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Overview

These notes cover the following:

• Rate of transport through a surface and flux

• Vector fields and how to visualize them

• How to evaluate surface integrals

• Conservation of mass for a continuum — integral formulation

Rate of mass transfer: a simple case

We have seen how to describe the spatial distribution of mass in a continuum through
a density field ρ(x, y, z, t), and how to compute the mass contained in a given volume
V from the density field by integrating,

M =

∫
V

ρ dV.

Mass is a conserved quantity, and changes in M can therefore not happen without
accounting for how mass got into our out of the volume V . This means we have to
figure out how to compute the rate at which mass crosses the boundary of the volume.

To develop an intuition, we can look at a simple case. Assume you have a straight
pipe or channel, for instance an idealized stream or river. Let the cross-sectional area
of the channel be S, and assume that a fluid flows down the channel at a spatially
uniform velocity, constant v pointing in the down-channel direction, and that the
density ρ of the channel is also spatially uniform and constant in time. At what rate
does mass pass through the cross-section S?
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The answer clearly needs to have dimensions of mass over time, but you should not
be tempted to answer this question by dimensional analysis alone — because there is
no guarantee this will give you the right answer.1 The simplest way to compute this
is to look at the mass M that passes through S in some time interval T , and define
the rate as M/T .

To compute the mass M that passes through, it makes sense to compute the
volume that passes through S first. As the fluid travels a distance vT in time T , the
body of water that passes through S is a prism-like volume2 with base area S and an
edge length vT . The base area S is at right angles to that edge, and the volume that
passes through is therefore

SvT

The mass contained in the volume is density times volume, or M = ρSvT . If we
denote the rate at which mass passes through S by Q, we have

Q =
M

T
=
ρSvT

T
= ρvS.

Note that we can also define a rate at which mass passes through per unit area of
channel-cross-section. This simply amounts to dividing by S, giving Q/S = ρv. This
measure of transport will later be called a flux. The advantage of this measure is that
it does not depend on the cross-section that we are looking at.

In what hopefully begins to look like a pattern, we have another example of
proportionality above: velocity and density being equal, the rate of mass transfer is
proportional to the cross-sectional area of the channel we are looking at. The flux ρv
is simply the constant of proportionality.

Transfer through oblique surfaces

We deliberately made the cross-sectional area S perpendicular to the channel above.
In general, we may be interested in mass passing obliquely through a surface. Consider
placing a different cross-section S ′ into the channel, this one still planar but at an
angle to the flow direction.3 Can we compute the rate at which mass passes through
S ′ in a similar way?

Again, we should look at the volume that passes throuhg S ′ in some time T . Once
more, the fluid travels a distance vT . The volume passes through is again a prism-like
shape, now with base area S ′ and again with edge length vT . The edge is however no

1Computations done by dimensional analysis are only ever unique up to a numerical factor in
any case.

2Strictly speaking, a ‘prism’ would require S to be a polygon
3There is nothing special about the notation S′, and there are no hidden meanings like derivatives

lurking here. We are simply using a prime to make a symbol that looks similar to the original cross-
sectional area symbol S, but which is not completely the same.
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longer perpendicular to the base. When computing the volume of such a prism-like
shape, we again have a formula of

volume = base× height.

The height is however no longer the edge length, but the height measured at right
angles to the base. In this case, the height can be seen as the projection of the edge
length vT onto the direction perpendicular to S ′. This direction is also called the
normal direction, and a vector that points in that direction is a normal to S ′. If the
angle between the velocity vector and the normal direction is θ, then the height of
the prism-like surface is

vT cos(θ)

and the volume is S ′vT cos(θ). As before, mass is density times volume, so M =
ρvS ′ cos(θ)T , and the rate of mass transfer is M/T , or

Q = ρv cos(θ)S ′

Actually trying to figure out the angle θ between the flow direction and the normal
direction is not a particular useful exercise. Instead, we can write the combination
v cos(θ) in the language of vectors if we define the idea of a unit normal to S ′: We
let n̂ be a unit vector perpendicular to S ′, which is sraightforward to do as we have
assumed that S ′ is planar. If we also define a vector velocity v (so that v above is
the magnitude of v), then we have

v · n̂ = |v||n̂| cos(θ)

But n̂ is a unit vector, so |n̂| = 1, and |v| = v. Therefore

v · n̂ = v cos(θ)

and
Q = ρv · n̂S ′. (1)

This suggests that we should generalize the flux that we considered above to be
a vector ρv. Again, the rate of mass transfer Q is proportional to S ′. Because Q is a
scalar quantity (mass transferred from one side of the surface S ′ to the other per unit
time), the constant of proportionality cannot be the vector flux ρv. Instead, it is the
scalar product of flux and unit normal n̂ that gives us the constant of proportionality.

The fact that the direction of the surface relative to the velocity vector features
in the calculation should make a lot of sense. Imagine a surface S ′ that lies parallel
to the flow direction v. Mass would then flow tangentially to S ′ but never actually
cross it. This is indeed the case in our calculation: If v is tangential to the surface
S ′, then it is perpendicular to the normal n̂, and ρv · n̂ = 0.
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Note 1 There is an interesting note about the relationship between S ′ and S here.
Presumably, as the flow of the stream is steady and uniform, no mass is being piled
up between the surfaces S ′ and S, so the rates of mass transfer through them must
be the same. We computed these as ρvS and ρv cos(θ)S ′. If these are equal, we must
have

S = S ′ cos(θ).

There are actually two possible choices of normal direction, corresponding to two
unit normal vectors that are equal and opposite. Implicitly, we have chosen the one
that makes an acute angle with the velocity vector v above, because we wanted to
calculate a positive rate of mass transfer. Had we chosen the normal vector making
an obtuse angle, we would have compute Q with the same magnitude, but negative
in sign.

There is a straightforward interpretation of this, which will become important
later: Mass transfer occurs from one side of S ′ to another. Therefore, although Q is
not a vector, it does have a sense of direction. The choice of n̂ should point towards
the side of S ′ toward which we want to compute the rate of mass transfer. If that
rate of mass transfer turns out to be negative, we know that actual mass transfer is
happening at the same rate but in the opposite direction. We can take this to be the
definition of a negative rate of mass transfer.

Unsteady, non-uniform flow through curved sur-

faces: surface integrals

The calculations above were relatively simple — involving only some basic geometry
and vector manipulation — because the cross-section S ′ was taken to be planar, and
ρ and v were uniform in space and constant in time. These are assumptions that are
unlikely to apply under most circumstances. In general, both velocity and density
may vary in space and time, and we may need to compute rates of mass transfer
across curved surfaces.

The way to deal with this should not come as a surprise. Assume we know the
surface S as well as the velocity field v(x, y, z, t) and density field ρ(x, y, z, t). We can
then split the surface S into many small parts δS (called surface elements) and look
at mass transfer δm through each in a small period of time from t to t+ δt. Doing so
allows us to treat ρ and v as approximately constant on each surface element in the
time interval δt. Moreover, small surface elements can be treated as approximately
planar, which allows us to identify a normal n̂ that can be treated as constant on
each surface element.

Following the discussion at the end of the last section, we have to decide a definite
direction for that normal vector n̂, given by the side of the surface S towards which
the computed mass transfer occurs. For every surface element δS, the normal n̂ needs
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to point towards that side, even if v points in the opposite direction. Of course, it
is then possible that computed rate of mass transfer may be negative. This simply
means that, in practice, there is net mass transfer of the same magnitdue but towards
the opposite side of S.

The calculation for how much mass δm passes through each δS in δt works in
exactly the same way as for the oblique surface S ′ above, except that many δ’s will
appear.

We again look at the volume that passes through δS in the direction of the normal
vector n̂ in time δt. That volume is still approximately a prism-like shape with size
given by base area times height (figure 1). The base area is now δS, and height again
cannot be identified as the side length vδt because velocity v may not be perpendicular
to the surface δS. Instead, the height of the ‘prism’ is vδt cos θ, where θ is the angle
indicated in figure 1. So we have a volume whose size is approximately

δSvδt cos θ = δSv · n̂δt

and mass
δm ≈ ρv cos θδSδt. (2)

If n̂ and v form an obtuse angle and their dot product is negative, then the volume
we have computed is negative. A ‘negative volume’ and hence a negative amount of
mass has passed through δS in the direction of n̂, which means a positive volume and
mass has passed in the opposite direction.

The amount of mass δM that passes through the whole surface S in δt is then
found by adding the masses that pass through all the δS’s:

δM =
∑
δS

δm ≈
∑
δS

ρv · n̂δSδt.

The rate of mass transfer is then found by dividing by δt:

Q = lim
δt→0

δM

δt
≈
∑
δS

ρv · n̂δS.

The total rate of mass transfer is given by summing the normal components of flux
over all the surface elements δs. Of course, implicit in our discussion is that the δS
must be small, and therefore that we are really interested in the limit δS → 0, in
which case the approximations above become exact. The sum then becomes a surface
integral, which we denote by

Q =

∫
S

ρv · n̂ dS.

The subscript ‘S’ on
∫
S

indicates the surface over which we are summing.
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Figure 1: Calculating the mass of fluid that passes through S in time δt by splitting
S into small surface elements δS (panel a). On each δS, velocity and density are
approximately constant, and δS is approximately flat. The volume of fluid that
passes through δS in δt is given by the normal component of velocity, v · n̂ (panel b).
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Flux

We already introduced ρv as a ‘flux’ that gives the constant of proportionality between
rate of mass transfer and surface area in (1). As we have seen above, flux is in general
a field, as both ρ and v can depend on position and time. Flux is often given its own
symbol q, and there can be fluxes associated with conserved quantities other than
mass, so q = ρv should be called ‘mass flux’.

When q(x, y, z, t) depends on position and time, mass transfer is no longer propor-
tional to time and surface area for large time intervals or large surface areas. From
(2) we see that the proportionality however still works for small surface areas and
short times elapsed. The amount of mass δm that passes through a small area δS in
a small amount of time δt does satisfy

δm ∝ δSδt

and the constant of proportionality is q · n̂, where the normal vector n̂ is determined
by the orientation of δS. Note that q · n̂ is the normal component of flux; any part of
q that is tangential to δS does not contribute to mass transfer through the surface.
We have

δm = q · n̂δSδt.
Remember that we had a similar argument for mass content in a small volume

δV , where we had δm = ρδV . This allows density at a point (x, y, z) to be defined in
terms of the mass δm in a small volume δV centered on that point through

ρ(x, y, z, t) ≈ δm

δV
,

the limit of small δV turning the approximation into an equality. The advantage of
this definition is that it uses measurable quantities like mass δm and volume δV .

Suppose we would like to come up with a similar definition for flux q in terms of
the mass δm transferred through a small surface δS centered on (x, y, z) in time δt,
these again being potentially measurable quantities. This would allows to generalize
eventually from mass flux, where we have the formula q = ρv to the fluxes of other
physical quantities. From above, we have

q · n̂ =
δm

δSδt
,

which could almost serve as a definition of q, saying that flux is the mass transferred
over time elapsed and size of area, in the limit of a short time interval elapsed and a
small surface area element. The problem is the dot product with the unit vector n̂.

Imagine that we are located at a point (x, y, z) and we can measure the mass δm
that passes through a small area element δS in δt, but that we can rotate δS into
whatever orientation we like. This means we can alter n̂ at will. In general, we have

δm

δSδt
= q · n̂ = |q||n̂| cos(θ) = |q| cos(θ) ≤ |q|
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so the magnitude of the actual flux is greater than or equal to δm/(δSδt),

|q| ≥ δm

δSδt
.

However, when n̂ is parallel to the direction of flow q, then cos(θ) = 1 and we get
the equality

|q| = δm

δSδt
.

The magnitude of flux is therefore the maximum that the ratio δm/(δSδt) can
reach when the orientation of the surface element is changed. In other words,

|q| = maximum δm transferred through δS in δt as δS is rotated through all orientations

δSδt
,

with the direction of q given by the normal to δS when that maximum is attained.

Note 2 There are other naming conventions in some areas of physics; the one we
have adopted here is common in continuum physics (more usually called ‘continuum
mechanics’). In electromagnetism, ‘flux’ is used to refer to the integral

Q =

∫
S

q · n̂ dS,

and which case q is referred to as the flux density. In our case, the variable Q will
be referred to as the rate of transfer, and q as the flux.

Specifying and visualizing scalar and vector fields

We have now seen two types of field, namely scalar fields like ρ(x, y, z, t), and vector
fields like q(x, y, z, t) or v(x, y, z, t). It is easy to see how to specify a scalar field; it
is simply an ordinary function of position (x, y, z) and time t. What about a vector
field?

A vector is most easily specified through its components, as a = axi+ayj+azk or
b = i+ 2j−k. For a vector field, the important aspect is that each of its components
is a function of position (x, y, z)

v(x, y, z, t) = vx(x, y, z, t)i + vy(z, y, x, t)j + vz(x, y, z, t)k. (3)

Example 1 For instance, if

v = (y − x)i− (x+ y − z)j + k,

we have vx(x, y, z) = y − x, vy(x, y, z) = −x− y + z, vz(x, y, z) = 1
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There is no contradiction in the x-component vx depending not only on x but also
on y and z. Remember that the x-component of the vector v is the part of v that
points in the direction of the x-axis. The coordinates (x, y, z) simply tell you the
location at which you compute that vector. They are the components of the position
vector

r = xi + yj + zk

but not of the velocity vector v at that position.

Note 3 The position vector of a point (x, y, z) is the vector that connects the origin to
that point. We will always denote the position vector by r. The length of the position
vector is

|r| =
√
x2 + y2 + z2.

Physically, this is the distance from the origin to the point (x, y, z), and we usually
denote this by r = |r| =

√
x2 + y2 + z2.

Sometimes we also need a unit vector in the direction from the origin to (x, y, z);
you can think of this as a ‘radial’ unit vector as it points radially outwards from the
origin. We would denote such a unit vector by

r̂ =
r

r
=

xi + yj + zk√
x2 + y2 + z2

.

The dependence of v on (x, y, z) is easiest understood if we try to visualize a
vector field. The way this is normally done is by defining a grid of points (x, y, z),
usually evenly spaced and including the origin. Each of these points corresponds to a
different combination of x, y and z. At each point, we can compute the components
vx(x, y, z), vy(x, y, z) and vz(x, y, x), and therefore compute the vector v at that point.
That vector is then drawn as an arrow, starting at that point, so the tail of the arrow
indicates the location it refers to. It is possible that the vectors computed this way
have large components that would make the arrows cross each other. This is usually
avoided by scaling each arrow with a common scaling factor (for instance by reducing
the length of each arrow by a factor of 10 before plotting them).

Exercise 1 Sketch the following vector fields in this way:

1. v = (y − x)i− (x+ y)j

2. v = −yi + xj

3. v = −xi + yj

4. v = xi + xyj
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A second way of visualizing vector fields is through streamlines. This is particu-
larly easy to understand if we treat v = vxi + vyj + vzk as an actual velocity field in,
say, a fluid. To make life easier, assume we are in two dimensions, so

v = vx(x, y)i + vy(x, y)j

Assume that the velocity field is ‘steady’, meaning vx and vy do not depend on time.
Now imagine that we want to follow a particle immersed in that material over

time. This means we want to trace the position of the particule as a function of time,
and plot its trajectory. The particle has a position vector r(t) that changes with time,

r(t) = x(t)i + y(t)j.

The rate at which that position vector changes with respect to time is its velocity
vector,

dr

dt
=

dx

dt
i +

dy

dt
j.

If the particle is immersed in the fluid, it is presumably moving at the same velocity
as the fluid, so we should presumably be able to say that

dr

dt
= v(x(t), y(t)).

The important thing is that the velocity field v is evaluated at the current position
of the particle, so at x = x(t), y = y(t).

But this means that

dx

dt
= vx(x, y),

dy

dt
= vy(x, y).

The trajectory of the particle is given by a pair of ‘coupled’ ordinary differential
equations, which can often be solved. The plot of the trajectory in the xy-plane
is then called a streamline.4 To visualize a vector field then means computing and
plotting a number of different streamlines, corresonding to different initial positions
for the particle.

The relationship between the representation of v in terms of arrows and in terms
of streamlines is that the arrows depicting v are tangential to the streamlines. The
arrows show the direction and speed of travel but do not necessarily make the path
taken by an individual particle in the flow obvious; streamlines do the opposite job.

Exercise 2 Assume the vector field takes the form

v = xi− yj.
4If you are familiar with the mathematical theory of dynamical systems, you should know that

the terminology there is slightly different; the curve traced by the particle in the xy-plane is actually
called an orbit, while the word trajectory is used to describe the dependence of the particle position
(x(t), y(t)) on time.
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1. Set up the differential equations that determine the trajectory of a particle x(t)
and y(t) in the flow.

2. Show that these can be solved to give x = x0 exp(t), y = y0 exp(−t)

3. To plot the trajectory of the particle as a curve in the xy-plane, t needs to be
eliminated so that, for instance, y can be expressed as a function of x. Show
that

y = y0x0/x

unless x0 = 0.

4. Streamlines therefore take the form y = C/x with C = y0x0 = constant. Sketch
streamlines for different values of C. Note that there should be streamlines in all
parts of the xy-plane. Indicate with an arrow the direction in which the particle
moves along each streamline.

Exercise 3 Sometimes, it makes sense to eliminate t imeediately from the calculation
of streamlines. We can do this by recognizing that

dy

dx
=

dy

dt
/

dx

dt
.

Therefore we get a single differential equation of the form

dy

dx
=
vy(x, y)

vx(x, y)
.

Apply this approach to find and sketch streamlines for the vector field, again indicating
with an arrow the direction in which the particle moves along the streamline.

1. v = xi− yj.

2. v = −yi + xj.

Evaluating surface integrals: flat surfaces

The abstract notion of a surface integral giving a rate of mass transfer isn’t much use if
we can’t evaluate the integral. We need a practical way of calculating surface integrals.
We will develop the relevant tools in two stages. First, we deal with flat surfaces lying
in one of the coordinate planes (for simplicity, the xy-plane). Subsequently, we will
deal with curved surfaces.

As with volume integrals, precisely how we split the surface S into surface elements
δS should not matter, but forcing the δS’s to have certain, simple shapes will make
life easier. A flat surface in the xy-plane can be covered approximately by small
rectangles of edge lengths δx and δy parallel to the x- and y-axes. At the edges of
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the surface, there may be a slight discrepancy between the area covered by rectangles
and the surface S itself, but this will be very small for small δx and δy. The surface
elements have size

δS = δxδy.

The procedure that follows is perfectly analogous to how we constructed volume
integrals. We need to compute the sum over∑

δS

q · n̂δS. (4)

To make the sum over the δS’s more definite, we can label each of the rectangles.
Let i denote which column a rectangle is in, and j the row, and let (xi, yj) be a point
associated with the rectangle (e.g., let xi and yi be the coordinates of the centre of
the rectangle). This allows us to evaluate the normal component of flux q · n̂.

For a surface S in the xy-plane, the normal n̂ is either +k or −k. Let us assume
that we want to compute the rate of mass transfer from below S to above, so n̂ = k.
If q is written in the form (3), it follows that q · n̂ = qz(x, y, z). On the rectangle
centered on (xi, yj), we have (x, y, z) = (xi, yj, 0), The zero appears because, in order
to be on the surface S, z cannot just take any value. We have to be in the xy-plane
in this particular case, which means z = 0.

The sum in (4) becomes ∑
i,j

qz(xi, yj, 0)δxδy,

When taking a sum over two indices, it does not matter in which order the sum
is performed so long as the contribution from each pair of indices (i, j) is included
exactly once in the sum. This means that we can sum over j first, and over i second,
so ∑

q · n̂δS =
∑
i

[∑
j

(q · n̂)|x=xi,y=yj δy

]
δx (5)

Taking the sum over j (in square brackets) first means summing over all rectangles
in a column first, and then sum over i then amounts to summing up over all the
columns next. In the limit of small δy, the sum in square brackets obviously becomes
an integral over y, taken at fixed x = xi. Subsequently taking the sum over i then
turns into integration with respect to x after the integral with respect to y,∑

j

(q · n̂)|x=xi,y=yj δy →
∫ [∫

qz(x, y, 0) dy

]
dx (6)

As for volume integral, the integral over y is computed with the x-coordinate treated
as a constant.
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Figure 2: The Riemann sum for a flat, square surface, using rectangular surface
elements δS.

We are still mssing limits of integration. Let the boundaries of S be given in the
same way as we specified the projection of a volume onto the xy-plane, with a lower
boundary at y = ymin(x) and an upper boundary at y = ymax(x), with x ranging
from xmin to xmax. The integral can then be written in the formula∫

S

q · n̂ dS =

∫ xmax

xmin

[∫ ymax(x)

ymin(x)

qz(x, y, 0) dy

]
dx.

Example 2 Let S be the unit square in the xy-plane, and let ρ = 1 and

q(x, y, z) = yi + xj + x(1 + z)k (7)

We get xmin = 0, xmax = 1, ymin(x) = 0, ymax)(x) = 1.

q · n̂ = (yi + xj + x(1 + z)k) · k = x(1 + z).

Evaluating this at z = 0 gives q · n̂ = x. Hence∫
S

q · n̂ dS =

∫ 1

0

[∫ 1

0

x dy

]
dx =

∫ 1

0

xy|y=1
y=0 dx =

∫ 1

0

x dx =
1

2
.

Example 3 Consider now the same flux field as given in (7), but assume that S is
now the triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0) instead. This triangle
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Figure 3: The Riemann sum for a flat, triangular surface, using rectangular surface
elements δS. Obviously these do not fit neatly into a triangle. Here we have retained
only those δS’s whose centres lie in the triangle. As δx and δy get smaller, the fit
gets better.

is still in the xy-plane, and so we still have q · n̂ = x. The limits are now different;
we have ymax(x) = x while the other limits remain the same. Therefore∫

S

q · n̂ dS =

∫ 1

0

[∫ x

0

x dy

]
dx =

∫ 1

0

xy|y=xy=0 dx =

∫ 1

0

x2 dx =
1

3

Exercise 4 Let S be a triangle in the xy-plane with vertices at (0, 0, 0), (1, 1, 0),
(−1, 1, 0). Consider a fluid with density

ρ(x, y, z) = 1 + x2 + y2.

and velocity field
v(x, y, z) = xi + y2j + (x+ 1 + z)yk.

1. Sketch the surface S.

2. Calculate q · n̂ for the surface S and the density and velocity field above.

3. Calculate
∫
S

q · n̂ dS.
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Figure 4: Limits of integration for a more general flat surface.

Curved surfaces

Curved surfaces are more difficult because we cannot simply turn the δS’s into little
rectangles with side lengths δx and δy, because the δS’s do not generally lie in the
xy-plane. Moreover, it is not immediately clear how to compute the normal vector
n̂. We look at these two issues and how to formulate the surface integral next.

Surface elements and unit normals

The first thing we need to do is specify the shape of the surface. The surface no
longer necessarily lies in the xy-plane. Instead, we assume it can be described by its
height above the xy-plane, z = h(x, y).

Note 4 In case a surface curves back on itself, there may be more than one elevation
z corresponding to a point on the surface for a given position (x, y) in the xy-plane. In
that case, it becomes necessary to split S into multiple parts, each of which corresponds
to a unique elevation z = h(x, y) for a given (x, y).

To get around the problems of described above, we split S into surface elements
δS such that the projection of each δS onto the xy-plane is a rectangle of side lengths
δx and δy (figure 5). What this means is that each δS is a parallelogram, and we can
compute the area and even figure out a normal vector for a parallelogram.

To do this, think of the sides of the parallelogram as vectors a and b (figure 7).
The area of the parallelogram is |a||b| sin θ, where θ is the angle between the two
vectors. Recall that the cross product of two vectors is given by

a× b = |a||b| sin θN
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Figure 5: A tiling of the surface 2−x2−y2 with δx = δy = 0.1. Top panel: perspective
view, bottom panel: projection onto the xy-plane.
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Figure 6: Cross product of two vectors a and b. N is the unit vector perpendicular
to a and b, oriented such that a,b,N form a right-hand triad.

where the unit vector N is perpendicular to both a and b, with the right-hand rule
determining the orientation of the vector.

Obviously, if a and b are the sides of the parallelogram, then N is the unit normal
n̂ that we are looking for, so

n̂ =
a× b

|a× b|
.

Furthermore, the area δS of the parallelogram is the magnitude of a× b,

δS = |a× b|.

Therefore we only have to figure out how to write the sides of the each of the
surface elements as vectors. To understand this, see figure 7. Take side a as the
side that projects onto the side of the rectangle in the xy-plane with side length
δx. The left-hand end of side a is at (x, y, h(x, y)), and the right-hand end is at
(x+ δx, y, h(x+ δx, y), so

a = [(x+ δx)i + yj + h(x+ δx, y)k]− [xi + yj + h(x, y)k]

= δxi + [h(x+ δx, y)− h(x, y)] k (8)

We can re-write this slightly by using the definition of a partial derivative:

∂h

∂x
= lim

δx→0

h(x+ δx, y)− h(x, y)

δx

From this it follows that

h(x+ δx, y)− h(x, y) ≈ ∂h

∂x
· δx,

so that

a ≈ δx

[
i +

∂h

∂x
k

]
,

where obviously the quality of the approximation (≈) improves as δx→ 0.
Switching the roles of x and y and i and j, we can also find the other side b of

the parallelogram:

b ≈ δy

[
j +

∂h

∂y
k

]
.
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Figure 7: Surface elements δS and unit normal n̂ for a general, curved surface. One
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18



Therefore we can calculate

a× b = δxδy

[
i +

∂h

∂x
k

]
×
[
j +

∂h

∂y
k

]
= δxδy

[
i× j +

∂h

∂x
k× j +

∂h

∂y
i× k +

∂h

∂x

∂h

∂y
k× k

]
= δxδy

[
k− ∂h

∂x
i− ∂h

∂y
j

]
From this, it follows that

δS = |a× b|

= δxδy

∣∣∣∣k− ∂h

∂x
i− ∂h

∂y
j

∣∣∣∣
= δxδy

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

and

n̂ =
a× b

|a× b|

=
k− ∂h

∂x
i− ∂h

∂y
j√

1 +
(
∂h
∂x

)2
+
(
∂h
∂y

)2
Exercise 5 So far, we have taken it on trust that the surface element δS really is
a parallelogram, and computed vectors describing only two of its sides. Compute the
vectors describing the third and fourth sides of the element and show that, when δx
and δy are small, those additional two sides take the same form as the vectors a and
b that we have already computed. This shows that we really do have a parallelogram.

Example 4 Let S be the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) (see
figure 8). Calculate n̂ and δS.

The first thing we need to do is to write the surface in the form z = h(x, y). We
know that the triangle is part of a plane, and hence we expect that

z = ax+ by + c. (9)

describes the surface for some set of coefficients a, b and c. How do we find them?
We know that the plane must pass through the points (x, y, z) = (1, 0, 0), (0, 1, 0)
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and (0, 0, 1). Hence these coordinates must satisfy the equation (9). Substituting the
coordinates into (9), we get, for each of these points in turn,

0 = a+ c

0 = b+ c

1 = c

Hence c = 1, a = b = −1 and z = 1− x− y. Therefore

h(x, y) = 1− x− y.

and

∂h

∂x
= −1,

∂h

∂y
= −1,

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

=
√

3

From the formulae above,

n̂ =
k + i + j√

3
,

δS =
√

3δxδy. (10)

Rate of mass transfer
∫
S q · n̂ dS: evaluating q on the surface

and determining limits of integration

Hence we can write the normal component of flux as

q · n̂ =
q ·
[
k− ∂h

∂x
i− ∂h

∂y
j
]

√
1 +

(
∂h
∂x

)2
+
(
∂h
∂y

)2 .
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Multiplying by δS, we get

q · n̂δS =
q ·
[
k− ∂h

∂x
i− ∂h

∂y
j
]

√
1 +

(
∂h
∂x

)2
+
(
∂h
∂y

)2 ·
√

1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

δxδy

= q ·
[
k− ∂h

∂x
i− ∂h

∂y
j

]
δxδy (11)

and so ∫
S

q · n̂ dS =

∫ ∫
q ·
[
k− ∂h

∂x
i− ∂h

∂y
j

]
dy dx.

This last expression shows that we get a reasonably simplified expression for the
integral. In particular, if we are given the flux in component form, q = qxi+qyj+qzk,
then we end up with the simpler-looking double integral∫

S

q · n̂ dS =

∫ ∫ [
qz − qx

∂h

∂x
− qy

∂h

∂y

]
dy dx. (12)

There is an important point here. Remember that qx, qy and qz are functions of x,
y and z. When we sum over the terms q · n̂δS, the normal component of flux q · n̂
must be evaluated on the surface. This means again that z is again not arbitrary, but
must be z = h(x, y).The integrand in (12) therefore becomes∫ ∫ [

qz(x, y, h(x, y))− qx(x, y, h(x, y))
∂h

∂x
− qy(x, y, h(x, y))

∂h

∂y

]
dy dx. (13)

We still need limits of integration. Recall that, as in the case of a flat surface,
we are simply adding over surface elements δS. Equivalently, we are adding over
the projections of these δS’s onto the xy-plane. We chose these projections to be
rectangles with sides parallel to the x- and y-axes, and so we are back to adding
all the rectangles in one column (the y-integral) and then adding all the columns of
rectangles (the x-integral).

In practice, what this means for the limits of integration is tha they are given
by the boundaries of the projection Sxy onto the xy-plane. If Sxy takes the form
indicated for S in figure 4, then the limits of integration are the same as for the flat,
planaer surface case we discussed before. The integral over the cureved surface finally
takes the form∫
S

q·n̂ dS =

∫ xmax

xmin

∫ ymax(x)

ymin(x)

[
qz(x, y, h(x, y))− qx(x, y, h(x, y))

∂h

∂x
− qy(x, y, h(x, y))

∂h

∂y

]
dy dx.

We put this formula into practice next.
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Example 5 Let S be the surface h = 2 − x2 − y2 that lies above the triangle in the
xy-plane with vertices (0, 0), (1, 0) and (0, 1), and let q = xi + yj + zk. Calculate∫
S

q · n̂ dS.
From the information given, we have

∂h

∂x
= −2x,

∂h

∂y
= −2y

while on the surface S, flux is

q = xi + yj + zk = xi + yj + (2− x2 − y2)k.

so qx(x, y, h(x, y)) = x, qy(x, y, h(x, y)) = y and qz(x, y, h(x, y)) = 2−x2− y2. Hence
the integrand in (13) is

−x · (−2x)− y · (−2y) + 2− x2 − y2 = 2 + x2 + y2.

Now for the limits of integration. The projection of S onto the xy-plane is the triangle
with vertices (0, 0), (1, 0) and (0, 1), so the lower boundary is ymin = 0 while the upper
boundary is ymax = 1− x, and the left-hand end-point is at xmin = 0, while the right-
hand edge is xmax = 1 (draw the triangle to see this). So∫

S

q · n̂ dS =

∫ 1

0

[∫ 1−x

0

2 + x2 + y2 dy

]
dx

=

∫ 1

0

[
2y + x2y + y3/3

]1−x
0

dx

=

∫ 1

0

2(1− x) + x2(1− x) + (1− x)3/3 dx

=

∫ 1

0

2− 2x+ x2 − x3 + (1− x)3/3 dx

=
[
2x− x2 + x3/3− x4/4− (1− x)4/12

]1
0

=
7

6

Exercise 6 Let q = yi− xj + zk, and h(x, y) = cos(x) cos(y). Calculate
∫
S

q · n̂ dS,
where S is the part of the surface z = h(x, y) that lies above the square in the xy-plane
for which 0 < x < π/2, 0 < y < π/2.

Exercise 7 What do you think the physical interpretation of
∫
S

1 dS is? Confirm
your answer by evaluating this integral for two triangles, one with vertices (0, 0, 0),
(0, 1, 0), (1, 0, 0), and the other with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and comparing
your answer with the areas of these triangles computed directly from the formula
1/2×base×height.

For q · n = qn = constant, evaluate
∫
S

q · n̂ dS if A is the area of surface S. Why
is this the answer you expect from the definition of flux?
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The orientation of n̂ and surface integrals over closed surfaces

Above, we computed the normal vector n̂ as

n̂+ =
k− ∂h

∂x
i− ∂h

∂y
j√

1 +
(
∂h
∂x

)2
+
(
∂h
∂y

)2 , (14)

where we have introduced the subscript ‘+’ to indicate that the vector points upwards.
Equally possible would have been the unit vector with the opposite direction

n̂− = −n̂+, (15)

which instead points downwards.
As discussed at the start of these notes, using n̂− instead of n̂+ in the rate of

mass transfer calculation
∫
S

q · n̂ dS would simply lead to a change of sign in the
integral. This has the simple physical meaning we discussed before: either choice
of normal vector points from one side of the surface to the other, and the integral∫
S

q · n̂ represents mass transfer in the same direction. For instance, q · n̂+ is the
normal component of flux that points from below the surface z = h(x, y) to above,
and correspondingly

∫
S

q · n̂+ dS is the rate of mass transfer from below the surface
to above. Similarly

∫
S

q · n̂− dS is the rate of mass transfer from above the surface
to below. The choice of which unit normal must be used is therefore given by the
direction of mass transfer that we are interested in.

It often happens that we want to calculate the rate of mass transfer across a closed
surface, as this this tells us the rate at which the mass contained within that surface
changes. A closed surface S is one which fully encloses a volume V . To compute the
rate at which mass leaves the volume V , we have to calculate

∫
S

q · n̂ dS, where n̂ is
the outward-pointing unit normal.

Note 5 For a closed surface, convention states that n̂ always points out of the sur-
face.

A further complication generally arises with closed surfaces: they cannot be rep-
resented as a single surface of the form z = h(x, y). Instead, a closed surface must be
broken into several pieces, for each of which one of the formulae we have developed
can be applied. Of course, there is nothing special about the z-axis, and it may turn
out that one of the pieces of the closed surface has to be represented in the form
y = h(x, z) or x = h(y, z), in which case the roles of x, y and z in the formulae above
must be interchanged accordingly. We illustrate this with an example.

Example 6 Let V be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(0, 0, 1) (figure 9), and let S be its surface, with outward-pointing unit normal n̂. Let
q = (x− y − z)i + (y + x)j + (x+ z)k. Compute

∫
S

q · n̂ dS.
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Figure 9: The volume V in example 6.

The obvious first step is to split S into the faces of the tetrahedron. The slanted
face is the same as in example (4) above. Label this S1. In addition, there are two
vertical faces, one in the xz-plane (facing the viewer in figure 9 and the other in the
yz-plane (obscured in figure 9). Label these S2 and S3, respectively. Lastly, there
is the base of the tetrahedron, in the xy-plane, which we label S4. These faces are
illustrated in figure 10.

The surface integral
∫
S

q · n̂ dS can be found by finding the corresponding surface
integral over each face S1, . . . , S4 and summing:∫

S

q · n̂ dS =
4∑
i=1

∫
Si

q · n̂ dS.

We consider each face in turn.
For S1, we have a surface of the form z = h(x, y) = 1 − x − y, and ∂h/∂x =

∂h/∂y = −1. Moreover, we know that the outward-pointing unit normal is also
upward-pointing, so

n̂ =
k− ∂h

∂x
i− ∂h

∂y
j√

1 +
(
∂h
∂x

)2
+
(
∂h
∂y

)2 =
k + i + j√

3
.

On the surface, with z = 1− x− y, we have q = (2x− 1)i + (y + x)j + (1− y)k, and
so

q · n̂ =
(2x− 1) + (y + x) + (1− y)√

3
=

3x√
3

=
√

3x.
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Moreover, a surface element δS can be written as

δS =

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

δxδy =
√

3δxδy.

Hence
∫
S1

q·n̂ dS =
∫ ∫ √

3x
√

3 dy dx. To get the limits of integration, we have to look
at the projection of S1 onto the xy-plane. This is simply the triangle with vertices at
(0, 0, 0), (1, 0, 0) and (0, 1, 0) (in other words, it is the face S4 in figure 10). Its upper
and lower boundaries can be written as ymin(x) = 0 and ymax(x) = 1−x, respectively,
while its left-hand end is at xmin = 0 and its right-hand end is at xmax = 1. Hence∫

S1

q · n̂ dS =

∫ 1

0

∫ 1−x

0

3x dy dx

=

∫ 1

0

3xy|y=1−x
y=0 dx

=

∫ 1

0

3x− 3x2 dx

=

[
3

2
x2 − x3

]x=1

x=0

=
1

2
.

S2 clearly cannot be written in the form z = h(x, y). However, as it lies in the xz-
plane, it is straightforward to see that δS = δxδz. The outward-pointing unit normal
points in the negative y-direction, and so n̂ = −j. Moreover, we have y = 0 on S2,
so q = (x− z)i + xj + (x+ z)k. Therefore

q · n̂ = −x.

The boundaries of the triangle are at xmin = 0 and xmax = 1, zmin(x) = 0 and
zmax(x) = 1− x, so ∫

S2

q · n̂ dS =

∫ 1

0

∫ 1−x

0

−x dz dx

=

∫ 1

0

−xz|1−x0 dx

=

∫ 1

0

−x(1− x) dx

=

[
−x

2

2
+
x3

3

]1
0

= −1

6
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Similarly, S3 lies in the yz-plane, with δS = δyδz and boundaries at zmin = 0,
zmax = 1− y, ymin = 0 and ymax = 1. Moreover, the outward-pointing unit normal is
n̂ = −i and with x = 0 on S3, we have

q · n̂ = y + z.

Hence ∫
S3

q · n̂ dS =

∫ 1

0

∫ 1−y

0

y + z dz dy

=

∫ 1

0

[
yz +

z2

2

]1−y
0

dy

=

∫ 1

0

y(1− y) +
(1− y)2

2
dy

=

∫ 1

0

1− y2

2
dy

=
1

3

Lastly, S4 is in the xy-plane, with δS = δxδy and outward-pointing unit normal
−k. On S4, z = 0, and so

q · n̂ = −x,

while the boundaries of S4 are xmin = 0, xmax = 1, ymin(x) = 0, ymax(x) = 1 − x.
Hence ∫

S3

q · n̂ dS =

∫ 1

0

∫ 1−x

0

−x dy dx

=

∫ 1

0

−x(1− x) dx

=

[
−x

2

2
+
x3

3

]1
0

= −1

6

Summing all the integrals, we get∫
S

q · n̂ dS =
4∑
i=1

∫
Si

q · n̂ dS =
1

2
− 1

6
+

1

3
− 1

6
=

1

2
.

Exercise 8 Repeat the previous example but with V the tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 0, 1), and S its surface. Show that you still get∫
S

q · n̂ dS = 1/2.
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Figure 11: Mass exchange between two volumes V1 and V2.

Conservation laws

Now we have a way of computing the mass contained in a general volume V , and
the rate at which mass flows through a surface. Can we connect the two? If mass
is conserved, then the rate at which mass in the volume increases must equal the
rate of mass flow in, or equivalently, the negative of the rate at which mass flows out
through the surface of the volume. Therefore, if S is the surface of V and n̂ is an
outward-pointing unit normal to S, then

d

dt

∫
V

ρ dV = −
∫
S

q · n̂ dS,

or in other words,
d

dt

∫
V

ρ dV +

∫
S

q · n̂ dS = 0. (16)

Importantly, the calculation above is not restricted to any particular volume V , but
must hold for any volume and its surface S.

At this point, you might still ask, how does (16) imply mass conservation? The
mass contained in V ,

∫
V
ρ dV , manifestly need not stay constant. The point is not

that the mass of in any particular volume needs to stay the same, just as conservation
of momentum does not mean that the momentum of a billiard ball needs to stay the
same in a collision: instead the total momentum of all billiard balls involved in the
collision needs to stay the constant. The equivalent of this here is the observation
that if mass flows out of one volume V , it must flow into a neighbouring volume.

Suppose you had two adjoining volumes V1 and V2 that together make up a larger
volume V0, with surface S1 and S2, with outward-pointing unit normals n̂1 and n̂2.
Let Si be the surface that S1 and S2 have in common (i.e., along which V1 and V2
meet) and let S0 be the outer surface of V0 (figure 11). Suppose that there is no flow
out of the composite volume V0, so q · n̂ = 0 on S0, but that there can be flow between
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V1 and V2. Then the flow out of V1 is then

− d

dt

∫
V1

ρ dV =

∫
S1

q · n̂1 dS =

∫
Si

q · n̂1 dS,

as there is no flow through the other parts of S1. Similarly, the flow out of V2 is

− d

dt

∫
V1

ρ dV =

∫
S2

q · n̂2 dS =

∫
Si

q · n̂2 dS.

As the total mass in V is ∫
V

ρ dV =

∫
V1

dV +

∫
V2

ρ dV,

we have

d

dt

∫
V

ρ dV =
d

dt

∫
V1

ρ dV +
d

dt

∫
V2

ρ dV

= −
∫
Si

q · n̂1 dS −
∫
Si

q · n̂2 dS

= −
∫
Si

q · [n̂1 + n̂2] dS

But n̂1 and n̂2 are equal and opposite in size, so n̂1 + n̂2 = 0 and
∫
Si

q · [n̂1 + n̂2] = 0.
The flow of mass out of V1 and V2 is equal and opposite, and the total amount of
mass is conserved:

d

dt

∫
V

ρ dV = 0.
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