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Overview

These notes review the minimal mathematics you absolutely will need:

• Algebra, exponentials, logarithms and trigonometry

• Calculus: basic integrals and derivatives, chain and product rule, integration
by parts and change of variables

• Vectors: basic vector algebra

• Linear equations

• Quadratic equations

• Geometry: a few basic formulae

These will be required throughout the course. Learn this material now if any of it
seems new. There is a possibility that partial derivatives may be new to you if you
are taking multivariable differential calculus as a co-requisite; still, you should read
the relevant sections below.

Algebra

In order to succeed in a subject that involves a lot of calculus, algebra needs to be sec-
ond nature. Besides the basic rules of associativitiy, commutativity and distributivity
you need to know how to manipulate fractions and exponentiation. In particular, you
need to know how to add fractions and divide by fractions
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Do not expect to get much sympathy if you write something like 1/a+1/b = 1/(a+b).
Exponentiation is another area prone to errors. You need to remember the fol-

lowing rules

ab × ac = ab+c(
ab
)c

= abc

a−b =
1

ab

Again, do not write things like 1/ab = a1/b or (ab)c = ab
c
.

You should also know how to do binomial expansions,

(a+ b)n =
n∑
r=0

n!

r!(n− r)!
an−rbr.

Note 1 If you are in doubt whether some equality holds or not, you can often check
by trying. For instance, if you had written

1/a+ 1/b = 1/(a+ b)

then substituting a = b = 1 would give 1/1 + 1/1 = 2 on the left, and 1/(1 + 1) = 1/2
on the right.

Similarly, if you had written 1/ab = a1/b, trying a = 2, b = 1 would give 1/(21) =
1/2 on the left, 21/1 = 2 on the right, or if you had put (ab)c = a(b

c), then a = 2,

b = 1, c = 2 would give 22 = 4 on the left, 2(12) = 21 = 2 on the right.

You also need to know how to use the rules above in order to solve equations.
This is not the place for an exhaustive list — hopefully this is all high school material
— but for instance you need to know that if y = xa then x = y1/a.

Exponentials and logarithms

If you can remember the rules above for manipulating exponentials, the dealing with
the exponential function exp(x) should be relatively straightforward:

exp(x) = ex

exp(x) exp(y) = exp(x+ y)

exp(x)

exp(y)
= exp(x− y)

[exp(x)]a = exp(ax)

Do not write things like exp(x) + exp(y) = exp(x+ y).
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In principle, if you can remember how to exponentiate, then the rules for manip-
ulating logarithms follow. In this course, the notation ‘log’ will be reserved for the
logarithm with base e. Logarithms with base 10 are really an accident of using a base
10 number system, which in turn probably has a lot to do with humans having 10
fingers. Base 10 logarithms do not naturally appear in physics. The rules you need
to remember are

log(ab) = log(a) + log(b)

b log(a) = log(ab)

− log(a) = log(1/a),

where the last rule is really the second with b = −1.
You may also want to use logarithms to solve equations. For instance, if you are

given a and c so that
ab = c

and need to find b, you can write use the fact that a = exp(log(a)) to write

ab = elog(a)b = c

and therefore that

log(a)b = log(c), b =
log(c)

log(a)

Trigonoemetry

You should know the basic definitions of sin(θ), cos(θ) and tan(θ) for a right-angled
triangle (figure 1). You should also know that

tan(θ) =
sin(θ)

cos(θ)

sin2(θ) + cos2(θ) = 1

sin(α + β) = sin(α) cos(β) + sin(β) cos(α)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β).

sin(α) cos(β) =
1

2
[sin(α + β) + sin(α− β)]

sin(α) sin(β) =
1

2
[cos(α− β)− cos(α + β)]

cos(α) cos(β) =
1

2
[cos(α + β) + cos(α− β)]
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Figure 1: Basic definitions of sin(θ) and cos(θ).

Calculus

To calculate derivatives and integrals in this course, all you need to know in principle
is the table below plus a number of rules that allow you to apply the table below to
more complicated functions.

Function f(x) Derivative f ′(x) Integral
∫
f(x)

xn nxn−1 xn+1/(n+ 1) + C if n 6= −1, log(x) + C if n = −1
sin(x) cos(x) − cos(x) + C
cos(x) − sin(x) sin(x) + C
exp(x) exp(x) exp(x) + C
log(x) 1/x x log(x)− x+ C

Rules: Differentiation

The rules you need to know are the chain rule and the product rule. The chain rule
is for composite functions,

d

dx
f(g(x)) = f ′(g(x))g′(x).

Example 1 Let F (x) = (ax + b)n, where a and b are constants. Let f(y) = yn,
g(x) = ax+ b. Then f ′(y) = nyn−1, g′(x) = a, and so

F ′(x) = f ′(g(x))g′(x) = n(ax+ b)n−1 × a = an(ax+ b)n−1.

The chain rule applies when functions are multiplied with each other,

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x).
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Example 2 Let F (x) = x exp(x). Let f(x) = x, g(x) = exp(x).

F ′(x) = f ′(x)g(x) + f(x)g′(x) = exp(x) + x exp(x) = (x+ 1) exp(x).

In addition, the following rule is worth knowing: if the function y = f(x) can be
inverted as x = g(y), then

dy

dx
= 1/

dx

dy
.

Example 3 Let y = f(x) = exp(x). Then x = g(y) = log(y). We have

dy

dx
= exp(x)

and
dx

dy
= 1/y = 1/ exp(x).

Rules: Integration

When integrating, you are basically trying to find an anti-derivative, i.e.∫
f(x) dx = F (x) + C

if F ′(x) = f(x). This also works the other way round, i.e., if F (x) =
∫
f(x) dx then

F ′(x) = f(x).
To apply limits, use∫ b

a

f(x) dx = [F (x) + C]x=bx=a = [F (b) + C]− [F (a) + C] = F (b)− F (a).

The constant of integration disappears when taking a definite integral. This is also
clear from the idea of a Riemann sum taken between definite limits: this has a definite
value, so there can be no arbitrary constant of integration that gets added. Also, note
that the integration variable x is definite integrals is just a dummy variable: we could
also write it as y, x′, x1 etc. That is,∫ b

a

f(x) dx ≡
∫ b

a

f(y) dy ≡
∫ b

a

f(x1) dx1.

This is important when reading certain formulae: in definite integrals, the variable
of integration has no special meaning. The only restriction is that it cannot be the
same as one of the limits. In other words, it is legitimate to write

sin(x) =

∫ x

0

cos(y)rdy
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but not

sin(x) =

∫ x

0

cos(x) dx :

x cannot simultaenously be fixed (x on the left-hand side and the limit) and summed
over (integral).

The equivalent of the product rule for integration is a change of variable for
integrals. If y = y(x) is invertible,1 then∫

f(y) dy =

∫
f(y(x))

dy

dx
dx.

If there are limits, then these are transformed, too∫ b

a

f(y) dy =

∫ y−1(b)

y−1(a)

f(y(x))
dy

dx
dx,

where y−1(·) is the inverse of the function y(·). The change of variables rules can be
used in ‘both ways’:

Example 4 Consider the integral
∫

tan(x) dx =
∫
− 1

cos(x)
[− sin(x)] dx. If we let

y(x) = cos(x), we can recognize∫
− 1

cos(x)
[− sin(x)] dx =

∫
− 1

y(x)

dy

dx
dx =

∫
−1

y
dy = − log(y)+C = − log(cos(x))+C.

Example 5 Consider the integral
∫

dy√
1−y2

. Let y = sin(x), y′(x) = cos(x) so

∫
dy√

1− y2
=

∫
1√

1− sin2(x)
cos(x) dx =

∫
1

cos(x)
cos(x) dx = x+C = sin−1(y)+C.

Example 6 Consider the integral
∫

(ax + b)n dx. Let u = ax + b, from which x =
(u− b)/a so that dx/ du = 1/a and∫

(ax+ b)n dx =

∫
un

1

a
du =

un+1

a(n+ 1)
+ C =

(ax+ b)n

a(n+ 1)
+ C

The equivalent of the product rule for integration is integration by parts:∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

In general, when confronted with the integral of a product, choose f to be a function
that becomes simpler when differentiated.

1Meaning that for each y there is exactly one value of x = x(y)
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Example 7 Consider
∫
x exp(x) dx. Let f(x) = x, g′(x) = exp(x). Then f ′(x) = 1,

g(x) = exp(x). So∫
f(x)g′(x) dx = x exp(x)−

∫
1 · exp(x) dx = (x− 1) exp(x) + C.

Example 8 Consider the integral
∫

log(x) dx. Let f(x) = log(x), g′(x) = 1. Then
f ′(x) = 1/x, g(x) = x.∫

log(x) dx = x log(x)−
∫

(1/x) · x dx = x log(x)− x+ C.

Note that you can also check whether you got an indefinite integral right by
differentiating it. You should get the integrand back.

Partial derivatives

Partial derivatives help to extend the idea of a derivative to functions of more than
one variable. Particulary, the partial derivative of a function h(x, y) with respect to
one of its arguments, say x, is essentially the ordinary derivative with respect to x,
taken with y held constant:

∂h

∂x
= lim

δx→0

h(x+ δx, y)− h(x, y)

δx
.

In other word, it is the derivative with respect to x where y is treated like any other
constant in the functional form of h.

Example 9 Let h(x, y) = x2y3. Then

∂h

∂x
= 2y3x.

Similarly,
∂h

∂y
= 3x2y2.

Chain and product rules also apply to partial derivatives. For instance, if F (x, y, z) =
f(g(x, y, z)), then

∂F

∂x
=

df

dg

∂g

∂x
.

Or, as a slightly more complicated example, if f(x, y, z) = F (r(x, y, z), θ(x, y, z), ψ(x, y, z)),
then

∂f

∂x
=
∂F

∂r

∂r

∂x
+
∂F

∂θ

∂θ

∂x
+
∂F

∂ψ

∂ψ

∂x
,

where f , F , r, θ and ψ can be arbitrary functions.
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Also, for sufficiently smooth functions of more than one variable, higher order
derivatives commute, e.g.,

∂2f

∂x∂y
=

∂2f

∂y∂x
,

where
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.

Rules: partial differentiation

The product rule is unchanged. For instance, if f and g are functions of (x, y), then

∂(fg)

∂x
=
∂f

∂x
g + f

∂g

∂x

The chain rule is a bit more complicated. Let f = f(x, y) and x = x(s, t), y = y(s, t).
Then

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

where ∂f/∂s of course means the derivative taken at constant t, while ∂f/∂x means
the derivative at constant y and ∂f/∂y means the derivative at constant x.

Taylor series

A sufficiently ‘smooth’ function can be approximated near a point x = x0 if its
derivatives at that point are known. For instance, if we write

δx = x− x0,

then the function f(x) can be approximated as2

f(x) ≈ f(x0) + f ′(x0)δx+ f ′′(x0)
(δx)2

2!
+ f ′′′(x0)

(δx)3

3!
+ . . .

for small enough δx.

Note 2 Taylor series can be justified by noting that

f(x)− f(x0) =

∫ x

x0

f ′(x1) dx1.

2There are some technicalities here, which won’t concern us in this course, surrounding the
convergence of this series as more and more terms are included.
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Beware that x1 here is just a dummy variable: it doesn’t matter what we use as the
integration variable. But∫ x

x0

f ′(x1) dx1

∫ x

x0

f ′(x0) dx1 +

∫ x

x0

f ′(x1)− f ′(x0) dx1

f ′(x0)(x− x0) +

∫ x

x0

f ′(x1)− f ′(x0) dx1

This gives

f(x) = f(x0) + f ′(x0)(x− x0) +

∫ x

x0

f ′(x1)− f ′(x0) dx1, (1)

The right-hand side gives the first two terms of the Taylor series, plus a correction
(the integral) which is small if f ′(x) does not change much over the interval from x0
to x (so that f ′(x1) ≈ f ′(x0) in the interval).

To get more terms in the Taylor series, we can apply the same approach again to
f ′(x1)− f ′(x0),

f ′(x1)− f ′(x0) = f ′′(x0)(x1 − x0) +

∫ x1

x0

f ′′(x2)− f ′′(x0) dx2, (2)

where x2 is another dummy variable. Substituting for f ′(x1)− f ′(x0) in (1) gives

f(x) = f(x0)+f
′(x0)(x−x0)+

∫ x

x0

f ′′(x0)(x1−x0) dx1+

∫ x

x0

[∫ x1

x0

f ′′(x2)− f ′′(x0) dx2

]
dx1.

We can work out the first integral on the right-hand side exactly∫ x

x0

f ′′(x0)(x1 − x0) dx1 = f ′′(x0)
[
(x1 − x0)2/2

]x
x0

= f ′′(x0)
(x− x0)2

2
,

and substituting into (1) gives us the first three terms of the Taylor series plus another
correction term:

f(x) = f(x0)+f ′(x0)(x−x0)+f ′′(x0)
(x− x0)2

2
+

∫ x

x0

[∫ x1

x0

f ′′(x2)− f ′′(x0) dx2

]
dx1.

We can continue like this to get any number of terms in the Taylor series: for
instance, we can rewrite f ′′(x2)− f ′′(x0) in the same way we re-wrote f ′(x1)− f ′(x0)
in (2) to get the next term in the Taylor series.

Example 10 Let f(x) = cos(x) and x0 = 0. Then f(x0) = cos(0) = 1, f ′(x0) =
− sin(0) = 0, f ′′(x0) = − cos(0) = −1, f ′′′(x0) = sin(0) = 0 etc, and δx = x−x0 = x,
so

f(x) ≈ 1− x2/2 + . . .
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This also works for partial derivatives, e.g. if δx = x − x0, δy = y − y0, and the
notation

∂f

∂x

∣∣∣∣
x=x0,y=y0

means ∂f/∂x evaluated at the point (x0, y0), then

f(x, y) ≈ f(x0, y0) +
∂f

∂x

∣∣∣∣
x=x0,y=y0

δx+
∂f

∂y

∣∣∣∣
x=x0,y=y0

δy

+
∂2f

∂x2

∣∣∣∣
x=x0,y=y0

(δx)2

2!
+ 2

∂2f

∂x∂y

∣∣∣∣
x=x0,y=y0

δxδy

2!
+
∂2f

∂y2

∣∣∣∣
x=x0,y=y0

(δy)2

2!
+ . . .

Vectors

Vectors are quantities that have ‘magnitude and direction’. This is a fairly vague
statement. In a more concrete way, think of a vector as having components in some
coordinate system. For instance

a = 2i + 3j− 4k

has component 2 along the x-axis, component 3 along the y-axis, and component −4
along the z-axis. Here i, j and k are the unit vectors along the x-, y- and z-axes,
respectively, and we use bold face to denote vectors (you may also have seen vectors
written as letters with arrows over them).

Another way of writing the vector a would be in column form,

a =

 2
3
−4

 .

or in row form,
a = (2, 3,−4).

If you are familiar with this last form, then all you need to remember is that the unit
vector i, j and k are then simply

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),

so that writing a = 2i + 3j− 4k means the same as

a = 2×(1, 0, 0)+3×(0, 1, 0)−4×(0, 0, 1) = (2, 0, 0)+(0, 3, 0)+(0, 0,−4) = (2, 3,−4).
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Addition and multiplication by scalars

Given two vectors a = axi + ayj + azk and b = bxi + byj + bzk, we have addition and
subtraction defined through

a + b = (ax + bx)i + (ay + by)j + (az + bz)k.

Example 11 Let a = 2i + 3j− 4k as above, and b = 3i + j + 7k. Then

a + b = 5i + 4j + 3k.

Similarly, if a = axi + ayj + azk and λ is a scalar (i.e., just a number) then their
product λa is defined as

λa = λaxi + λayj + λazk.

Example 12 Let a = 2i + 3j− 4k as above, and λ = −3. Then

λa = −6i− 9j + 12k.

Vector addition and multiplication by a scalar are commutative and distributive
in the usual way:

a + b = b + a,

λ(a + b) = λa + λb.

These results follow from the definition of addition and scalar multiplication above.

Magnitudes and vector products

The magnitude of a vector a = axi + ayj + azk can be thought of as the ‘length’ of
the vector, and is defined as the root of the sum of the squares of its components,

|a| =
√
a2x + a2y + a2z.

This definition can be linked to the idea of the length of a vector as a line through
Pythagoras’ Theorem.

Example 13 Let a = 2i + 3j− 4k as above. Then

|a| =
√

22 + 32 + (−4)2 =
√

29.

The scalar product of two vectors a = axi + ayj + azk and b = bxi + byj + bzk is
defined as

a · b = axbx + ayby + azbz.
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This is also equal to the product of the magnitudes of the two vectors times the cosine
of the angle between them,

a · b = |a||b| cos(θ),

where θ is the angle between the vectors. Clearly, we have

a · a = |a|2

from the definition of the scalar product.

Example 14 Let a = i and b = j. Clearly these two vectors are at right angles to
each other: one is parallel to the x-axis, the other is parallel to the y-axis. And sure
enough, we have ax = 1, ay = 0, az = 0, while bx = 0, by = 1, bz = 0, and so

a · b = axbx + ayby + azbz = 0.

The scalar product satisfies the usual rules of commutativity and distributivity,

a · b = b · a
a · (b + c) = a · b + a · c.

Again these rules follow from the definition of the vector product above.
Scalar products can be used to figure out the components of a vector in the

direction of the coordinate axes. For instance, if a = axi + ayj + azk, then

ax = a · i, ay = a · j, az = a · k.

In other words, we can write

a = (a · i)i + (a · j)j + (a · k)k.

This is also sometimes referred to as decomposing a into its x-, y- and z-components.
The vector product of two vectors a = axi + ayj + azk and b = bxi + byj + bzk is

written as
a× b.

This is defined as a vector whose direction is perpendicular to both, a and b, and
whose magnitude is the product of the magnitudes of the two vectors times the sine
of the angle between them, so that

|a× b| = |a||b| sin(θ),

while (on account of the direction of a× b), we have

(a× b) · a = (a× b) · b = 0.
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In terms of components, the vector product can be written as

a× b = (axby − bxay)k + (aybz − byaz)i + (azbx − bzax)j.

The vector product is distributive, but not commutative:

a× b = −b× a

a× (b + c) = a× b + a× c. (3)

Example 15 If you cannot memorize the formula for the vector product in terms of
the components of the vectors given above, you can always work it by recognizing the
following vector products of the unit vectors i, j and k,

i× j = k, j× k = i, k× i = j.

and using the commutativity and distributivity rules above:

a× b = (axi + ayj + azk)× (bxi + byj + bzk)

= axi× bxi + axi× byj + axi× bzk
+ayj× bxi + ayj× byj + ayj× bzk
+azk× bxi + azk× byj + azk× bzk

= axbyk + axbz(−j)

+aybx(−k) + aybzi

+azbxj + azby(−i)

= (axby − bxay)k + (aybz − byaz)i + (azbx − bzax)j.

You may also have seen other ways of doing this, for instance writing the vector
product in the ‘determinant’ form

a× b =

∣∣∣∣∣∣
i j k
ax ay az
bx by bz

∣∣∣∣∣∣ .
Use whichever method works best for you.

Linear systems of equations

A system of linear equations takes the form

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

am1x1 + am2x2 + . . .+ amnxn = bm
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where all the coefficients a11, a12, . . . amn are known, as are the coefficients b1, b2,
. . . bm. The variables x1, x2 etc are the unknowns. An example would be

x1 + 2x2 + 3x3 = 0 (5a)

x1 − 2x2 = 1 (5b)

Often, you will see x, y and z used instead of x1, x2, x3, in which case (5) might be

x+ 2y + 3z = 0 (6a)

x− 2y = 1 (6b)

This works well if you have three or fewer unknowns, but not so well when you have
more.

To solve a set of linear equations uniquely (meaning, so that there is a single
answer for x1, x2 etc), you generally need to have as many equations as you have
unknowns. In terms of (4), that would mean m = n. Consequently (5) does not have
a unique solution: any combination of x1 and x2 satisfiying x1 − 2x2 = 1 will be a
solution, provided we also put x3 = −(x1 + 2x2)/3. To get a unique solution, you
have to introduce another equation.

The most straightforward (but also laborious) way of solving linear equations is
by Gaussian elimination. Start with one variable (say xn) and use the last equation
to express xn in terms of the x1, x2 etc, here

xn = (bm − am1x1 − am2x2 − . . .− am(n−1)xn−1))/amn.

The substitute this into the remaining equations, so you get

a11x1 + a12x2 + . . .+ a1n(bm − am1x1 − am2x2 − . . .− am(n−1)xn−1)/amn = b1

a21x1 + a22x2 + . . .+ a2n(b1 − a11x1 − a12x2 − . . .− am(n−1)xn−1)/amn = b2

. . .

a(m−1)1x1 + a(m−1)2x2 + . . .+ a(m−1)n(bm − am1x1 − am2x2 − . . .− am(n−1)xn−1)/amn = bm−1

Now you can collect coefficients of x1, x2 etc,(
a11 −

a1nam1

amn

)
x1 + . . .+

(
a1(n−1) −

a1nam(n−1)

amn

)
xn−1 = b1 −

a1nbm
amn

. . .(
a(m−1)1 −

a(m−1)nam1

amn

)
x1 + . . .+

(
a(m−1)(n−1) −

a(m−1)nam(n−1)

amn

)
xn−1 = bm−1 −

a(m−1)nb1
amn

This takes the form of a smaller system of linear equations with m− 1 equations and
n− 1 unknowns,

a′11x1 + a′12x2 + . . .+ a′1(n−1)xn−1 = b1−1

. . .

a′(m−1)1x1 + a′(m−1)2x2 + . . .+ a′(m−1)(n−1)xn−1 = b′m−1
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if we define

a′11 = a11−a1nam1/amn, a12′ = a12−a1nam2/amn, . . . b′1 = b1−a1nbm/amn etc.

We can then use the same method again and again. For the case of n equations in n
unknowns, we hope to arrive at one equation in one unknown (say x1), from which
we can then find the other unknowns x2, x3 by substituting back in.

This all looks very complicated, but if you are working with numerical coefficients
rather than with general coefficeints denoted by letters, things get simpler.

Example 16 Take as an example (6). As discussed, to get a unique answer you need
to add another equation. Let this be

2x+ y + 3z = 0. (6c)

First, eliminate z. You can do this either by writing z = (−2x − y)/3 from (6c), or
by subtracting (6c) and from (6a) to get

(x+ 2y + 3z)− (2x+ y + 3z) = 0− 0

which becomes
−x+ y = 0

this in combination with (6b) gives a system of two equations in two unknowns:

−x+ y = 0

x− 2y = 1

In this case, it is easier to eliminate x than y: simply add the two equations to get

−y = 1

or
y = −1.

Then, working backwards, we also had

−x+ y = 0

so
x = y = −1.

Also, we had 2x+ y + 3z = 0, or

z = −(2x+ y)/3 = −1.

15



Note 3 Having as many equations as unknowns is not actually a guarantee of having
a unique solution, or any solution at all. Take for instance (6) but with (6c) replaced
by

2x+ 3z = 0. (6d)

Again eliminate z by subtracting (6d) from (6a):

(x+ 2y + 3z)− (2x+ 3z) = 0− 0,

which becomes
2y − x = 0. (6e)

However, in addition to (6e), we also have (6b),

x− 2y = 1.

Adding the two to eliminate y, we find

(2y − x) + (x− 2y) = 0 + 1,

which becomes
0 = 1

because eliminating y eliminates x at the same time. As a result, there cannot be a
solutoin.

A different situation would occur if, instead of (6d), we had

2x+ 3z = 1. (6f)

Following the same procedure of subtracting (6a) from (6f) to eliminate z gives

(x+ 2y + 3z)− (2x+ 3z) = 0− 1,

or
−x+ 2y = −1.

This is however the same as (6b) with both sides multiplied by −1. Therefore we do
not have a unique solution; any combination of x and y satisfying x− 2y = 1 solves
the problem, with z = (1− 2x)/3.

Note 4 Linear algebra is a much more systematic way of doing what we have done
for a few examples above, and more. Instead of writing the linear system (4) in the
form above, we would instead write

Ax = b

16



where A is a matrix

A =


a11 a12 . . . an1
a21 a22 . . . an2

. . .
am1 am2 . . . amn


and x and b are column vectors

x =


x1
x2
. . .
xn

 , b =


b1
b2
. . .
bn


and the multiplication of a column vector by a matrix gives the ith component of b,
bi, as

bi =
n∑
j=1

Aijxj.

Linear algebra then tells you, among other things, about conditions under which A
has an inverse A−1 such that

x = A−1Ax = A−1b,

and how to compute that inverse.

Quadratic equations

A polynomial is a function of the form

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n.

In fact, you can think of a Taylor series as trying to approximate a more complicated
function by a polynomial. In general, you cannot solve a polynomial equation

a0 + a1x+ a2x
2 + . . .+ anx

n = 0

analytically.
However, when the polynomial is quadratic (n = 2), then you can. The idea is

that you want to write a general quadratic equation

ax2 + bx+ c = 0

in the form
(x+ k)2 = d.

This suggests that
x+ k =

√
d

17



However, you have to remember that (−
√
d)2 = (

√
d)2 = d, so there is a second

possiblity,
−(x+ k) =

√
d.

or
x+ k = −

√
d.

In short, we write this as
x+ k = ±

√
d,

so that
x = −k ±

√
d.

How do we get a general quadratic equation ax2+bx+c into the form (x+k)2 = d?
First, get rid of the coefficient of x2 by dividing by a:

x2 +
b

a
x+

c

a
. (7)

The trick now is to remember that

(x+ k)2 = x2 + 2kx+ k2,

so if we define k as k = b/(2a), then (7) can be written as

x2 + 2kx+
c

a
= 0

To get it into the form (x+ k)2 = d, we can recognize that we still need a term +k2

on the left. However, we cannot make it appear out of thin air, so we add k2 to both,
left and right,

x2 + 2kx+ k2 +
c

a
= k2,

or
(x+ k)2 +

c

a
= k2.

This is called completing the square. Rearranging,

(x+ k)2 = k2 − c

a
.

This means we should define d = k2 − c/a.
As

x = −k ±
√
d,

this means, with k = b/(2a) and d = k2 − c/a = b2/4a2 − c/a = (b2 − 4ac)/(4a2), we
get

x = − b

2a
±
√
b2 − 4ac

4a2
,
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or, written more succinctly,

x =
−b±

√
b2 − 4ac

2a
.

You can try to memorize this formula. Much better, understand the method and you
can always re-derive the formula.

Note 5 There are cases where you cannot get a solution that consists of ordinary real
numbers. The formula above involves the square root of b2 − 4ac; however, b2 − 4ac
could easily be negative. An easy way of seeing this is to try to solve the quadratic
equation x2 + 1 = 0, which is already in the form (x+ k)2 = d, with k = 0, d = −11.
Imaginary numbers were invented to handle situations like this.

Note 6 You should also know what it means to factorize a polynomial. That means
to write it in the form

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n = an(x− x1)(x− x2)(x− x3) . . . (x− xn).

The constants x1, x2 etc. are such that f(x1) = f(x2) = f(x3) = . . . = f(xn) = 0
(because putting x = x1, x = x2 etc in the product above will ensure that one of the
factors in the product is zero). As a result, factorizing a polynomial is equivalent to
finding its roots.

Example 17 Take
2x2 + 8x+ 6 = 0

Instead of simply applying the formula above, we can complete the square. First, get
rid of the coefficient of x2 by dividing by 2:

x2 + 4x+ 3 = 0.

To complete the square, look at the linear term, in this case 4x. We want this to take
the form 2kx, which in this case requires k = 2. We also need a term k2 = 22 on the
left, so we add it to both sides:

x2 + 2× 2× x+ 22 + 3 = 22.

Collect the first three terms into one ‘perfect square’ (x + 2)2 on the left, and put
22 = 4 on the right,

(x+ 2)2 + 3 = 4.

Now take 3 to the right,
(x+ 2)2 = 1.

Taking the square root and allowing a plus or a minus sign gives

x+ 2 = ±1
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so
x = −1− 2 or x = 1− 2

meaning
x = −3 or x = −1.

Sometimes you can also ‘spot’ an answer without going through the whole procedure.
For instance, you might spot that expanding (x+ 3)(x+ 1) gives

(x+ 3)(x+ 1) = x2 + x+ 3x+ 3

= x2 + 4x+ 3

so x2 + 4x+ 3 = 0 can be written as

(x+ 3)(x+ 1) = 0.

In order for a product of two factors to be zero, one of the factors must be zero, so
either x+ 3 = 0 or x+ 1 = 0, giving x = −3 or −1.

Geometry

You should know a few basic results about volumes and areas of standard shapes like
circles, triangles, cylinders, spheres, prisms and tetrahedra. Some of these are given
in the tables below

circumference area
Triangle Sum of side lengths 1

2
base × height

circle 2πr πr2

Table 1: Circumferences and areas of two-dimensional shapes

surface area volume
Cylinder 2πrh (curved part only) πr2h
Sphere 4πr2 4

3
πr3

Tetrahedron sum of surface triangles 1
3

base × height
Prism sum of surfaces base × height

Table 2: Surface areas and volumes of some common three-dimensional shapes
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Figure 2: A rotated coordinate system (x′, y′) with unit vectors i′ and j′.

More on vectors: the meaning of ‘magnitude and direction’

The material in this section is not required for the course but is useful.
For our purposes, knowing that a physically (or geometrically) defined vector ‘has

a magnitude and a direction’, and using the rules above, suffices. There is however a
deeper meaning to the idea that a vector has a magnitude and a direction: namely,
that these should in some way not depend on the choice of coordinate system. A
vector that connects point A to point B in one Cartesian coordinate system should
still connect A to B in, say, a Cartesian coordinate system that has been rotated with
respect to the original one. Of course, the direction as ‘seen’ in the new coordinate
system will be different from that ‘seen’ in the original coordinate system, but the
vector still connects A to B, and its length remains the same.

To get a simple understanding of this, consider a vector xi+yj in a two-dimensional
Cartesian coordinate system with coordinates (x, y). This vector can be thought of as
connecting the origin to the point with coordinates (x, y). Now rotate the coordinate
axis through an angle θ anticlockwise to give new coordinate axes with coordinates
(x′, y′). Clearly, we have from figure 2

x′ = x cos(θ) + y sin(θ), y′ = − sin(θ)x+ cos(θ)y.

Similarly, we can define unit vectors parallel to the x′- and y′ axis as i′ and j′, respec-
tively (figure 2). These can be related to i and j by looking at the x- and y-components
of i′ and j′. From the discussion above, we have

i′ = (i′ · i)i + (i′ · j)j,
j′ = (j′ · i)i + (j′ · j)j,
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or equally

i = (i · i′)i′ + (i · j′)j′,
j = (j · i′)i′ + (j · j′)j′,

But we also know that the dot products are the products of the magnitudes of the
vectors times the cosines of the angles between the different vectors. As all the vectors
i, j, i′ and j′ are unit vectors, this means that the dot products are just the cosines
of the angles between the vectors, and from figure 2,

i′ · i = cos(θ),

i′ · j = cos(π/2− θ) = sin(θ),

j′ · i = cos(π/2 + θ) = − sin(θ),

j′ · j = cos(θ).

Therefore, if we have a vector defined by a = axi + ayj, then

a = axi + ayj

= ax [(i · i′)i′ + (i · j′)j′] + ay [(j · i′)i′ + (j · j′)j′]
= [axi · i′ + ayj · i′] i′ + [axi · j′ + ayj · j′] j′

= [ax cos(θ) + ay sin(θ)] i′ + [−ax sin(θ) + ay cos(θ)] j′

We can write this as a = a′xi
′ + a′yj

′ if we define

a′x = ax cos(θ) + ay sin(θ), a′y = −ax sin(θ) + ay cos(θ).

Clearly, the x′ and y′ components of the vector in the new coordinate system are
related in a very specific way to the x and y coordinates in the old coordinate system —
in fact, the relationship between (a′x, a

′
y) and (ax, ay) is analogous to the relationship

between (x′, y′) and (x, y) above, as was to be expected as we could express the point
(x, y) as a position vector xi+yj. The relationship can be written in the matrix form(

a′x
a′y

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
ax
ay

)
, (8)

or symbolically,
a′ = Ra, (9)

where a′ = (a′x, a
′
y)

T, a = (ax, ay)
T (note that the superscript T denotes the transpose

of a vector or matrix) and

R =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.
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It is important that the length of the vector — which we have defined as
√
a2x + a2y

— should not depend on the coordinate system. But

|a|2 = a′2x + a′2y

= (ax cos(θ) + ay sin(θ))2 + (−ax sin(θ) + ay cos(θ))2

= a2x cos2(θ) + 2axay cos(θ) sin(θ) + a2y sin2(θ) + a2x sin2(θ)− 2axay sin(θ) cos(θ) + a2y cos2(θ)

= a2x
[
cos2(θ) + sin2(θ)

]
+ a2y

[
cos2(θ) + sin2(θ)

]
= a2x + a2y.

As required, the formula for computing the length of a vector does not depend on
the particular Cartesian coordinate system chosen. |a| is said to be invariant under
a change of coordinate system. This makes |a| =

√
a2x + a2y + a2z a somewhat special

combination of the components ax, ay and az: For instance, if we had defined a
function f as f(a) = 2a2x + a2y, we would have in terms of the components a′x, a

′
y that

f(a) = a′2x + a′2y + (a′x cos(θ)− a′y(sin(θ))2,

which is not of the form 2a′2x +a′2y . Functions that depend on the choice of coordinate
system like f(a) are problematic in physical theories: physics does not depend on the
way of measuring position chosen.

There is a link with the matrix formulation (9) here: in standard matrix notation,

|a′|2 = a′
T
a′

where

a′ =

(
a′x
a′y

)
.

But we have a′ = Ra, and hence

|a′|2 = (Ra)T Ra

= aTRTRa

But

RTR =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)T(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=

(
cos2(θ) + sin2(θ) cos(θ) sin(θ)− sin(θ) cos(θ)

− cos(θ) sin(θ) + sin(θ) cos(θ) cos2(θ) + sin2(θ)

)
=

(
1 0
0 1

)
= I
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where I is the identity matrix. This property of the rotation matrix R (i.e., that
RTR = I) is usually called orthonormality. Using this, we find

|a′|2 = aTIa = aTa = |a|2;

in other words, the invariance of the length of the vector arises because the trans-
formation from the xy to the x′y′ coordinate system involves an orthonormal matrix
R.

Similarly, we expect the dot product of two vectors to be invariant: neither the
magnitude of the vectors nor the angle between them should depend on the coordinate
system. This is also easy to show in the same way as above. In matrix notation,

a · b = aTb,

treating a and b as column vectors. If a′ = Ra and b′ = Rb, then

a′
T
b′ = (Ra)T Rb = aTRTRb = aTb

as required.
The idea of some quantities behaving in a particular way under transformations

to different coordinate systems and others remaining unchanged can be taken a lot
further, but the example above hopefully gives you an example for what is involved.
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