
Final: EOSC 352

8 December, 2010

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.
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1. Consider one-dimensional heat conduction forced by an oscillating surface tem-
perature. Also assume that heat flux tends to zero at infinity

ρcp
∂T

∂t
− k∂

2T

∂x2
= 0 for 0 < x (1a)

T = T0 cos(ωt) at x = 0 (1b)

−k∂T
∂x
→ 0 as x→∞ (1c)

ρ, cp and k are constants.

(a) (4 points) Let
T (x, t) = Re [T0 exp(iωt+ λx)]

Substitute this into (1a). Derive and solve an equation for λ so that (1a) is
satisfied.
ANS: We have

∂

∂t
Re [T0 exp(iωt+ λx)] = Re [iωT0 exp(iωt+ λx)]

and

∂

∂x
Re [T0 exp(iωt+ λx)] = Re [λT0 exp(iωt+ λx)]

∂2

∂x2
Re [T0 exp(iωt+ λx)] = Re

[
λ2T0 exp(iωt+ λx)

]
Substituting into the heat equation,

Re
[
(ρcpiω − kλ2)T0 exp(iωt+ λx)

]
= 0

This is satisfied if ρcpiω − kλ2 = 0, or

λ =
√
i

√
ρcpω

k
= ±(1 + i)

2

√
ρcpω

k
.

(b) (1 point) You should have two possible values for λ. Which one allows (1c)
to be satisfied?
ANS: When taking the real part, we get an exponential function behaving
as exp(Reλx). This must not blow up as x→∞, so the real part of λ must
be negative.

λ = −(1 + i)

√
ρcpω

2k
.

(c) (2 points) Take the real part in T (x, t) = Re[T0 exp(iωt + λx)] to find an
expression for T that does not involve i.

T (x, t) = T0 exp

(
−
√
ρcpω

2k
x

)
cos

(
ωt−

√
ρcpω

2k
x

)
.
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(d) (3 points) Without resorting to complex numbers, compute ∂T/∂t and ∂2T/∂x2

for the expression you have obtained (this will require the product rule).
Check that the heat equation is indeed satisfied.
ANS: With the above,

∂T

∂t
= −ωT0 exp

(
−
√
ρcpω

2k
x

)
sin

(
ωt−

√
ρcpω

2k
x

)
,

as well as, by the product rule

∂T

∂x
=−

√
ρcpω

2k
T0 exp

(
−
√
ρcpω

2k
x

)
cos

(
ωt−

√
ρcpω

2k
x

)
+

√
ρcpω

2k
T0 exp

(
−
√
ρcpω

2k
x

)
sin

(
ωt−

√
ρcpω

2k
x

)
,

∂2T

∂x2
=
ρcpω

2k
T0 exp

(
−
√
ρcpω

2k
x

)
cos

(
ωt−

√
ρcpω

2k
x

)
+ 2

ρcpω

2k
T0 exp

(
−
√
ρcpω

2k
x

)
sin

(
ωt−

√
ρcpω

2k
x

)
− ρcpω

2k
T0 exp

(
−
√
ρcpω

2k
x

)
cos

(
ωt−

√
ρcpω

2k
x

)
=
ρcpω

k
T0 exp

(
−
√
ρcpω

2k
x

)
sin

(
ωt−

√
ρcpω

2k
x

)
Hence

ρcp
∂T

∂t
− k∂

2T

∂x2
=ρcpωT0 exp

(
−
√
ρcpω

2k
x

)
sin

(
ωt−

√
ρcpω

2k
x

)
− k × ρcpω

k
T0 exp

(
−
√
ρcpω

2k
x

)
sin

(
ωt−

√
ρcpω

2k
x

)
=0.
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2. This question is about the heat equation with advection in steady state, mass
conservation and scaling.

(a) (1 point) From your equation sheet, write down the heat equation with ad-
vection, assuming a steady state.
ANS:

ρcpu · ∇T −∇ · (k∇T ) = 0.

(b) (1 point) Near the centre of an ice sheet, a possible velocity field is

u(x, z) = ax/hi− az/hk (2)

where h is ice thickness and a is the rate at which ice accumulates at the
surface (units of velocity). Assume a and h to be constant. Assuming ice
to be incompressible, show that this velocity field ensures mass conservation
(again consult your equation sheet for the equation for mass conservation).
ANS: Conservation of mass says

∂ρ

∂t
+∇ · (ρu) = 0

If ice is incompressible, then ρ is constant. The equation becomes

∇ · u = 0.

In the present case, we have

∇ · u =
∂

∂x

(ax
h

)
+

∂

∂z

(
−az
h

)
=
a

h
− a

h
= 0

as required.

(c) (2 points) Assume that temperature T depends only on elevation z above
the base of the ice sheet. Show that

−ρcpaz
h

dT

dz
− kd2T

dz2
= 0. (3)

If T = T (z), then ∇T = dT/ dzk, ∇ · (k∇T )−−k d2T/ dz2, assuming k to
be constant. Also

u · ∇T =
(ax
h
i− az

h
k
)
· dT

dz
k = −az

h

dT

dz
.

Substituting gives

−ρcpaz
h

dT

dz
− kd2T

dz2
= 0.
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(d) (5 points) Assume prescribed temperatures at the base of the ice, z = 0,
and the surface, z = h:

T = 0 at z = 0 (4a)

T = −Ts at z = h. (4b)

(These apply if the base of the ice is at the melting point, taken to be
zero, while the surface is at some colder temperature −Ts < 0.) Define
dimensionless variables

z = [z]z∗, T = [T ]T ∗

and substitute these into (3) and (4). Choose your scales such that the scaled
equations become

−Pez
∗dT

∗

dz∗
− d2T ∗

dz∗2
= 0 for 0 < z∗ < 1

T ∗ = 0 at z∗ = 0

T ∗ = −1 at z∗ = 1.

How does the Péclet number Pe relate to a, h, ρ, cp and k?
Substituting in the heat equation, we have

−ρcpa[z]z∗

h

[T ]

[z]

dT ∗

dz∗
− k [T ]

[z]2
d2T∗
dz∗2

= 0.

Rearranging,
ρcpa[z]2

kh
z∗

dT ∗

dz∗
− d2T ∗

dz∗2
= 0

which is of the correct form if

Pe =
ρcpa[z]2

kh
.

We don’t know [z] or [T ] yet, however. Substitute into the boundary condi-
tions at z = 0:

[T ]T ∗ = 0 at [z]z∗ = 0.

Rearranging (divide by [T ] and [z], respectively), this becomes

T ∗ = 0 at z∗ = 0

as required. Lastly, the boundary condition at z = 1 becomes

[T ]T ∗ = −Ts at [z]z∗ = h.
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Rearranging,

T ∗ = − Ts
[T ]

at z∗ =
h

[z]
.

This is of the required form if

Ts
[T ]

= 1,
h

[z]
= 1.

Hence [T ] = T2, [z] = h.

(e) (1 point) If a = 1 m year−1, h = 3000 m, ρ = 900 kg, cp = 2×103 J kg−1 K−1,
k = 2.2 W m−1 K−1, give a value for Pe (1 year = 365 × 24 × 3600 s). Is
advection important in ice sheets?
Convert u to SI units: a = 4.4× 10−8 m s−1. We have

Pe =
ρcpa[z]2

kh
= Pe =

ρcpah

k
= 77.83.

(actually, 2 significant figures would be plenty here. . . )
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3. Solve

−PezT
′(z)− T ′′(z) = 0 for 0 < z < 1 (5a)

T = 0 at z = 0 (5b)

T = −1 at z = 1. (5c)

by separation of variables:

(a) (3 points) Separating variables, show that

T ′(z) = C exp

(
−Pe

2
z2
)

(Recall that T ′ = dT/ dz, T ′′ = dT ′/ dz.)
ANS: We get

−Pez =
1

T ′
dT ′

dz
.

Integrating both sides

−Pe

2
z2 +K = log(T ′).

Exponentiate and define C = exp(K):

T ′(z) = C exp

(
−Pe

2
z2
)
.

(b) (4 points) The error function is defined as

erf(x) =
2√
π

∫ x

0

exp(−x′2) dx′.

Note that this implies erf(0) = 0. Show that

T (z) = C

√
π

2Pe

erf

(√
Pe

2
z

)
.

Which boundary condition does this automatically satisfy?
Integrate again from z = 0:∫ z

0

T ′(z′) dz′ = T (z)− T (0) = C

∫ z

0

exp

(
−Pe

2
z′

2

)
dz′.

Change variables on the right to u =
√
Pe/2z

′, du =
√
Pe/2 dz′. Then∫ z

0

exp

(
−Pe

2
z′

2

)
dz′ =

√
2

Pe

∫ √Pe/2z

0

exp(−u2) du

=

√
2

Pe

√
π

2

2√
π

∫ √Pe/2z

0

exp(−u2) du

=

√
π

2Pe

erf

(√
Pe

2
z

)
.
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Substituting and rearranging

T (z) = T (0) + C

√
π

2Pe

erf

(√
Pe

2
z

)
.

But T (0) = 0, so the desired result follows. (This is the boundary condition
at z = 0.)

(c) (2 points) The constant of integration C still needs to be determined. Use
the boundary condition you have not yet used to show that

C = −
√

2Pe

π

1

erf
(√

Pe

2

)
In general, the right-hand side needs to be evaluated numerically. However,
erf(x) tends to unity very rapidly as x→∞: For x > 4, erf(x) ≈ 1 to within
an error of 10−7. Find an approximate value of C when Pe > 32, and write
down the solution for T (z) not involving the constant of integration C.
ANS: We need to have T (1) = −1. Substituting z = 1,

T (1) = C

√
π

2Pe

erf

(√
Pe

2

)
= −1.

Rearranging gives the desired result. For Pe > 32,
√
Pe/2 > 4, and erf(

√
Pe/2) ≈

1 to within an error of 10−7, so we can put

C ≈
√

2Pe

π
.

The solution T (z) is then

T (z) = −erf

(√
Pe

2
z

)
.

(d) (1 point) You are given erf(1.163) = 0.9. For the parameter values given
in question 2(e), how far above the bed do I have to go (in metres) to find
temperatures within 10 % of −Ts?
ANS: This happens when T (z) is within 10 % of -1, i.e. when erf(

√
Pe/2z) >

0.9, so z > 1.163×
√

2/Pe. With Pe = 77.83, this is z > 0.1864. But z is in
units of [z] = h = 3000 m, so corresponds to 0.1864× 3000 m = 560 m.
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4. You are given a slanted triangular surface S with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

(a) (2 points) Your are given a constant heat flux

q = (1, 2, 3)

What is the rate at which heat passes from above S to below (this rate has
dimensions of energy over time)?
ANS: Normally, this is done through an integral

∫
S
q · n̂ dS. You can do that

integral by brute force, see the EOS 250 notes on surface integrals. Here q
and n̂ are constant, so we can express this as

Sq · n̂

We still need S and n̂. The latter is easy to find by symmetry,

n̂ = −(1, 1, 1)√
3

.

(Note that it points from above to below, hence the negative sign.) To find
S, note that the surface is an equilateral triangle with side length

√
2. The

area of a triangle is one half base times height. For an equilateral triangle,
height = base times cosine of 60◦. The base length is

√
2 ans the cosine of

60◦ is
√

3/2 so

S =
1

2
×
√

2×
√

2

√
3

2
=

√
3

2
.

Then

Sq · n̂ = −
√

3

2
(1, 2, 3) · (1, 1, 1)/

√
3 = −3.

(b) (3 points) You have a stress tensor σij given in matrix form by 1 1 0
1 0 1
0 1 0


What is the force exerted by the material above S on the material below S?
The answer in general is again a surface integral

√
Sσijnj dS, where nj points

away from the material the force is exerted on.We can write this as Sσijnj

for the same reasons as before, only that now n̂ points up,

n̂ =
(1, 1, 1)√

3
.
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You can either recognize σijnj =
∑3

j=1 σijnj as the product of the matrix σ
and the column vector n, or work your way through the indices i = 1, 2, 3
and do the sum separately. The answer is

Sσijnj dS =

√
3

2

 1 1 0
1 0 1
0 1 0

 1
1
1

 /
√

3

=

 1
1
1
2


(c) (1 point) Why is this matrix not a stress tensor: 1 1 0

1 0 0
0 1 0


ANS: The matrix is not symmetric, i.e., we do not have σij = σji.

(d) (4 points) Let ρ = 1 and u = (x1, x2, x3). Compute the momentum con-
tained in the volume bounded by S and the planes x1 = 0, x2 = 0 and
x3 = 0.
ANS: This time you do have to do a volume integral,

pi =

∫
V

ρui dV.

By symmetry (the velocity field is symmetric under changes in the xi’s,
as is the volume), we only have to do the calculation for one momentum
component, however. So let’s pick i = 1:

p1 =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

x1 dx3 dx2 dx1

=

∫ 1

0

∫ 1−x1

0

x1(1− x1 − x2) dx2 dx1

=

∫ 1

0

[
x1(1− x1)x2 − x1

x22
2

]1−x1

0

dx1

=

∫ 1

0

x1(1− x1)2 − x1
(1− x1)2

2
dx1

=

∫ 1

0

x1
(1− x1)2

2
dx1

=

[
x1

(1− x1)3

6

]1
0

−
∫ 1

0

(1− x1)3

6
dx1

=
1

24
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The total momentum is
(1, 1, 1)

24
.
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