|r− ri|

.

The following exercise will confirm this.

Exercise 18 Let T (x, y, z) =
∑

i T (x, y, z) + C, where

Ti(x, y, z) =
Qi

4πk|r− ri|
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Figure 7: An example of multiple sources. The surface S6 would be used to show
that the flux solution (28) does correspond to a source of strength Q6 at position r6
(meaning j = 6). The sum

∑
i 6=j would correspond to the sum over the point sources

at r1, r2, r3, r4, r5, r7 and r8 .
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is the temperature field due to an individual point source. Also let

qi =
Qi

4π|r− ri|2
r− ri
|r− ri|

be the flux field due to an individual point source, and define q(x, y, z) =
∑

i qi(x, y, z)
Following exercise 17, show that

−k∇Ti = qi,

with
∇ · qi = 0

provided (x, y, z) 6= (xi, yi, zi). Using the properties of gradients, show that

−k∇T = −
∑
i

k∇Ti =
∑
i

qi,

and using the properties of divergences, show that

−k∇2T = ∇ · q =
∑
i

∇ · qi = 0

provided (x, y, z) 6= (xi, yi, zi) for all the point source locations. This part should be
straightforward. Note that we are using something called the linearity of the gradient
and divergence, and therefore of the differential operator ∇2:

∇

(∑
i

Ti

)
=
∑
i

∇T, ∇ ·

(∑
i

qi

)
=
∑
i

∇ · qi, ∇2

(∑
i

Ti

)
=
∑
i

∇2Ti.

This ensures that, if each Ti satisfies Poisson’s equation with zero production rate
density,

−k∇2Ti = 0,

then the sum over the Ti’s satisfies the same equation.
Next, let Sj be a spherical surface centered on (xj, yj, zj). Let the radius of Sj be

small enough that none of the other point sources (xi, yi, zi) (i = 1, . . . , n and i 6= j)
are inside Sj. Show that ∫

Si

qc · n̂ dS = Qi.

To do so, write ∫
Sj

qc · n̂ dS =

∫
Sj

∑
i

qi · n̂ dS

=
∑
i

∫
Sj

qi · n̂ dS
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The sum can be splot into
∫
Sj
qj · n̂ dS and all the remaining terms

∑
i 6=j
∫
Sj
qi · n̂ dS,∫

Sj

qc · n̂ dS =

∫
Sj

qj · n̂ dS +
∑
i 6=j

∫
Sj

qi · n̂ dS

=

∫
Sj

qj · n̂ dS +
∑
i 6=j

∫
Vj

∇ · qi dV,

where we have applied the divergence theorem to the terms in the sum over i, but not
to the first term. Use this and exercise 17 to show that∫

Sj

qc · n̂ dS =

∫
Sj

qj · n̂ dS = Qj.

This means that the amount of heat that flows out through a spherical surface that
encloses only the jth heat source is given by the strength Qj of that heat source.

Now, how does this relate to heat flow with volume heat sources, i.e., to equation
(5) with a non-zero rate of heat production per unit volume a(x, y, z), but no point
sources? The answer is that we can pretend that we can turn these volume heat
sources into point sources, as follows: Suppose that a is non-zero in some volume V .
Split V up into small volumes ∆V in the usual way. Heat is produced in each of
these volumes at a rate a(xi, yi, zi)∆V , where (xi, yi, zi) denotes the location of each
small volume. Now all we have to do is pretend that there is in fact a point source of
strength Qi = a(xi, yi, zi)∆V at the point (xi, yi, zi), in which case the formula (28)
gives

T (x, y, z) =
∑
i

a(xi, yi, zi)∆V

4πk|r− ri|
+ constant.

In the usual way, we can then recognize the sum over small volumes ∆V as a volume
integral, so

T (x, y, z) =

∫
V

a(x′, y′z′) dV ′

4πk
√

(x− x′)2 + (y − y′)2 + (z − z′)2
+ constant,

where dV ′ = dx′ dy′ dz′. Now, we have taken a large number of mathematical lib-
erties to arrive at this result, but it turns out that this really does work provided
that there are no boundary conditions to worry about — the domain in which heat
conduction occurs is infinite. The integral on the right is known as a Green’s function
representation of the temperature field. The solution T is given by the integral of the
rate of heat production a(x′, y′, z′) times a function

G(x, y, z, x′, y′, z′) =
1

4πk
√

(x− x′)2 + (y − y′)2 + (z − z′)2
,

known as a Green’s function.
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Figure 8: The geometry on which Poisson’s equation is solved.

More: uniqueness of solutions

We finish these notes of with the following problem: When we computed steady
states for systems with symmetries, we made arguments like the following: suppose
we have a sphere of radius R and the rate of heat production in the sphere a(r) at a
point in the sphere depends only on the distance r of that point from the centre of
the sphere, and that the temperature on the surface of the sphere is uniform. It is
then reasonable to assume that temperature inside the sphere also depends only on
distance r from the centre of the sphere, but not on angular position. Based on that
assumption, we can then proceed to calculate a valid solution T (r) of the steady-state
heat equation (Poisson’s equation, (5)). This however leaves a question: just because
surface temperature and rate of heat production do not depend on angular position,
does it follow that temperature also does not depend on angular position?

It may seem obvious that temperature should not depend on angular position, but
there are lots of examples of physical processes in which there is symmetry breaking.
For instance, a steady wind blowing over a sand surface can spontaneously cause
ripples and dunes with three-dimensional structure to form, so interesting three-
dimensional structures can emerge even if a process is driven in a way that does not
contain any structure to start with. Is it similarly possible that the temperature
field in our conducting sphere could have some much more interesting patterned
appearance than the simple radius-dependent temperature field T (r) we have so far
been able to compute? The answer to this question is no: for a given set of sufficiently
simple boundary conditions, Poisson’s equation (5) admits only one solution. This can
be shown relatively easily using the divergence theorem, so we give a demonstration
here.

Let temperature T satisfy Poisson’s equation in some volume V , and suppose that
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the surface S of this volume can be split into two parts, SN and SD. On SN , assume
that the heat flux q · n̂ out of the volume is prescribed value qn (this is known as
Neumann boundary conditions) and that on SD, the temperature T = TS is prescribed
(also known as Dirichlet boundary conditions)

We want to show that there can be only one solution T for this problem. The
easiest way to do this is to suppose that there could be two different solutions, T1
and T2, both satisfying the problem:

−k∇2T1 = a in V

−k∇2T2 = a in V

−k∇T1 · n̂ = qn on SN

−k∇T2 · n̂ = qn on SN

T1 = TS on SD

T2 = TS on SD

Now take the difference between these two solutions,4

T ′ = T2 − T1.

If we can show that T ′ = 0, we will have succeeded. But subtracting equations above,
we get

−k∇2T ′ = 0 on V (29)

−k∇T ′ · n̂ = 0 on SN (30)

−k∇T ′ · n̂ = 0 on SD (31)

Next, we multiply (29) by T ′ itself, giving

T ′∇2T ′ = 0.

But we know from the product rule for divergences that

∇ · (T ′∇T ′) = T ′∇ · ∇T ′ +∇T ′ · ∇T ′

so that
T ′∇2T ′ = ∇ · (T ′∇T ′)− |∇T ′|2 = 0

Integrating this over the volume V gives∫
V

∇ · (T ′∇T ′) dV −
∫
V

|∇T ′|2 dV = 0. (32)

4Again, do not be intimidated by the prime on T ′: this does not indicate anything deep like a
derivative. T ′ is simply a difference between two temperatures as defined here
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But we can apply the divergence to the first term,∫
V

∇ · (T ′∇T ′) dV =

∫
S

T ′∇T ′ · n̂ dS

=

∫
SN

T ′∇T ′ · n̂ dS +

∫
SD

T ′∇T ′ · n̂ dS

But from (30), we see that the surface integral over SN must be zero, and similarly,
the surface integral over SD is zero from (31). Hence we are left with the second term
in (32): ∫

V

|∇T ′|2 dV = 0.

But |∇T ′|2 is never negative, so this integral will not be zero unless |∇T ′| = 0
everywhere in V . (If |∇T ′| were positive in some part of V , the contribution of that
region to the volume integral could not be cancelled out by a negative contribution
from some other part of V .)

But if ∇T ′ = 0, then T ′ has zero partial derivatives with respect to x, y and z.
Hence T ′ must be a constant everywhere in V .5 But we know that T ′ = 0 on part of
the boundary of V (i.e., on SD) so T ′ must be zero everywhere in V . Hence T1 = T2,
and there can be only one solution.

5There is actually a technical complication here: V must be connected, i.e., consist of a single
piece. Otherwise, T ′ must be constant on each part of V but could differ between them.
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