Calculus and differential equations: EOSC 352

due 16th January, 2024

1. Calculate the gradient of the following scalar fields:
(a)

$$
\phi(x, y, z)=y \cos (x)+x \cos (y)
$$

(b)

$$
\phi(x, y, z)=x^{2}-y^{2}
$$

2. Compute the divergence of the following vector fields:
(a)

$$
\mathbf{q}(x, y, z)=(x+y) \mathbf{i}+(x-y) \mathbf{j}+z \mathbf{k}
$$

(b)

$$
\mathbf{q}(x, y, z)=-\left(x^{2}+y^{2}\right) y \mathbf{i}+\left(x^{2}+y^{2}\right) x \mathbf{j}
$$

3. Let

$$
\Phi(x, y, z)=x \exp (x) \cos (y)-y \exp (x) \sin (y)
$$

Calculate $\nabla^{2} \Phi$.
4. Let $\rho=\sin (x) \cos (y)$. Compute $\int_{V} \rho \mathrm{~d} V$, if V is the triangular prism given by $0<x<1-y, 0<y<1,0<z<1$.
5. Compute the integral $\int_{S} \mathbf{q} \cdot \hat{\mathbf{n}} \mathrm{~d} S$, where S is the part of the surface $z=2-x^{2}-y^{2}$ that lies above the triangle $0<y<1,-y<x<y, \hat{\mathbf{n}}$ is the upward-pointing unit normal to the surface, and

$$
\mathbf{q}(x, y, z)=x \mathbf{i}+y \mathbf{j}-z \mathbf{k}
$$

6. Let

$$
\mathbf{q}=x^{2} \mathbf{i}+y^{2} \mathbf{j}-2 z x \mathbf{k}
$$

and let S be the surface of the unit cube $(0<x<1,0<y<1,0<z<1)$, with $\hat{\mathbf{n}}$ its outward-pointing unit normal. Calculate

$$
\int_{S} \mathbf{q} \cdot \hat{\mathbf{n}} \mathrm{~d} S
$$

7. Let

$$
\frac{\mathrm{d} N}{\mathrm{~d} T}=\lambda N\left(N_{c}-N\right)
$$

with λ and N_{c} constant. Define $n=\alpha N, t=\beta T$ with α, β constant. Substitute for N and T, using the chain rule to convert the derivative with respect to T into a derivative with respect to t. Find α and β such that the resulting equation for n as a function of t takes the form.

$$
\frac{\mathrm{d} n}{\mathrm{~d} t}=n(1-n)
$$

Let the initial condition be $n(0)=n_{0}$. Find $n(t)$. You can use the fact that

$$
\frac{1}{n}+\frac{1}{1-n}=\frac{1}{n(1-n)}
$$

8. Find a general solution to

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0 .
$$

