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Overview

These notes cover the following:

• Work done by motion through a force field

• Line integrals

• Conservative force fields and potentials

• Identifying conservative force fields: the curl and Stokes’ theorem

• Inverse square laws and Poisson’s equation revisited

Work done

You may recall the high school definition of work done on an object (usually a ‘particle’
with no spatial extent, and with no ability to rotate) as force times distance travelled.
At this point, you will probably not be surprised that this definition is not very
general. One obvious objection is that the force may change as the particle travels a
given distance — so which force to use in the calculation? There is a second issue:
Force is a vector, while distance is a scalar, and so is work done. How does ‘direction’
enter into the problem?

It turns out that the relative orientation of force and displacement (as opposed to
the scalar ‘distance’) is what matters. When force and displacement are aligned, work
is done on the particle, while force and displacement pointing in opposite directions
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leads to the particle doing the work. When force and displacement are perpendicular,
no work at all is done.1

In other words, if a constant force F acts on an particle, and the particle travels
in a straight line to undergo and displacement ∆r, work done by that force on the
particle is

W = F ·∆r. (1)

At this point, the first objection comes into play: what if F is not constant, or what
if the object does not travel along a straight line?

Note 1 Often you might be interested in the work done by a particular force, say
gravity, even when there are other forces such as friction acting; it is therefore not
necessary for F to be the total force on the particle.

By now, the answer to this kind of problem should be clear: if we split the
motion of the particle into sufficiently short segments, we can make sure that force
is constant and each segment is a straight line, which allows us to apply (1) to that
segment. In other words, if the particle travels a short displacement δr while subject
to an approximately constant force F, the the work done on the particle during that
displacement is

δW = F · δr

For a longer particle travelling a longer, more complicated trajectory C subject to
a changing force, the total work done can then be found by splitting the path into
short segments δr, computing δW for each, and summing

W =
∑

δW =
∑

F · δr

Of course, this is simply another kind of integral, usually called a line integral,

W =

∫
C

F · dr

where the subscript C denotes the path followed by the particle.
In practical terms, we are again forced to try to figure out how to reduce a ‘formal’

integral (a Riemann sum) to an integral we know how to calculate. The easiest way
to do this is to parameterize the curve C: assume that the curve can be written in
the form

r(t) = X(t)i + Y (t)j + Z(t)k = (X(t), Y (t), Z(t))

1Consider a spinning bike wheel. In order to keep the rim going along a circular trajectory,
forces have to act on the rim to keep parts of it from travelling along a straight line. These forces
are provided in part by the spokes of the wheel. Clearly, there is a force, and there is a ‘distance
travelled’. There is however no gain or loss in the energy contained in the wheel unless there are
friction forces. Hence the work done by the spokes must be zero. This is because the forces are at
right angles to the rim of the wheel
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where X, Y and Z are given functions of a parameter t. For instance, motion around
the unit circle in the xy-plane can be written as

X(t) = cos(t), Y (t) = sin(t), Z(t) = 0. (2)

Importantly, t can stand for time elapsed along the trajectory, but does not have to.
In fact, for some curves, t could simply be one of the coordinates. For instance, a
parabola in the xy-plane could be written can be written in parameteric form as

X(t) = t, Y (t) = t2, Z(t) = 0,

which of course is nothing more than Y = X2

Note 2 We are deliberately using different symbols X, Y and Z to denote the path
of the particle: F may be a function of general position (x, y, z) (for instance, the
gravitational force may depend simply on position), and we want to avoid confusion
later between that general position, and the particular path followed by a particle.

The increment δr along the curve C can then be written in terms of the single
variable t as

δr =
dr

dt
δt

where
dr

dt
=

dX

dt
i +

dY

dt
j +

dZ

dt
k =

(
dX

dt
.
dY

dt
,
dZ

dt

)
.

The integral can the be written in the form

W =

∫
C

F · dr =

∫ tfinal

tinitial

F · dr

dt
dt

where t = tinitial and t = tfinal signify the start and end points on the curve C. If
F is explicitly a function of position (x, y, z), or of position (x, y, z) and, explicitly,
of the parameter t (which is quite plausible if t is in fact time, and the force changes
over time), then the integral is straightforward to set up. We just have to remember
that F(x, y, z, t) is evaluated at (X(t), Y (t), Z(t), t) and write

W =

∫ tfinal

tinitial

F(X(t), Y (t), Z(t), t) · dr

dt
dt (3)

Example 1 Consider the a particle going around the unit circle as described by (2).
Consider a force F being exerted on it that takes the form

F(x, y, z, t) = −yi + xj

Compute the work done by F on the particle in a single revolution.
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A single revolution takes us from tinitial = 0 to tfinal = 2π, We also have

dr

dt
= − sin(t)i + cos(t)j, F(X(t), Y (t), Z(t), t) = − sin(t)i + cos(t)j

and so

F · dr

dt
= sin2(t) + cos2(t) = 1

Therefore

W =

∫ tfinal

tinitial

F · dr

dt
dt =

∫ 2π

0

1 dt = 2π.

Exercise 1 Consider a particle following the path given by

x = cos(t), y = sin(t), z = t

and consider a force F applied to the particle in the form

F = −yi
Sketch the path of the particle. Compute the work done by F on the particle between
t = 0 and t = 4π

Note 3 If F is the total force acting on the particle, then a link can easily be made
between the work done as defined by the line integral and the change in kinetic energy
of the particle. Let t be time, and consider

W =

∫
C

F · dr =

∫ tfinal

tinitial

m
dv

dt
· dr

dt
dt

where we have made use of Newton’s second law,

m
dv

dt
= F

where F is the total force on the particle, while m and v are mass and velocity of the
particle. We also know that

v =
dr

dt
so that

W =

∫ tfinal

tinitial

mv · dv

dt
dt

It is straightforward to see that, if v(t) = Vx(t)i + Vy(t)j + Vz(t)k, that

v · dv

dt
= Vx

dVx
dt

+ Vy
dVy
dt

+ Vz
dVz
dt

=
1

2

d

dt

(
V 2
x + V 2

y + V 2
z

)
=

1

2

d|v|2

dt

Hence

W =

∫ tfinal

tinitial

1

2
m

d|v|2

dt
dt =

1

2
m |v (tfinal)|2 −

1

2
m |v (tinitial)|2 ,

where the right-hand side is the change in kinetic energy m|v|2/2 between tinitial and
tfinal
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Curve length and arc length coordinates

Line integrals have uses beyond computing ‘work done’. For instance, you might want
to compute the length of a curve. Naturally, you would define that length to be

L =
∑
|δr|,

that is, the sum of the lengths of individual segments of the curve C, where

|δr| =
√
δx2 + δy2 + δz2.

Again, this integral is fairly straightforward to do if we have parameterized the curve,
because we can write

|δr| =
∣∣∣∣dr

dt

∣∣∣∣ δt,
assume that δt is positive. Hence

L =

∫ tfinal

tinitial

∣∣∣∣dr

dt

∣∣∣∣ dt

For reasons that are hopefully obvious, the parameter t is called an arc length
coordinate if |r| = δt, or ∣∣∣∣dr

dt

∣∣∣∣ = 1

In that case,

L =

∫ tfinal

tinitial

1 dt = tfinal − tinitial

Arc length coordinates are often denoted by the symbol s rather than t. Also, when
parameterized in terms of an arc length coordinate s, the derivative dr/ ds is simply
the unit tangent to the curve C (see also the notes on the gradient operator): It
should be clear that the displacement

δr =
dr

ds
δs

points in a direction that is tangential to the curve, so that dr/ ds is tangential to
the curve. The requirement that it have unit length then ensures that it is the unit
tangent.

Exercise 2 Compute the length of the curve given by

x = cos(t), y = sin(t), z = t

between t = 0 and t = 2π. Is t an arc length coordinate in this case?
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Note 4 A cautionary tale: in general∣∣∣∣dr

dt

∣∣∣∣ 6≡ d|r|
dt

Consider the unit circle example, (2), for which

dr

dt
= − sin(t)i + cos(t)j

so ∣∣∣∣dr

dt

∣∣∣∣ = 1

However, |r| = 1, so
d|r|
dt

= 0.

Note that it is possible in principle to transform from any given parameterization
r(t) to a parameterization in terms of an arc length coordinate. Define s(t) as a
function of t through2

s(t) =

∫ t

t0

∣∣∣∣dr(t′)

dt′

∣∣∣∣ dt′,

where t0 is fixed but arbitrary. To show s is an arc length coordinate: differentiate
in the usual way respect to t on both sides to get, by the fundamental theorem of
calculus,

ds

dt
=

∣∣∣∣dr(t)

dt

∣∣∣∣
or

1 =

∣∣∣∣dr(t)

dt

∣∣∣∣ /ds

dt
=

∣∣∣∣dr(t)

dt

∣∣∣∣ dt

ds
.

By dt/ ds >, so

1 =

∣∣∣∣dr(t)

dt

dt

ds

∣∣∣∣ =

∣∣∣∣dr

ds

∣∣∣∣
by the chain rule, so s is indeed an arc length coordinate.. All that is left to do, at
least in principle, is then invert the resulting equation for t as a function of s. This
is often not possible analytically, as the next example for a simple parabola shows.

Example 2 Find an arc length coordinate for the curve

X(t) = t, Y (t) =
t2

2
.

2Recall that, if we have t in the limit of an integral, we cannot use t as the variable of integration;
as a result, we switch to t′ as the dummy variable here
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Putting t0 = 0, we have | dr/ dt| =
√

1 + t2 and

s =

∫ t

0

√
1 + t′2 dt′

Put t′ = sinh(u), dt′ = cosh(u) du,

s(t) =

∫ sinh−1(t)

0

cosh2(u) du

=

∫ sinh−1(t)

0

1

2
(cosh(2u) + 1) du

=

[
1

2
u+

1

4
sinh(2u)

]sinh−1(t)

0

=

[
1

2
u+

1

2
sinh(u) cosh(u)

]sinh−1(t)

0

=
1

2
sinh−1(t) +

1

2
t
√

1 + t2

We see that we can find s in terms of t (or equivalently, in terms of X = t). This
is the length of the parabola with x-coordinates between 0 and t. Inverting for t is
however not possible analytically, on account of the inverse hyperbolic sine.

Force fields, conservative forces, and potentials

The fields we have met so far have been things like temperature, density, mass or
heat flux, etc. These all appear naturally in the physics of continua, where mass,
energy, momentum and the like are spread out in space. There is another class of
fields that are important, especially in geophysics. These are force fields, like gravity,
electrical and magnetic fields. A particle in such fields experiences a force depending
on position and time (which the strength and direction of the field depends on, in
general), and on attributes of the particle like mass, charge and velocity. If mass is m,
charge is q and velocity is v, the the forces due to the gravitational field g, electrical
field E and magnetic field B are

Fg = mg, Fe = qE, Fm = qB× v.

These fields are important in geophysics in particular because they are also generated
by masses, charges and currents (as well as acting on masses, charges, and moving
charges, respectively). This means that by measuring these force fields, we may be
able to learn something about inaccessible masses, charges and currents hidden in
the subsurface, where they are difficult to access directly. The processes of using
measurements to infer the masses, charges and currents in the subsurface is usually
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referred to as ‘inverse modelling’. Before we can even begin to understand what that
means (and that won’t happen in this course), you need to understand the ‘forward
model’: how does a given distribution of mass or charge or current generate a grav-
itational, electrical or magnetic field. You may recall some very simple formulas for
point masses, point charges and possibly even very simple currents. The point of
these notes is to lay the groundwork for more general models of how much more com-
plicated distributions of mass, charge and current in space generate the corresponding
force fields.

We will focus on the gravitational and electrical fields. This is partly because the
forces due to these fields take a simpler form: in both cases, the forces Fg and Fe

are simply proportional to the gravitational and electrical fields, while the magnetic
force also depends on velocity.

Take the simplest case of static force fields, so that g, E and B do not depend
on time, but only on position. One thing you are hopefully aware of is that the
fundamental forces of nature (like gravitational, electrical and magnetic forces) are
conservative: they cannot create or destroy energy. Instead they can at most trans-
form energy from one form to another. A simple consequence is that, if we take a
particle on some ‘closed’ path C through the force field and return it to its original
position with its original velocity, the amount of work done must be zero. Specifi-
cally, the amount of work done against the force created by the static force field in
traversing the closed path C must be zero:

W =

∮
C

F · dr = 0, (4)

where the symbol ‘
∮

’ is frequently used to indicate a line integral is taken over a
closed path (or ‘closed loop’). In other words, we require that force fields can lead
to forces F that integrate to zero over any closed loop as per (4). We would like
to have a simple criterion that tells us whether a particular force field satisfies this
requirement.

Below, we will focus purely on forces fields like the gravitational and electrical
fields, in which F is given by a scalar property of the particle being moved (mass,
charge) times the force field. This is because it is easy to demonstrate that magnetic
forces are always conservative, as the next exercise shows.

Exercise 3 Let the parameter t that we used to define the curve C through the func-
tion r(t) be time. With F = qB× v, show that

W =

∫
C

F · dr

dt
dt = 0

for any curve C, not just a closed loop. In other words, show that a magnetic force
never does any work on a simple charged particle.
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Before we get onto that requirement that ensures (4) holds for all closed loops C,
we need to understand the key consequence of that (4): it follows from (4) that the
integral ∫

CAB

F · dr

along a path CAB from point A to point B depends only on the positions of points A
and B, but not on the path. To see this, define CBA be the path CAB, but traversed in
the opposite direction (from B to A rather than A to B). Consider two different ways
of getting from A to B, labelled C1,AB and C2,AB. Then traversing C1,AB followed by
C2,BA constitutes a closed loop C, so that∫

C

F · dr =

∫
C1,AB

F · dr +

∫
C2,BA

F · dr = 0

if (4) holds. But, from the definition of the line integral, it is straightforward to see
that ∫

C2,BA

F · dr = −
∫
C2,AB

F · dr.

Essentially, in equation (3), reversing the direction in which a path is traversed is
equivalent to swapping the limits tinitial and tfinal, which is the same as changing the
sign of the integral. But then∫

C1,AB

F · dr−
∫
C2,AB

F · dr = 0

or ∫
C1,AB

F · dr =

∫
C2,AB

F · dr

The integral along the two paths, C1,AB and C2.AB is the same and can therefore
depend only on the positions of A and B.

This result allows us to define a potential associated with the force field F. If we
pick a fixed starting point O with position vector r0, then we can define the potential
Φ(rA) at a point A to be the line integral

Φ(rA) = −
∫
COA

F · dr,

which is the amount of work done against3 the force F in going from the point O to
the point A regardless of the path taken. Defining the point O differently, say moving
it from O to O′, simply shifts the potential by a constant amount. By picking a path

3This is the usual sign convention, as it ensures that the work done is amount of energy stored:
carry a rock up a mountain and you are doing work against gravity, which ensures you are storing
gravitational potential energy in the rock.
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that goes from O′ to A via O, we can write the new potential Φ′ defined relative O′

in terms of the original potential Φ defined relative to O as

Φ′(rA) = −
∫
CO′A

F · dr = −
∫
CO′O

F · dr−
∫
COA

F · dr = −Φ(rO′) + Φ(rA),

so the two differ only through the term
∫
CO′O

F · dr, which is determined purely by

the shift in reference point from O to O′. For technical reasons, for electrical and
gravitational fields, it is common to take the point rO to lie at very long distances
from all net electrical charges or masses (i.e. ‘at infinity’). This is not very relevant
at the present stage however.

The potential has a rather important property, which is that we can write F as
its negative gradient:

F = −∇Φ.

This is essentially one version of the fundamental theorem of calculus for line integrals.
It is straightforward to prove from the fundamental theorem of calculus for single
variables and the chain rule. Let r(s) define a trajectory C through space starting at
the point O at s = 0, where s is an arc length coordinate. Then, for any point along
the trajectory, we have

Φ(r(s)) = −
∫ s

0

F(r(s′)) · dr(s′)

ds′
ds′.

As before, if s features in the limits of integration, we have to use a different dummy
variable (here, s′) to integrate with respect to. Now differentiate both sides with
respect to s. Recall that the left-hand side is nothing more than

Φ(r(s)) = Φ(X(s), Y (s), Z(s))

The chain rule therefore gives

d

ds
Φ(r(s)) =

∂Φ

∂X

dX

ds
+
∂Φ

∂Y

dY

ds
+
∂Φ

∂Z

dZ

ds
(5)

= ∇Φ · dr

ds
. (6)

Differentiating the integral on the right, note that we are differentiating an integral
of a single variable s′ with respect to its upper limit s, which is the second form of
the fundamental theorem of calculus:

d

dx

∫ x

a

f(x′) dx′ = f(x).

Hence

− d

ds

∫ s

0

F(r(s′)) · dr(s′)

ds′
ds′ = −F(r(s))

dr

ds
,
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and therefore

∇Φ · dr

ds
= −F · dr

ds
.

Recall that dr/ ds = t̂ is a unit tangent to the trajectory, in this case at the point
r = r(s):

∇Φ · t̂ = −F · t̂.
The result however has to hold for any trajectory connecting O to the point r. It is
clear that I can choose trajectories such that t̂ = i, or t̂ = j or t̂ = k. In other words,

∇Φ · i = −F · i, ∇Φ · j = −F · j, ∇Φ · k = −F · k.

The x-components of ∇Φ and −F are equal to each other, and the same is true for
the y− and z-components. But that means the two vectors are the same, and so

F = −∇Φ.

The converse of this result is much simpler, and is basically the straightforward
extension of the fundamental theorem of calculus to line integrals: If F = −∇Φ and
Φ(rO) = 0, then it is very easy to show that

Φ(rA) = −
∫
COA

F · dr.

On the right-hand side, we have, writing in terms of an arc length coordinate starting
at O, with sA indicating the arc length coordinate at position rA,

−
∫
COA

F · dr =

∫
COA

∇Φ · dr

=

∫ sA

0

−∇Φ · dr

ds
ds

=

∫ sA

0

−
(
∂Φ

∂X

dX

ds
+
∂Φ

∂Y

dY

ds
+
∂Φ

∂Z

dZ

ds

)
ds

=

∫ sA

0

d

ds
Φ(r(s)) ds

= Φ(r(sA))− Φ(r(0))

= Φ(rA)

where r(sA) = rA and r(0) = rO are the locations of point A and O respectively, and
Φ(rO) = 0 as assumed at the start.4

Knowing that a force field is conservative is therefore a powerful tool, as it allows
the vector field to be expressed as the gradient of a scalar potential. Instead of needing
a model that describes the three components of the vector field, we need only a model
for a single scalar field.

4Recall also that the first several steps of this derivation were done in the notes on gradients,
where we showed that ∇ · dr/ ds = dΦ/ds along a curve C.
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The curl and Stokes’ theorem

Back to our task of identifying conservative force fields. By a conservative force field,
we mean that F is purely a function of position (and possibly of a scalar property of
the moving particle) and that the integral∮

C

F · dr = 0

around any closed loop C. This turns out to be the case if and only if the so-called
curl of F is zero. The curl is the third version of a derivative generated by the vector
differential operator ∇. So far we have met the gradient (∇ applied to a scalar field,
which gives a vector field because ∇ is vector-valued), and the divergence (∇ applied
to a vector field through a ‘dot product’, which gives a scalar). The curl is natural
extension that applies ∇ to a vector field through a ‘cross product’. Let

F(x, y, z) = Fx(x, y, z)i + Fy(x, y, z)j + Fz(x, y, z)k.

Then the curl of F is defined as

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
=

(
∂Fz
∂y
− ∂Fy

∂z

)
i +

(
∂Fx
∂z
− ∂Fz

∂x

)
j +

(
∂Fy
∂x
− ∂Fx

∂y

)
k

Exercise 4 Compute the curl of the following vector fields

1. F(x, y, z) = yj− xi

2. F(x, y, z) = xi + yj

3. F(x, y, z) = xi− yj

Exercise 5 Compute the sign of each component of the curl (evaluated at the origin)
of the vector fields shown in figure 1. Each vector field shown has zero z-component,
but note that this does not imply that the z-component of the curl is zero. Note that
this exercise is similar to figuring out the sign of the divergence of a vector field.
Comment on what a ‘curl’ might mean physically.

Exercise 6 Show that

∇× (c1v1 + c2v2) = c1∇× v1 + c2∇× v2

and
∇× φv = φ∇× v + (∇φ)× v.
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Figure 1: Sample vector fields. Note that each vector field has zero z- (k-) component.
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Use the second result to show that ∇× F = 0 if F takes the form

F = f(r)r̂,

where r =
√
x2 + y2 + z2 and r̂ = (xi + yj + zk)/r. In particular, it follows that an

inverse square law with f(r) = C/r2 has zero curl.

With this definition, it is easy to prove the ‘only if’ part of the statement that
F is conservative if and only ∇ × F = 0. By ‘only if’, we mean that, if F being
conservative implies that ∇ × F = 0 (whereas by ‘if’, we mean that ∇ × F = 0
implies that F is conservative).

Given a conservative F, we know from the previous section that there is a potential
Φ such that

F = −∇Φ.

We can then take the curl of F to give

∇× F = −∇×∇Φ.

You probably recall from ordinary vector algebra that the cross product of a vector
with itself is zero. The same turns out to apply to the operator ∇, meaning

∇× F = −∇×∇Φ = 0.

To show this, substitute F = −∇Φ into the definition of the curl above, in the form

Fx = −∂Φ

∂x
, Fy = −∂Φ

∂y
, Fz = −∂Φ

∂z
,

so that

∇× F =

(
− ∂2Φ

∂y∂z
+

∂2Φ

∂z∂y

)
i +

(
∂2Φ

∂z∂x
− ∂2Φ

∂x∂z

)
j +

(
∂2Φ

∂x∂y
− ∂2Φ

∂y∂x

)
k

= 0

as we can exchange the order of differentiation in each case, so that each component
of ∇× F vanishes.

The ‘if’ part of the statement is much harder to demonstrate. It relies on the
last ‘big’ result in this course, Stokes’ theorem. Stokes theorem is to curls what the
divergence theorem is to divergences.5

Stokes’ theorem states the following: Let S be an open surface.6 This means S
has a boundary curve C, which obviously takes the form of a closed loop, and let n̂

5For completeness of historical digression and naming symmetry, the divergence theorem also
sometimes gets named after a dead mathematician: Stokes’ theorem is named for George Gabriel
Stokes, while the divergence theorem is sometimes referred to as Gauss’ theorem, after Carl Friedrich
Gauss.

6as opposed to the closed surface in the divergence theorem
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be a unit normal to the surface S. There are two choices for n̂ (‘up’ and ‘down’), but
no inward- or outward-pointing direction because S is open and does not enclose a
volume. Similarly, there are two orientations in which C can be traversed. Let the
orientation in which C is traversed and the orientation of n̂ be linked by a ‘right-hand
rule’: imagine the ‘thumb’ of the right hand point along C in the direction of traverse
and the index finger point into the surface S. Then the middle finger points in the
direction of n̂.7 Stokes theorem then states that∫

S

(∇× F) · n̂ dS =

∮
C

F · dr.

Assuming this result to be true, it is then straightforward to see that ∇ × F = 0
implies ∫

C

F · dr =

∫
S

(∇× F) · n̂ dS = 0

for any closed loop, proving the ‘if’ part of our statement about conservative vector
fields.

Note 5 Note that Stokes theorem is consistent with the divergence theorem. If we
turn S into a closed surface, then the bounding curve C has to shrink to zero, meaning∮
C

F · dr = 0. Then ∫
S

(∇× F) · n̂ dS = 0.

But S is now a a closed surface, so we can apply the divergence theorem and have to
arrive at

0 =

∫
S

(∇× F) · n̂ dS =

∫
V

∇ · (∇× F) dV.

It turns out that this guaranteed, because

∇ · ∇ × F = 0

identically. To show this last identity, use the definition of divergence and curl to find

∇ · ∇ × F =
∂

∂x

(
∂Fz
∂y
− ∂Fy

∂z

)
+

∂

∂y

(
∂Fx
∂z
− ∂Fz

∂x

)
+

∂

∂z

(
∂Fy
∂x
− ∂Fx

∂y

)
=
∂2Fz
∂x∂y

− ∂2Fy
∂x∂z

+
∂2Fx
∂y∂z

− ∂2Fz
∂y∂x

+
∂2Fy
∂z∂x

− ∂2Fx
∂z∂y

= 0

because, again, we can exchange the order of differentiation.

7A simpler way to think of this is: imagine S is the interior of the unit circle in the xy-plane,
and that the circle itself is traversed in the anti-clockwise direction. The n̂ points in the positive
z-direction.
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Next, we will prove a limited version of Stokes’ theorem. As in our notes on surface
integrals, we consider a surface S given by z = h(x, y), whose projection onto the
xy-plane is bounded on the left by x = xmin, on the right by x = xmax, by y = ymax(x)
above and by y = ymin(x) below (figure 2. This implies that we break the boundary
curve C into two parts, one of which we can parameterized in terms of x (rather than
t!) through

y = ymin(x), z = h(x.ymin(x)), (7)

and the other through

y = ymax(x), z = h(x, ymax(x)). (8)

Assume that the boundary curve C is traverse in an anticlockwise orientation, It
then follows that the first, ‘lower’ segment of C given by (7) is traversed with x
increasing, and the ‘upper’ segment given by (8) is traversed with x decreasing. With
that orientation of C, the unit normal to S is upward-pointing, given by

n̂ =
k− i∂h

∂x
− j∂h

∂y√
1 +

(
∂h
∂x

)2
+
(
∂h
∂y

)2 .
We consider also a force field F of the form F = Fx(x, y, z)i only. Putting

rmin(x) = (x, ymin(x), h(x, ymin(x)) and rmax(x) = (x, ymax(x), h(x, ymax(x)), the line
integral then becomes∮
C

F · dr =

∫ xmax

xmin

Fx(rmin(x))i · drmin
dx

dx+

∫ xmin

xmax

Fx(rmax(x))i · drmax
dx

dx

=

∫ xmax

xmin

Fx(x, ymin(x), h(x, ymin(x))) dx+

∫ xmin

xmax

Fx(x, ymax(x), h(x, ymax(x))) dx

We also have the curl of F = Fxi given by

∇× F =
∂Fx
∂z

j− ∂Fx
∂y

k.

Use this to compute the surface integral in Stokes’ theorem:∫
(∇× F) · n̂ dS =

∫ xmax

xmin

∫ ymax(x)

ymin(x)

(
∂Fx
∂z

∣∣∣∣
z=h(x,y)

j− ∂Fx
∂y

∣∣∣∣
z=h(x,y)

k

)
·
(

k− i
∂h

∂x
− j

∂h

∂y

)
dy dx

=

∫ xmax

xmin

∫ ymax(x)

ymin(x)

−

[
∂Fx
∂y

∣∣∣∣
z=h(x,y)

+
∂Fx
∂z

∣∣∣∣
z=h(x,y)

∂h

∂y

]
dy dx.

Define a new function of x and y only, given by f(x, y) = Fx(x, y, z = h(x, y)).
Differentiating f with respect to y, we get by the multivariable chain rule that

∂f

∂y
=
∂Fx
∂y

+
∂Fx
∂z

∂h

∂y
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Figure 2: The lower panel shows the geometry we have in mind for computing the
line integral

∫
C

F · dr (anticlockwise around the perimeter of the surface) and surface
integral

∫
S
(∇× F) · n̂ dS (with the unit normal pointing up).
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Hence, using the fundamental theorem of calculus to integrate with respect to y,∫
(∇× F) · n̂ dS =

∫ xmax

xmin

∫ ymax(x)

ymin(x)

−∂f
∂y

dy dx

=

∫ xmax

xmin

− [f(x, y)]
y=ymax(x)
y=ymin(x)

dx

= −
∫ xmax

xmin

f(x, ymax(x)) dx+

∫ xmax

xmin

f(x, ymin(x)) dx

=

∫ xmin

xmax

f(x, ymax(x)) +

∫ xmax

xmin

f(x, ymin(x)) dx

=

∫ xmin

xmax

Fx(x, ymax(x), h(x, ymax(x)) dx+

∫ xmax

xmin

Fx(x, ymin(x), h(x, ymin(x)) dx

where we have used the definition of f(x, y) in the last equality. But the last line is
exactly the same as the line integral computed previously, so we have∫

S

(∇× F) · n̂ dS =

∮
C

F · dr (9)

if F = Fxi. In other words, what we have really shown is that∫
S

(∇× Fxi) · n̂ dS =

∮
C

Fxi · dr

Note that the derivation of this result has relied on the fundamental theorem of
calculus; like the divergence theorem, Stokes’ theorem is a vector calculus version of
the fundamental theorem of calculus.

The idea is then that there is nothing special about the x-direction, and we should
be able to show the same result for F = Fyj or F = Fzk, and summing the results
for all three we get∫
S

(∇× Fxi)·n̂ dS+

∫
S

(∇× Fyj)·n̂ dS+

∫
S

(∇× Fzk)·n̂ dS =

∫
C

Fxi· dr+

∫
C

Fyj· dr+

∫
C

Fzk· dr.

But the integrals on the left-hand and right-hand sides can be combined to give∫
S

[∇× (Fxi + Fyj + Fzk)] · n̂ dS =

∮
C

(Fxi + Fyj + Fzk) · dr (10)

or more simply ∫
S

(∇× F) · n̂ dS =

∮
C

F · dr

for arbitrary vector fields F. To really make this work, we do have to get rid of the
restriction to very simple surfaces and bounding curves however (as that restriction
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made our derivation of Stokes theorem for F = Fxi possible in the relatively simple
form given above). In general, this can involve both, the surface S or the bounding
curve C folding back on themselves. In the following note, we only consider the case
of the surface S folding back on itself.

Note 6 To generalize the result (9) to arbitrary surfaces (even for a restrictive vector
field like F = Fxi), note first that we can split more complicated surfaces that fold
back on themselves (i.e., for which we cannot write z = h(x, y) with a single-valued
function h) into multiple simple ones that can be written in the form z = h(x, y).
(This is analogous to Note 4 in the notes on the divergence theorem). Consider a
surface S that folds back on itself once, so it needs to be split into two parts S1 and
S2. Then ∫

S

(∇× F) · n̂ dS =

∫
S1

(∇× F) · n̂ dS +

∫
S2

(∇× F) · n̂ dS

In terms of the integrals over bounding curves C, C1 and C2, we now have to account
for the part line integrals along C1 and C2 that are not part of the original bounding
curve C, but that form part of the cut that divides the original surface S. Let that cut
be C1,cut when traversed in the positive direction around C1, and C2,cut when traversed
in the positive direction around C2. We have∮

C

F · dr =

∮
C1

F · dr−
∫
C1,cut

F · dr +

∮
C2

F · dr−
∫
C2,cut

F · dr

Note however that C1,cut and C2,cut are the same curve, only traversed in opposite
directions. Because the line integral changes sign when the curve is traversed in the
opposite direction, we therefore have∫

C1,cut

F · dr = −
∫
C2,cut

F · dr

and the two integrals along the cut cancel. As a result,∮
C

F · dr =

∮
C1

F · dr +

∮
C2

F · dr

As a result, if we can prove Stokes’ theorem for the surfaces S1 and S2 and there
respective bounding curves C1 and C2, it follows that the theorem also holds for the
combined surface S and its bounding curve C.

The same argument can also be used if the bounding curve C folds back on itself,
so there is not a single y = ymin(x) or a single y = ymax(x): in this case, we can
cut S into two pieces such that each has a single ‘lower’ boundary ymin(x) and single
’upper’ boundary ymax(x). If Stokes’ theorem holds for each piece, it will also hold
for the combined piece. In this way we can reduce the surface S we start with to a
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collection of simple surfaces, each of the form for which we proved Stokes’ theorem for
F = Fxi. This allows us to derive to derive (9) for arbitrary surfaces with F = Fxi,
and we can repeat the procedure analogously (switching the roles of x with y and z)
to show that (9) holds for arbitrary surfaces with F = Fyj and F = Fzk. The full
version of Stokes theorem then follows, again by adding.

Inverse square laws and Poisson’s equation for elec-

trostatic and gravitational fields

Knowing that a vector field is conservative is not enough to specify the actual form
of the vector field. It tells us one simplification — the vector field is the gradient of
a scalar field — but goes no further. There is in fact an analogy with the case of
divergence: imagine you are told that a flux has zero divergence. That by itself is
not enough to tell you what the flux field is. In the case of heat fluxes, we needed
an additional constitutive law like Fourier’s law to allow us to compute temperature
and therefore heat flux.

Here we focus on electrostatic and gravitational fields, and the additional ‘consti-
tutive law’ that is needed. (Though that phrase is generally not used in this context:
‘constitutive laws’ are generally empirical and material-dependent, whereas electrical
and gravitational fields are fundamental force fields of nature.) In short, our aim is to
figure out how electrostatic and gravitational fields are governed by the distribution
of charges and masses.

You are likely to recall two facts about electrostatic and gravitational fields from
high school. First, the field due to a point charge or a point mass follows an ‘inverse
square law’: the field is proportional to the inverse square of the distance between
the point charge or mass and the point at which you want to know the strength of
the field. The field also points either directly towards or away from the point charge
or mass (‘away’ being possible only for electrostatic fields, in the case of a positive
charge generating the field). The inverse square law for gravitational fields is generally
known as Newton’s law of gravitation, while its electrostatic counterpart is Coulomb’s
law.

Second, the effect of multiple charges or masses is additive. For a given point,
you simply work out the contribution to the field due to each surrounding charge
or mass as though the other charges or masses were absent, and then add all those
contributions.

Let us put this in concrete mathematical form for an electrostatic field. Let there
be a charge qi at a location ri = (xi, yi, zi), and let r = (x, y, z) be the location at
which you want to know the electrostatic field. The distance between the two points
is then

|r− ri|

and the strength of the field at r due to the charge qi is inversely proportional to the
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square of that distance, and proportional to the size of the charge

|Ei| ∝
qi

|r− ri|2
.

We have put a subscript ‘i’ on Ei in order to make it easier to add fields later. The
constant of proportionality is usually denoted by 1/(4πε0), where ε0 is the ‘permit-
tivity of free space’, so

|Ei| =
qi

4πε0

1

|r− ri|2
.

The constant of proportionality may seem needlessly complicated (why the ‘one over’?
why 4π?) but its choice will make a lot more sense later. For now, just remember
the first fraction is a constant.

The formula above gives us the field strength, but the field also has a direction.
In the case of an electrostatic field, it points away from the charge location ri if the
charge qi is positive — charges of the same sign repel each other. The direction of
the field is in the direction of the vector linking the charge location ri to the point r.
In other words, its direction is the direction of

r− ri.

We can construct the vector Ei as the product of the strength (|Ei—) and the unit
vector in the direction of the field. That unit vector is obviously

r− ri
|r− ri|

,

so that

Ei =
qi

4πε0

1

|r− ri|2
r− ri
|r− ri|

=
qi

4πε0

r− ri
|r− ri|3

.

If there are multiple point charges surrounding the point r, we simply add the
effect of each charge. This is why we have labelled Ei, qi and ri above with subscripts
‘i’. For a number of charges, we can give each a label i = 1, 2, . . ., and add to get the
total field E(r) as a function of position r through

E(r) =
∑
i

qi
4πε0

r− ri
|r− ri|3

. (11)

For the equivalent gravitational field with point masses mi at locations ri, we
would have

g(r) = −
∑
i

Gmi
r− ri
|r− ri|3

. (12)

where G is the gravitational constant, and the minus sign takes care of the fact that
masses attract rather than repel each other.
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Exercise 7 To show that E and g as stated in (11) and (12) are both conservative
fields, we need to show that they have zero curl. This is an application of the product
rule in exercise 6. Let ri(x, y, z) = |r−ri| =

√
(x− xi)2 + (y − yi)2 + (z − zi)2. Show

that

∇ri =
r− ri
ri

,

and that
∇× (r− ri) = 0.

Also using the product rule for gradients, ∇f(ri) = f ′(ri)∇ri, show that

∇× r− ri
|r− ri|3

= 0

and hence that ∇× g = ∇× E = 0.

Equations (11) and (12) work well for point charges, so the challenge is to gen-
eralize the results for E and g above to the case of spatially distributed charges or
masses — meaning, rather than having discrete point charges and point masses, a
finite charge or mass is only contained in a finite volume, the concentration of mass
or charge being described by densities as described in the notes on volume integrals.

To understand that generalization, take a second look at the end of the notes on
the heat equation. Recall that steady heat conduction associated with a number of
discrete point sources of heat gives rise to a heat flux field that also follows an inverse
square law. In fact, the formula for the flux is completely analogous to the formulas
for E and g generated by discrete point charges and masses above. With a constant
thermal conductivity k and heat sources of strength Qi located at ri (i = 1, 2, . . .),
the conductive heat flux q(r) at a location r is given by

q(r) =
∑
i

Qi

4π

r− ri
|r− ri|3

(13)

Moreover, in this case the flux q is generated by the gradient of a ‘potential’ kT (T
being temperature)

q = −k∇T = −∇(kT ), (14)

where

kT =
∑
i

Qi

4π

1

|r− ri|
+ kT∞

This implies that, like E and g, the flux q is also conservative, with ∇× q = 0.
The mathematical analogy is especially close with (11). Taking the constant ε0 to

the left-hand side of (11), we see that replacing qi by Qi and εE by q gives us (13),
while we also expect ε0E to be the gradient of a potential. In fact, this would be ε0φ,
where φ is the ordinary electrostatic potential, so replacing ε0φ by kT as well turns

E = −∇φ
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into
q = −∇(kT ).

Now, to complete the generalization, we know that a point source of heat Qi

(with dimensions of energy per time) is simply an idealization in the world of heat
transport. In reality, we expect heat to be produced in a spatially distributed way,
described by the ‘heat production rate density’ a (with dimensions of energy per time
and volume). Effectively, Qi is a high production rate density a concentrated in a
small volume δV , with Qi = aδV . In the more general case of a spatially distributed
heat source, we had the flux determined by conservation of energy through

∇ · q = a, q = −∇(kT ). (15)

Let charge density be denoted by ρc (to distinguish it from mass density ρ). The
generalization of a point charge is the that qi is really a highly concentrated charge
density ρc in a small volume δV , meaning ρc is analogous to a above. In short,
generalizing from point charges to spatially distributed charges, we expect ε0E to
satisfy

∇ · ε0E = ρc, ε0E = −∇(ε0φ).

More succinctly, we get
ε0∇ · E = ρc, E = −∇φ, (16)

which put together gives
−ε0∇2φ = ρc.

Once more, we have Poisson’s equation. Notice how only ε0 appears on the left;
this explains the somewhat complicated choice of the constant of proportionality in
Coulomb’s law.

The fact that a similar generalization for the gravitational field is possible should
be clear from the fact that Coulomb’s law and Newton’s law of gravitation are both
inverse square laws, only with different constants. The equivalent to (16) is

∇ · g = −4πGρ, g = −∇φ

were φ is now the gravitational potential, and ρ the ordinary mass density. Clearly,
the gravitational potential φ also satisfies Poisson’s equation,

∇2φ = 4πGρ.

This is sometimes known as Gauss’ law of gravitation.

Exercise 8 Repeat the derivation of (16) for gravitational fields. What constants do
you need to multiply g and mi by in order to make them equivalent to q and Qi in
(13)?
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Note 7 Note that, instead of writing (16), one would often write the equivalent

ε0∇ · E = ρc, ∇× E = 0, (17)

where the second equation implies the existence of a potential. This is because, when
the electrical field is not steady — so we no longer have an electrostatic field — the
curl of E is no longer zero but is related to the rate of change of the magnetic field
with respect to time. This is the basis of such effects as magnetic induction, and
the propagation of electromagnetic waves. The relevant extension of (17) leads to
Maxwell’s equations. See a course in electromagnetism — for which you should now
be well-prepared.
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