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Overview

These notes cover the following:

• Densities as quantities defined ‘per unit volume’

• ‘Local’ proportionality revisited: density as a ‘field’

• Volume integrals

• Visualizing scalar fields

Density

Even though mass, and therefore other physically relevant quantites like momentum,
energy, charge etc, are concentrated into particles like molecules that one could model
as being separate at an atomic level or even subatomic level, this is frequently not
a useful approach. In practical applications in geophysics, atmospheric science and
many other areas, this would involve having to keep track of an extremely large
number of particles, and actual computations would become impossible.

The study of continua is a way around this. In a continuum,1 we assume that
mass is spread out in space, rather than concentrated into particles. You can take
this to be the definiton of a continuum in physics. A single point in a continuum
therefore has no mass associated with it, but a finite volume can. To capture this
mathematically, we need a way of describing how mass is distributed in space. The
way to do this is using the idea of density, but reformulated as a field. By ‘field’, we
simply mean a physically-relevant quantity that is a function of position and possibly
of time.

1‘Continua’ is plural of ‘continuum’
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You will know density as ‘mass over volume’,

ρ =
m

V
.

How can we make sense of this when we treat it as a field, so the density ρ(x, y, z, t)
is a function of position? A point (x, y, z) has no mass or volume, so we cannot take
the mass of a point and divide it by the volume of the point.

The reason why we define density as mass over volume is that, for a material with
spatially uniform properties, we expect mass to be proportional to volume: take twice
the volume of iron, and you will get twice the mass, provided you keep temperature,
pressure etc. constant. In other words, we have

m ∝ V

and density ρ is the constant of proportionality.
This works well only for a material with uniform properties, and we are specifically

interested in the case where there may be variations in space as well as time. The
point is that we may expect these properties to change slowly enough in space that
they can be treated as constant if we look at a very small volume. In that case, the
mass δm in such a small volume δV should be proportional to the size of that volume

δm ∝ δV

The constant of proportionality then depends on where that small volume is located,
for instance on the location of its centre (x, y, z): it is a ‘constant’ with respect to the
volume size δV (so long as δV is small) but not with respect to where that volume is
located. Defining the constant of proportionality again as ‘density’, density becomes
a function ρ(x, y, z, t). We can define ρ through

ρ(x, y, z, t) =
mass δm in a small volume δV centered on (x, y, z) at time t

δV
,

or ρ = δm/δV for short.

Note 1 By ‘small volume’, we have to mean not only that the size of the volume is
small, but that it is small in all directions. We have previously had an example of a
volume that had small size but was not small in all directions: if you take a thin slice
but keep the base area of the slice constant, then only the thickness of the slice shrinks
as the size of the volume is made small, while the lateral extent remains the same.
This is not what we mean by ‘small volume’. The simples example of a small volume
of the kind we have in mind would be a cuboid with three short side lengths δx, δy,
δz.
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Volume integrals

If we know the density field ρ(x, y, z, t), how do we go backwards: how do we calculate
the mass M of a body occupying a known volume V ? If V is large, we cannot simply
compute mass as volume times density, since density varies over the volume. However,
if we split the total volume into small pieces or ‘volume elements’ of size δV , then we
can treat the density in each volume element as being approximately constant. This
means we calculate the mass of each piece as

δm ≈ ρδV,

and sum over the masses of all the small pieces that make up the whole volume V :

M ≈
∑
δV

δm ≈
∑
δV

ρδV.

Naturally, we expect the approximation invovled to become better and better as
we make the division of V into small elements δV finer and finer. In other words, we
have something like a Riemann sum, but over small volumes δV rather than over short
intervals δx or δt. In the limit, we denote the Riemann sum as a ‘volume integral’,
written in the form

M =

∫
V

ρ dV,

where the subscript ‘V ’ indicates the volume the integral is taken over.
This is all very well, but we do not have a way of actually computing such an

integral. In standard, one-dimensional integration, we could use the fact that integrals
are inverses of derivatives. We would like to use this idea here, too. To calculate a
volume integral, we adapt the idea of a Riemann sum in one dimension. How we
split V into volume elements δV should not matter so long as all volume elements are
small. However, we can choose shapes for the δV ’s that make the calculation easier.
The simplest and most useful way of splitting V into small bits is into cuboids2 of
side lengths δx× δy × δz (figure 1),

δV = δxδyδz.

The mass M of the body is then the sum of ρδV over all the cuboids contained in the
volume V (again, in the limit of small δx, δy and δz). There will be a small amount
of discrepancy between the volume covered by cuboids and the actual volume V near
the boundary of V , where we may either have cuboids that protrude slightly beyond
V or parts of V that are not fully covered. This will necessarily be the case if the
shape of V does not have flat surfaces. The discrepancy will however get smaller and
smaller as we make size of the cuboids smaller.

2You may know a cuboid as a rectangular prism; the two mean the same thing.
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Figure 1: Breaking V into small cuboids δV .
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To keep track of all the cuboids, we can use indices i, j and k to identify their x-,
y- and z-positions respectively, letting xi, yj and zk be the coordinates of the centre
of the cuboid at the kth level above the base of the vertical column of cuboids with
position i, j in the xy-plane.

To sum, we have to sum over all indices (i, j, k) that correspond to cuboids in the
volume V , ∫

V

ρ dV =
∑
i,j,k

ρ(xi, yj, zk)δxδyδz.

When taking a sum over multiple indices, the order of summing does not matter. We
can therefore sum over k first, then over j and finally over i,∫

V

ρ dV =
∑
i

{∑
j

[∑
k

ρ(xi, yj, zk)δz

]
δy

}
δx.

Of course, as δz → 0, the sum over k is the sum over cuboids in the (i, j)th vertical
column, where we can treat i and j temporarily as constants. This sum turns into
an integral over z: ∑

k

ρ(xi, yj, zk)δz →
∫
ρ(xi, yj, z) dz.

As we just stated, the sum is formed with i and j treated as constants, so the integral
over z is take, with xi and yj treated as constants.

Next, the sum over j is then the sum over a row of such columns with fixed i, and
turns into an integral over y taken at constant xi, so

∑
j

[∑
k

ρ(xi, yj, zk)δz

]
δy →

∫ [∫
ρ(xi, y, z) dz

]
dy.

Here, the integral with respect to z is computed first, treating y as well as xi as
constants. Subsequently, the integral with respect to y is computed, treating xi as
constant.

Lastly the sum over i is finally the sum over all thee rows of vertical columns, and
turns into an integral over x, so∫

ρ dV =
∑
i

{∑
j

[∑
k

ρ(xi, yj, zk)δz

]
δy

}
δx

→
∫ {∫ [∫

ρ(x, y, z) dz

]
dy

}
dx

As in the sum over indices i, j, k,, the integral with respect to z is computed first,
treating y as well as x as constants, then the integral with respect to y is computed,

5



treating x as constant, and lastly, the integral with respect to x is calculated. For
obvious reasons, the integral over x, y and z is also known as a triple integral.

Importantly, the volume V occupies a finite and prescribed portion of space, so
the Riemann sums above turn into definite integrals : for each index (i, j and k) we
sum only over those cubes δV that lie within the volume V (see figure 1). The hard
part is therefore often to figure out what limits to use.

Example 1 Let ρ = 1+x2 +y2 +z2, and let V be the unit cube, for which 0 < x < 1,
0 < y < 1, 0 < z < 1. Compute

∫
V
ρ dV .

In this case, the limits of integration are clear as each coordinate ranges from 0
to 1. Computing each integral in turn,∫

V

ρ dV =

∫ 1

0

{∫ 1

0

[∫ 1

0

1 + x2 + y2 + z2 dz

]
dy

}
dx

=

∫ 1

0

{∫ 1

0

[
z + x2z + y2z + z3/3

]z=1

z=0
dy

}
dz

=

∫ 1

0

{∫ 1

0

4/3 + x2 + y2 dy

}
dx

=

∫ 1

0

[
4y/3 + x2y + y3/3

]y=1

y=0
dx

=

∫ 1

0

5/3 + x2 dx

= 2

The tricky issue is therefore the question of limits of integration for irregularly-
shaped bodies. We consider only a body that has a single upper surface of the form
z = hmax(x, y), and a lower surface z = hmin(x, y) (figure 1). Let Vxy be the projection
of this body onto the xy-plane, and assume that this projection has an upper boundary
in the xy-plane of the form y = ymax(x), a lower boundary y = ymin(x), a left-hand
edge at x = xmin and a right-hand edge at x = xmax.

Note 2 This way of specifying the shape of the body is the same as saying that a
point (x, y, z) lies inside the body if xmin < x < xmax, ymin(x) < y < ymax(x),
hmin(x, y) < z < hmax(z, y).

There are more complicated bodies that cannot be put in this form. There may, for
instance, be more than one upper and lower surface — think of a piece of swiss cheese
with holes in the inside to picture this. If you need to deal with such a body, you can
generally split that body (effectively, by cutting it) into simpler ones that conform to
our requirements.

Note 3 By ‘projection’, we mean the set of points (x, y) in the xy-plane that has at
least some part of the body above it. In other words, a point (x, y) is in Vxy if there is
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a corresponding point (x, y, z) with the same x- and y-coordinates that lies inside the
volume V . You can think of Vxy physically as the shadow the volume V would cast on
the xy-plane when illuminated from far away by a very sharp light source positioned
vertically above V .

The limits here come once more from viewing the integrals as sums. When taking
the sum over k at fixed i and j, we are summing from the bottom of a vertical
column to the top. This means that the range of k will depend on xi and yj, as zk
must lie between hmin(xi, yj) and hmax(xi, yj). In other words, when taking the limit
δz → 0, the integral is from z = hmin(xi, yj) to hmax(xi, yj). The next sum, over j,
must capture all the columns in a row at fixed i, that is, the integral must range
from ymin(xi) to ymax(xi). Lastly, the sum over i must go over all these rows, and the
x-integral must therefore range from xmin to xmax (figure 1). Hence∫

V

ρ dV =

∫ xmax

xmin

[∫ ymax(x)

ymin(x)

(∫ hmax(x,y)

hmin(x,y)

ρ(x, y, z) dz

)
dy

]
dx. (1)

We give an example of how to use this formula next, but before we do, it is worth
re-iterating several points

1. When the volume integral is written in the form above, you have to do the
‘innermost’ integral in round brackets first. This is the integral with respect to
z. When computing that integral, you have to treat x and y as constants

2. Next, you have to apply the limits to that integral. These are limits in z
(meaning, you apply the limits z = hmin(x, y) and z = max(x, y) to the integral
you have just done. Obviously, the limits can depend on x and y, just as ρ
does. Again, you have to treat x and y as constants at this stage. If, after
applying the limits, the expression you obtain still contains the variable z, you
have made a mistake.

3. Completing the previous two steps should therefore have turned the integral in
the round brackets into a function of x and y only. The next step is to compute
the integral of that function with respect to y, treating x as constant. In other
words, you can now compute the integral in the squared brackets, having figured
out what the integrand is through the previous two steps.

4. Next, apply the limits, which can again depend on x, and you again treat x as
a constant.

5. Taking the last two steps should turn the integral in square brackets into a
function of x only. If the variable y still features, you have made a mistake.
The next step is to compute the outermost integral with respect to x and apply
the limits. The answer you get should not contain x, y or z
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Figure 2: The volume V in example 2. (Ignore the vectors labelled n for now.)

Note 4 There is of course nothing magic about the x-, y and z-directions, and the
strict order in which you have to do the integrals above is dictated only by the way in
which we have decided to specify the surface of the volume V . What we have done is to
say that V consists of points (x, y, z) that satisfy the requirement that x lies between the
left- and right-hand ends of the projection of V onto the xy-plane, xmin < x < xmax, y
lies between the top and bottom boundaries of the projection y ymin(x) < y < ymax(x),
and z lies between an upper and a lower boundary, hmin(x, y) < z < hmax(x, y).

Suppose we wanted to work instead with the projection of V onto the yz plane
and define the surface through a left-hand and right-hand boundary. In that case, we
would have to say that y lies between the front and back ends of the projection, ŷmin <
y < ŷmax, z lies between the top and bottom boundaries of the projection, ẑmin(y) <
z < ẑmax(y), and x between the left-hand and right-hand boundaries, ĥmin(y, z) < x <
ĥmax(y, z). The hats on ymin, ymax etc. are just supposed to indicate that they are
not the same as when we define V with the upper and lower boundary hmin(x, y) and
hmax(x, y): for instance, the functions hmin(x, y) and ĥmin(y, z) are not in general the
same.

If we use the projection of V onto the yz plane and the left- and right-hand bound-
ary of the volume as described above, write down the volume integral

∫
V
ρ dV as a

triple integral analogous to (1). What is different? Which variable would you inte-
grate with respect to first, second and third?

Example 2 Let V be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(0, 0, 1) (figure 2), and let ρ = x+ y + z. Compute

∫
V
ρ dV .

From the diagram, we have hmin(x, y) = 0, ymin(x) = 0, xmin = 0, xmax = 1. We
still need to find ymax(x) and hmax(x, y).
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Let us find ymax(x) first. Clearly, this is the straight line connecting the vertices
(0, 1, 0) to (1, 0, 0). Let us write this in the form y = ax+b. If the line passes through
(0, 1, 0) then y = 1 when x = 0, so 1 = a × 0 + b, or b = 1. Similarly, y = 0 when
x = 1 if the line passes through (1, 0, 0), so 0 = a× 1 + b, or a = −b = −1. Hence

ymax = 1− x.

Next, we need to write the slanted upper surface in the form z = hmax(x, y). This
works the same way as above. We know that the triangle is part of a plane, and hence
we expect that

z = ax+ by + c. (2)

describes the surface for some set of coefficients a, b and c (with a and b potentially
different from above). How do we find them? We know that the plane must pass
through the points (x, y, z) = (1, 0, 0), (0, 1, 0) and (0, 0, 1). Hence these coordinates
must satisfy the equation (2). Substituting the coordinates into (2), we get, for each
of these points in turn,

0 = a+ c

0 = b+ c

1 = c

Hence c = 1, a = b = −1 and z = 1− x− y. Therefore

hmax(x, y) = 1− x− y.

This allows us to write∫
V

ρ dV =

∫ 1

0

[∫ 1−x

0

(∫ 1−x−y

0

(x+ y + z) dz

)
dy

]
dx.

But we have already stated that we will take the z-integral first, treating x and y as
constant. This is done at follows:∫ 1−x−y

0

(x+ y + z) dz =
[
xz + yz + z2/2

]z=1−x−y
z=0

= x(1− x− y) + y(1− x− y) + (1− x− y)2/2

Note that when computing the integral with respect to z we treat x and y as constants
not only in the integrand, but also in the limits. Once we have completely computed the
integral with respect to z, including applying the limits, we compute the integral with
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respect to y, treating x as constant. Last, the integral with respect to x is computed:∫
V

ρ dV =

∫ 1

0

[∫ 1−x

0

(
x(1− x− y) + y(1− x− y) + (1− x− y)2/2

)
dy

]
dx

=

∫ 1

0

[
x(1− x)y − xy2/2 + (1− x)y2/2− y3/3− (1− x− y)3/6

]y=1−x
y=0

dx

=

∫ 1

0

x(1− x)− x/2 + (1− x)/2 + (1− x)3/6 dx

=

∫ 1

0

[
1/2− x2 + (1− x)3/6

]
dx

=
[
x/2− x3/3− (1− x)4/24

]1
0

= 1/8

Exercise 1 Let V be a cuboid with rectangular base area A in the xy-plane and height
h. Let density ρ be a function of height z only. Show that

∫
V
ρ dV = A

∫ h
0
ρ(z) dz.

Exercise 2 Let V be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0) and
(0, 0, 1). Let ρ = 1 + xy + z. Compute the mass of the body.

Exercise 3 What do you think the physical meaning of the integral
∫
V

1 dV is? Con-
firm your answer by computing this integral for the tetrahedron V in the previous ex-
ercise, and compare that answer with the volume of the tetrahedron given by 1/3×base
area×height.

If ρ = ρ0 = constant, evaluate
∫
V
ρ dV , if V also denotes the volume of the body

V . (Comment?)

Density re-visited and generalized

You will have seen the analogy between density and velocity: both are constants of
proportionality, one linking volume and mass, the other time and displacement. Both
need to be defined locally : δm = ρδV and δx = vδt only work when δV and δt are
small.

For large volumes, we instead have

M =

∫
V

ρ dV,

just as for large time intervals, we have

D = x(t2)− x(t1) =

∫ t2

t1

v(t) dt.
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If we take mass over volume, we get a mean density

ρ̄ =
M

V
=

∫
V
ρ dV

V
,

but this is value depends on the particular shape of the volume V and does not give
any information about the local density at a point (x, y, z). Similarly, the definition
of velocity as distance over time gives a mean velocity — but not velocity at any
instant in time:

v̄ =
x(t2)− x(t1)

t2 − t1
.

This can also be written in terms of an integral over the instantaneous velocity,

v̄ =

∫ t2
t1
v(t) dt

t2 − t1
,

but really gives a mean velocity over the interval from t1 to t2
A better way to think of the density field ρ(x, y, z) than as mass over volume is

as a measure of how concentrated mass is near a point (x, y, z), which comes from
the idea tha the mass δm of a small volume δV is related to that volume through
δm = ρδV . Similarly, velocity v(t) is the rate of change of distance with respect to
time, which comes from the idea that a displacement δx is related to time elapsed
through δx = v(t)δt.

There are other quantities that are similar to density. For instance, the concentra-
tion of a chemical measured in moles per cubic metre, the heat content of a substance,
measured in Joules per cubic metre, or charge density, measured in Coulombs per cu-
bic metre. All of these quantities have in common that they measure some physical
entity ‘per unit volume’, and their definitions make sense because, like mass, we ex-
pect chemical content, heat content or charge content to be proportional to volume,
again provided the volume involved is small.

The theory developed above can also be applied to these other densities. For
instance, we would define a chemical concentration field c(x, y, z) in terms of the the
number of moles δn in a small volume δV around the point (x, y, z),

c(x, y, z) =
δn

δV
.

Following the same steps as above, it is then clear that the number of moles N of the
chemical in some fixed volume V is given by

N =

∫
V

c dV.

Similarly, if q(x, y, z) is the charge density field, the total charge Q in a given volume
V is

Q =

∫
V

q dV.
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Because of this analogy, it makes sense to use the word ‘density’ to describe the
concentration of some physical quantity in space, even if that quantity is not mass.
In that case, depending on context, it may be worth referring to the original density
as ‘mass density’.

One important aspect of the densities we have mentioned above is that they are
associated with conserved quantites, like mass, energy and charge. We need to know
how conservation of these quantities constrains the way in which the densities can
evolve in time or vary in space, and for this, we need to understand what a surface
integral is.

Note 5 Heat and amount of a particular chemical species are not by themselves con-
served, but they also cannot be created or destroyed at will. To create heat — or
internal energy to those familiar with thermodynamics, where ‘heat’ has a somewhat
more specific meaning — requires another form of energy to be converted into heat.
To create or destroy a chemical species requires the the destruction or creation of
another chemical.

Visualizing scalar fields

Density ρ(x, y, z, t) is a ‘field’: a function of position and possibly of time. Density
is also a scalar, so we call it a ‘scalar field’. This can be contrasted for instance with
velocity v, which is a vector that may also depend on position and time. More on
that later in the course.

To make sense of what a scalar field ‘looks’ like, we need a way of visualizing it.
For an ordinary function of one variable, visualizing is relatively easy. If we have a
function y = f(x), we end up plotting y against x as a curve. This becomes harder
when something is a function of two variables. z = f(x, y) must be represented as a
surface above the xy-plane. There is no extension of this to higher dimensions: we
cannot plot ρ(x, y, z) as the equivalent of a curve or surface.

A more common way to visualize a function even of two variables than plotting a
surface — which is hard to do by hand —is to plot contours. If the function is given
by f(x, y), this means we plot a number of curves along which f is constant. In other
words, we plot the sets of points (x, y) given by

f(x, y) = Ci

where the constant Ci is the ith contour level. Typically, a constant contour interval
∆C is used, so C2 − C1 = C3 − C2 = Ci − Ci−1 = ∆C is constant.

Note 6 A contour is also known as an isoline or as a level set. The concept can
be extended to higher dimensions. We can define isosurfaces of a function of three
variables. These would be the sets of points for which

f(x, y, z) = Ci.
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Sometimes, the easiest way to plot contours involves solving f(x, y) = Ci for either
x or y as a function of x, and using the sketching techniques we developed previously.

Example 3 Let f(x, y) = x2 − y2. Suppose we want to plot contours of f with
constant contour intervals, including the f = 0 contour as well as contours with
negative and positive contour levels, if they exist.

We are looking for contours defined through

x2 − y2 = C

The easiest thing to do seems to be to solve for y:

y = ±
√
x2 − C

It is essential that have the ‘±’ sign here, otherwise we will get only have the con-
tours. Of course, the ± means that each contour above the x-axis has a mirror image
counterpart below x-axis, with the same contour level. We can therefore look at the
+ case only, and fill in the mirror image contours afterwards. We therefore look only
at

y =
√
x2 − C.

What do these curves look like?
The easiest case is C = 0, in which case y = ±x. We get two straight lines through

the origin, inclined at ±45◦ to the coordinate axes. For C 6= 0, we can work through
the list of steps needed to plot curves,

First, look at intercepts. The y-intercept is at x = 0, We can solve for y in
that case only if C < 0, in which case we get y =

√
−C =

√
|C|. An x-intercept

corresponds to y = 0, or x =
√
C This exists only if C > 0. This suggests we should

treat the C < 0 and C > 0 cases separately.
Let us look at C < 0 first, so negative contours. We do have a y-intercept at

√
C,

and no x-intercept. There are no singularities, as y is defined for every x. To find
asymptotes, note that as x → ∞, x2 becomes much larger than whatever the fixed
contour level C is, so

√
x2 − C ≈

√
x2 = |x|. The asymptotes are therefore y = |x|,

regardless of the contour level C.
Next, we need to look at maxima or minima. We have

dy

dx
=

x√
x2 − C

.

This is zero when x = 0, so we have a stationary point there. This also happens to
be the y-intercept.
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We could also show that

d2y

dx2
=

[
1√

x2 − C
− x2

(x2 − C)3/2

]
=

[
x2 − C

(x2 − C)3/2
− x2

(x2 − C)3/2

]
=

[
− C

(x2 − C)3/2

]
with C < 0, this is positive and we have a local minimum. This would also have been
obvious if we had looked at the fact that we have only one stationary point, and the
cure asymptotes to y = +|x|.

We can now plot a single contour. We should note that the curve y =
√
x2 − C is

symmetric about the y-axis, because x and −x correspond to the same value of y.
As we change the contour level C, the interesting question is how the contour

changes. Each will still have a minimum at the y-intercept x = 0 and be symmetric
about the y-axis. Each contour also still asymptotes to the same straight line y = |x|,
which happens to be the C = 0 contour. The only thing that changes is that the y-
intercept moves up as we change C, with y =

√
|C|. The y-intercept therefore does

not change proportionally to C; for small C, the jump in y-intercept between adjacent
contours is larger than for large C. The picture that emerges is show in figure 3.

We still have to deal with C > 0, and eventually fill in the mirror image contours
below the x-axis. The latter is trivial to do. To do the former, we could go through
the entire procedure above again. It is however simpler to use symmetry again. The
function f(x, y) = x2 − y2 is antisymmetric under changes of x and y: For instance
f(2, 1) = 22 − 12 = 3 while f(1, 2) = 12 − 22 = −3 = −f(2, 1). More generally
f(y, x) = −f(x, y). Note that the point (y, x) is the mirror image of the point (x, y)
about the line y = x (which passes through the origin and lies at 45◦) This means
that, if a point (x, y) lies on a contour for some value of C, then its mirror image
(y, x) lies on the −C contour. If we know contours above that line, we can fill in the
contours below that line simply by reflection. The same is true for reflection about
the line y = −x: we also have f(y, x)− f(−x,−y).

The full contour plot therefore looks as in figure 4.

Exercise 4 Sketch constant interval contours for the following functions, including
the f = 0 contour. Be sure to include contours for f negative and positive, if they
exist.

1. f(x, y) = x2 + y

2. f(x, y) = x2 + 2xy − y2

3. f(x, y) = xy + x2
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Figure 3: The contours given by y = +
√
x2 − C with C ≤ 0. These contours have

negative (or zero) contour levels.

In some cases, it is easier not to solve for y as a function of x or x as a function
of y. This is often the case when there is for instance rotational symmetry, as is the
case when functions f(x, y) depend on x and y only through r =

√
x2 + y2. r is the

distance from a point (x, y) to the origin, and if f depends only on r, we immediately
know that contours are circles. The only question that arises then is what the contour
spacing looks like.

Exercise 5 Sletch constant interval contours for the following functions

1. f(x, y) = x2 + y2

2. f(x, y) = exp(−x2 − y2)
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Figure 4: Contours of f(x, y) = x2 − y2. Positive values of f are found along the
x-axis, negative values along the y-axis. If this were an elevation map, the origin
would be a saddle, valleys would lie to the ’north’ and ’south’ with mountain ridges
to the ‘east’ and ‘west’.

16



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

xy

f(
x
,y

)

Figure 5: As we are dealing with a function of two variables, we can also plot the
surface given by f(x, y) = x2 − y2. This is however much harder to do by hand.
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