
Final: EOSC 352

21 April, 2011

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.
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1. Consider one-dimensional heat conduction between two half-spaces that are ini-
tially at uniform but different temperatures. There is no heat flow ‘at infinity’,
i,e., coming in from long distances from the contact between the two half-spaces
at x = 0. In non-dimensional form, this situation can be described by

∂T

∂t
− ∂2T

∂x2
= 0 everywhere for t > 0 (1a)

T (x, 0) =

{
1 x > 0
−1 x < 0

(1b)

−∂T
∂x
→ 0 as x→ ±∞ (1c)

In this question, you will construct a similarity solution to the problem.

(a) (4 points) Let
T (x, t) = t−αΘ(x/tβ). (2)

and define
ξ = x/tβ.

Substitute this into (1a), converting partial derivatives with respect to x and
t into ordinary derivatives with respect to ξ. Show that you get

−αt−α−1Θ(ξ)− βt−α−1ξΘ′(ξ)− t−α−2βΘ′′(ξ) = 0. (3)

What value does β have to take in order for a similarity solution (2) to hold?

(b) (2 points) Next, show that the initial condition (1b) and boundary condition
(1c) can be expressed as

x−α/βξα/βΘ(ξ)→ ±1 as ξ → ±∞ at any fixed x, (4a)

t−α−βΘ′(ξ)→ 0 as ξ → ±∞ at any fixed t. (4b)

Why does it follow that α = 0?

(c) (3 points) Put the value of β you have deduced and α = 0 into (3). Separate
variables to show that

Θ′(ξ) = C exp

(
−ξ

2

4

)
(5)

The definition of the error function is

erf(x) =
2√
π

∫ x

0

exp(−x′2) dx′,

which behaves as erf(x) → ±1 as x → ±∞. Use this and the boundary
conditions in (4) to show that

Θ(ξ) = erf

(
ξ

2

)
. (6)

(d) (1 point) On the same graph, sketch the solution T (x, t) as a function of x
for t = 0, 1, 2, 4.
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2. This question is about seismic P-waves (’primary’ or ’pressure’ waves generated
by earthquakes, explosions or impacts) in a viscous liquid. The equations of
motion for a compressible fluid (mass and momentum conservation) are

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (7a)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

, (7b)

where

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− pδij.

To transmit P-waves, the fluid must be at least slightly compressible, and we
assume that

ρ = ρ0(+cp) (7c)

with ρ0 a mean density and c a compressibility, both of which are constant.
Assume also that µ is constant.

(a) (3 points) To model a P -wave propagating in the x1-direction, assume that
motion is only in the x1-direction, with velocity and pressure dependent only
on x1,

u1 = u1(x1, t), u2 = 0 u3 = 0, p = p(x1, t),

and impose boundary conditions at x1 = 0 in the form of a pressure oscilla-
tion

p(0, t) = p0 cos(ωt), (8a)

with (7) holding for x1 > 0. Show that

∂ρ

∂t
+
∂(ρu1)

∂x1
= 0 (8b)

ρ

(
∂u1
∂t

+ u1
∂u1
∂x1

)
=

4

3
µ
∂2u1
∂x21

− ∂p

∂x1
(8c)

ρ = ρ0(1 + cp) (8d)

(b) (5 points) Define scales [x], [t], [u], [p] and dimensionless variables

x1 = [x]x∗, t = [t]t∗, u1 = [u]u∗, p = [p]p∗

such that the equations (8) can be written in the form

(1 + αp∗)

(
∂u∗

∂t∗
+ αu∗

∂u∗

∂x∗

)
− 4

3
γ
∂2u∗

∂x∗2
+
∂p∗

∂x∗
= 0 for x∗ > 0 (9a)

∂p∗

∂t∗
+
∂[(1 + αp∗)u∗]

∂x∗
= 0 for x∗ > 0 (9b)

p∗(0, t∗) = cos(t∗) at x∗ = 0. (9c)
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Find the dimensionless groups α and γ in terms of ρ0, c, η, p0, ω. (HINT:
It may be easiest if you substitute for ρ in (8b) and (8c) before introducing
dimensionless variables)

(c) (2 points) For a (deafening!) 90 dB sound wave in water at 1000 Hz, we
have p0 = .045 Pa, ω = 2000π s−1, ρ0 = 1000 kg m−3, c = 4.6× 10−10 Pa−1,
µ = 1.7× 10−3 Pa s. Find numerical values of α and γ. Show how these can
be used to motivate the simplified model

∂u∗

∂t∗
=

2

3
γ
∂2u∗

∂x∗2
− ∂p∗

∂x∗
= 0 for x∗ > 0 (10a)

∂p∗

∂t∗
+
∂u∗

∂x∗
= 0 for x∗ > 0 (10b)

p∗(0, t∗) = cos(t∗) at x∗ = 0. (10c)
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3. This question is about solving a seismic P- and S-wave problem in a viscous fluid.
A simplified model for seismic P-waves in viscous fluid is

ρ0
∂u

∂t
=

4

3
µ
∂2u

∂x2
− ∂p

∂x
for x > 0 (11a)

c
∂p

∂t
+
∂u

∂x
= 0 for x > 0 (11b)

p(0, t) = p0 cos(ωt) at x = 0 (11c)

p→ 0 as x→∞ (11d)

You will solve this by complex variable methods, and compare with the solution
of an S-wave problem.

(a) (2 points) By differentiating (11a) and substituting from another equation
in (11), show that

ρ0c
∂2p

∂t2
− ∂2p

∂x2
− 4

3
µc

∂3p

∂x2∂t
= 0. (12)

(b) (2 points) Assume that p(x, t) can be written in the form

p(x, t) = Re [p0 exp(iωt+ λx)] .

For p satisfying (12), find the equation that must be satisfied by λ, and solve
for λ in terms of ρ0, c, µ and ω.

(c) (2 points) The answer you get should be in the form

λ = ±ia/(1 + ib)1/2 (13)

The Taylor expansion of (1 + x)−1/2 for small x is

(1 + x)−1/2 = 1− 1

2
x+ . . .

For small b, find an approximation to (13) of the form

λ = ±(α + iβ)

with α and β real quantities that depend on ρ0, c, µ and ω. If ω = 2000π s−1,
ρ0 = 1000 kg m−3, c = 4.6 × 10−10 Pa−1, µ = 1.7 × 10−3 Pa s, is this
approximation valid?

(d) (3 points) Given your answer to part c, express p(x, t) in real terms in the
form

p(x, t) = p0 cos [ω(t− x/v)] exp(−x/x0),
making sure to give expressions for v and x0 in terms of ρ0, c, µ and ω,
and justifying your choice of signs. What is the wave velocity? What is the
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wavelength? What is the distance over which the wave amplitude decreases
by a factor of 1/e (this is the ‘e-folding distance’)? If ω = 2000π s−1,
ρ0 = 1000 kg m−3, c = 4.6× 10−10 Pa−1, give numerical values for velocity,
wavelength and the e-folding distance.

(e) (1 point) The corresponding S-wave problem would be

ρ0
∂v

∂t
− µ∂

2v

∂x2
= 0 for x > 0,

v(0, t) = v0 cos(ωt) at x = 0,

v → 0 as x→∞,

where v is velocity transverse to the x-axis. Using methods from the course,
it can be shown that the solution is (no need to derive this yourself! —
simply use this formula)

v = v0 cos

(
ωt−

√
ρ0ω

2µ
x

)
exp

(
−
√
ρ0ω

2µ
x

)
With the values for ρ0, ω and µ given above, calculate the distance over
which v decays to 1/e of its value at x = 0.
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4. You are given a slanted triangular surface S with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

(a) (2 points) Your are given a temperature field

T = x+ 2y + 3z

and a constant thermal conductivity k = 1. What is the rate at which heat
passes from above S to below (this rate has dimensions of energy over time)?

(b) (3 points) You have a stress tensor σij given in matrix form by 1 0 1
0 0 1
1 1 0


What is the force exerted by the material above S on the material below S?

(c) (1 point) What is the pressure p that corresponds to the stress tensor in
part b?

(d) (6 points) Let ρ = 1 and u = (x2,−x1, x3). Compute the angular momen-
tum contained in the volume bounded by S and the planes x1 = 0, x2 = 0
and x3 = 0.
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