
Final: EOSC 352

21 April, 2011

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.
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1. Consider one-dimensional heat conduction between two half-spaces that are ini-
tially at uniform but different temperatures. There is no heat flow ‘at infinity’,
i,e., coming in from long distances from the contact between the two half-spaces
at x = 0. In non-dimensional form, this situation can be described by

∂T

∂t
− ∂2T

∂x2
= 0 everywhere for t > 0 (1a)

T (x, 0) =

{
1 x > 0
−1 x < 0

(1b)

−∂T
∂x
→ 0 as x→ ±∞ (1c)

In this question, you will construct a similarity solution to the problem.

(a) (4 points) Let
T (x, t) = t−αΘ(x/tβ). (2)

and define
ξ = x/tβ. (3)

Substitute this into (1a), converting partial derivatives with respect to x and
t into ordinary derivatives with respect to ξ. Show that you get

−αt−α−1Θ(ξ)− βt−α−1ξΘ′(ξ)− t−α−2βΘ′′(ξ) = 0. (4)

What value does β have to take in order for a similarity solution (2) to hold?
ANSWER: Using the product and chain rules, we have

∂

∂t

(
t−αΘ(ξ)

)
= −αt−α−1Θ(ξ) + t−αΘ′(ξ)

∂ξ

∂t
= −αt−α−1Θ(ξ) + t−αΘ′(ξ)(−β)xt−β−1

= −αt−α−1Θ(ξ)− βt−α−1ξΘ′(ξ)

Also,

∂2

∂x2
(
t−αΘ(ξ)

)
= t−α−2βΘ′′(ξ).

Substituting in (1a)

−αt−α−1θ(ξ)− βt−α−1ξΘ′(ξ)− t−α−2βΘ′′(ξ) = 0.

Rearranging
−t2β−1 (αθ(ξ) + βξΘ′(ξ))−Θ′′(ξ) = 0. (5)

This must not contain t explicitly in order to ensure that θ depends only on
ξ, so

β =
1

2
.
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(b) (2 points) Next, show that the initial condition (1b) and boundary condition
(1c) can be expressed as

x−α/βξα/βΘ(ξ)→ ±1 as ξ → ±∞ at any fixed x, (6a)

t−α−βΘ′(ξ)→ 0 as ξ → ±∞ at any fixed t. (6b)

Why does it follow that α = 0?
ANSWER: To transform the boundary condition (1c), note that

∂T

∂x
= t−α−βθ′(ξ)

and that the limit x → ±∞ at fixed time t > 0 corresponds to ξ → ±∞.
Hence (1c) becomes

lim
ξ→∞

t−α−βΘ′(ξ) = 0 at any fixed t > 0.

Because the limit is taken at fixed t, we can simplify to

lim
ξ→∞

Θ′(ξ) = 0 at any fixed t > 0.

Next, the initial condition (1b) should be interpreted as

lim
t→0

T (x, t) =

{
1 x > 0
−1 x < 0

(7)

for any fixed x > 0. But the limit t → 0 corresponds to ξ → ∞ for x > 0,
and ξ → −∞ for x < 0. Similarly, for fixed x, t = (x/ξ)1/β from (3). Hence,
substituting from (2) in (7)

lim
ξ→±∞

(x/ξ)α/βΘ(ξ) = ±1

at any fixed x. Now, x and ξ have the same sign for t > 0, so (x/ξ) = |x|/|ξ|,
and we can re-write this as

lim
ξ→±∞

|ξ|−α/βΘ(ξ) = ±|x|α/β

for any fixed x. But none of the quantities on the left depend on x, so neither
should the right-hand side. It follows that we must have α/β = 0, or α = 0.

(c) (3 points) Put the value of β you have deduced and α = 0 into (4). Separate
variables to show that

Θ′(ξ) = C exp

(
−ξ

2

4

)
(8)
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The definition of the error function is

erf(x) =
2√
π

∫ x

0

exp(−x′2) dx′,

which behaves as erf(x) → ±1 as x → ±∞. Use this and the boundary
conditions in (6) to show that

Θ(ξ) = erf

(
ξ

2

)
. (9)

ANSWER: Putting α = 0, β = 1/2 into (5),

−1

2
ξΘ′(ξ)− θ′′(ξ) = 0.

Use Θ′′(ξ) = dΘ′/ dξ and separate variables as

1

Θ′(ξ)

dΘ′

dξ
= −1

2
ξ

Integrate both sides with respect to ξ to get∫
1

Θ′
dΘ′

dξ
dξ = −

∫
1

2
ξ dξ.

so

log(Θ′) = −ξ
2

4
+ C ′.

or

Θ′ = C exp

(
−ξ

2

4

)
.

Integrate again

Θ(ξ) =

∫
C exp

(
−ξ

2

4

)
dξ.

Change variables to u = ξ/2, so dξ = 2 du, we get

Θ = 2C

∫
exp(−u2) du

= 2C

√
π

2

2√
π

∫
exp(−u2) du

= C
√
πerf(u) + C2

= C
√
πerf

(
ξ

2

)
+ C2.
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But Θ→ ±1 as ξ → ±∞, so (taking ξ → −∞ first)

−1 = −C
√
π + C2

and (taking ξ →∞)
1 = C

√
π + C2,

from which it follows that C2 = 0 and

C =
1√
π
.

Hence

Θ(ξ) = erf

(
ξ

2

)
.

(d) (1 point) On the same graph, sketch the solution T (x, t) as a function of x
for t = 0, 1, 2, 4.
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2. This question is about seismic P-waves (’primary’ or ’pressure’ waves generated
by earthquakes, explosions or impacts) in a viscous liquid. The equations of
motion for a compressible fluid (mass and momentum conservation) are

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (10a)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

, (10b)

where

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− pδij.

To transmit P-waves, the fluid must be at least slightly compressible, and we
assume that

ρ = ρ0(1 + cp) (10c)

with ρ0 a mean density and c a compressibility, both of which are constant.
Assume also that µ is constant.

(a) (3 points) To model a P -wave propagating in the x1-direction, assume that
motion is only in the x1-direction, with velocity and pressure dependent only
on x1,

u1 = u1(x1, t), u2 = 0 u3 = 0, p = p(x1, t),

and impose boundary conditions at x1 = 0 in the form of a pressure oscilla-
tion

p(0, t) = p0 cos(ωt), (11a)

with (10) holding for x1 > 0. Show that

∂ρ

∂t
+
∂(ρu1)

∂x1
= 0 (11b)

ρ

(
∂u1
∂t

+ u1
∂u1
∂x1

)
=

4

3
µ
∂2u1
∂x21

− ∂p

∂x1
(11c)

ρ = ρ0(1 + cp) (11d)

ANSWER: With u2 = u3 = 0 and u1 dependent only on x1 and t, we have

∂ui
∂t

+ uj
∂ui
∂xj

=
∂ui
∂t

+ u1
∂ui
∂x1

+ u2
∂ui
∂x2

+ u3
∂ui
∂x3

=

{
∂u1
∂t

+ u1
∂u1
∂x1

if i = 1

0 otherwise

We also have
∂ui
∂xj

+
∂uj
∂xi

=

{
2∂u1
∂x1

if i = j = 1

0 otherwise
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and
∂uk
∂xk

=
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

=
∂u1
∂x1

.

so the only non-zero components of σij are

σ11 =
4

3

∂u1
∂x1
− p

σ22 = −2

3

∂u1
∂x1
− p

σ33 = −2

3

∂u1
∂x1
− p,

and, with u1 and p independent of x2 and x3, we have

∂σij
∂xj

=
∂σi1
∂x1

+
∂σi2
∂x2

+
∂σi3
∂x3

=

{
∂σ11
∂x1

if i = 1

0 otherwise

Putting this into the second equation in (10), we get for i = 1

∂u1
∂t

+ u1
∂u1
∂x1

=
∂σ11
∂x1

=
∂

∂x1

(
4

3
µ
∂u1
∂x1
− p
)

=
4

3
µ
∂2u1
∂x21

− ∂p

∂x1

and 0 = 0 for i = 2, 3. Similarly, ρ depends only on x1 and so

∂(ρui)

∂xi
=
∂(ρu1)

∂x1
+
∂(ρu2)

∂x2
+
∂(ρu3)

∂x3
=
∂(ρu1)

∂x1
,

and the first equation in (10) becomes

∂ρ

∂t
+
∂(ρu1)

∂x1
= 0.

(b) (5 points) Define scales [x], [t], [u], [p] and dimensionless variables

x1 = [x]x∗, t = [t]t∗, u1 = [u]u∗, p = [p]p∗

such that the equations (11) can be written in the form

(1 + αp∗)

(
∂u∗

∂t∗
+ αu∗

∂u∗

∂x∗

)
− 4

3
γ
∂2u∗

∂x∗2
+
∂p∗

∂x∗
= 0 for x∗ > 0 (12a)

∂p∗

∂t∗
+
∂[(1 + αp∗)u∗]

∂x∗
= 0 for x∗ > 0 (12b)

p∗(0, t∗) = cos(t∗) at x∗ = 0. (12c)
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Find the dimensionless groups α and γ in terms of ρ0, c, η, p0, ω. (HINT: It
may be easiest if you substitute for ρ in (11b) and (11c) before introducing
dimensionless variables)
ANSWER: Substituting for ρ in (11b) and bearing in mind that ρ0 and c
are constants, we get

ρ0c
∂p

∂t
+
∂[ρ0(1 + cp)u1]

∂x
= 0. (13)

We can similarly substitute in (11c)

ρ0(1 + cp)

(
∂u1
∂t

+ u1
∂u1
∂x1

)
=

4

3
µ
∂2u1
∂x21

− ∂p

∂x
. (14)

Define dimensionless variables as follows

x1 = [x1]x
∗, t = [t]t∗, u1 = [u1]u

∗, p = [p]p∗.

Substituting, we get

ρ0c[p]

[t]

∂p∗

∂t∗
+
ρ0[u1]

[x1]

∂[(1 + c[p]p∗)u∗]

∂x∗
= 0.

and
ρ0[u1]

[t]

(
∂u∗

∂t∗
+

[u1][t]

[x1]
u∗
∂u∗

∂x∗

)
=

4

3
µ

[u1]

[x1]2
∂2u∗

∂x∗2
− [p]

[x1]

∂p∗

∂x∗
.

while the boundary condition (11a) becomes

[p]p∗(0, t∗) = p0 cos(ω[t]t∗)

Rearranging,

c[p][x1]

[u1][t]

∂p∗

∂t∗
+
∂[(1 + c[p]p∗)u∗]

∂x∗
= 0,

ρ0[u1][x1]

[p][t]

(
∂u∗

∂t∗
+

[u1][t]

[x1]
u∗
∂u∗

∂x∗

)
=

4

3

µ[u1]

[p][x1]

∂2u∗

∂x∗2
− ∂p∗

∂x∗

p∗(0, t∗) =
p0
[p]

cos(ω[t]t∗)

We obtain the desired form if we equate the following dimensionless groups
to unity:

c[p][x1]

[u1][t]
= 1,

ρ0[u1][x1]

[p][t]
= 1,

p0
[p]

= 1 ω[t] = 1. (15)
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The dimensionless parameters α and γ are then given by

α = c[p], γ =
µ[u1]

[p][x1]
.

Note that an alternative form for α is

α =
[u1][t]

[x1]
;

this follows from the first equation in (15).

(c) (2 points) For a (deafening!) 90 dB sound wave in water at 1000 Hz, we
have p0 = .045 Pa, ω = 2000π s−1, ρ0 = 1000 kg m−3, c = 4.6× 10−10 Pa−1,
µ = 1.7× 10−3 Pa s. Find numerical values of α and γ. Show how these can
be used to motivate the simplified model

∂u∗

∂t∗
=

2

3
γ
∂2u∗

∂x∗2
− ∂p∗

∂x∗
= 0 for x∗ > 0 (16a)

∂p∗

∂t∗
+
∂u∗

∂x∗
= 0 for x∗ > 0 (16b)

p∗(0, t∗) = cos(t∗) at x∗ = 0. (16c)

ANSWER: We have α = c[p] = cp0 = 2.1 × 10−11. In addition, we have
[t] = 1/ω = 1.6 × 10−4 s. Manipulating the first equation in (15), we also
get

[u1]

[x1]
=
c[p]

[t]
,

and substituting in the definition of γ,

γ =
µ[u1]

[p][x1]
=
µc

[t]
= 4.6× 10−9.

The simplified equations above result if we ignore terms multiplied by α (on
the basis that α � 1) while retaining γ (which is somewhat larger than α,
though still small).
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3. This question is about solving a seismic P- and S-wave problem in a viscous fluid.
A simplified model for seismic P-waves in viscous fluid is

ρ0
∂u

∂t
=

4

3
µ
∂2u

∂x2
− ∂p

∂x
for x > 0 (17a)

c
∂p

∂t
+
∂u

∂x
= 0 for x > 0 (17b)

p(0, t) = p0 cos(ωt) at x = 0 (17c)

p→ 0 as x→∞ (17d)

You will solve this by complex variable methods, and compare with the solution
of an S-wave problem.

(a) (2 points) By differentiating (17a) and substituting from another equation
in (17), show that

ρ0c
∂2p

∂t2
− ∂2p

∂x2
− 4

3
µc

∂3p

∂x2∂t
= 0. (18)

ANSWER: Differentiate (17a) with respect to x:

ρ0
∂2u

∂t∂x
=

4

3
µ
∂3u

∂x3
− ∂2p

∂x2

But, from (17b),
∂u

∂x
= −c∂p

∂t
.

Substituting therefore gives

−ρ0c
∂2p

∂t2
= −4

3
µc

∂3p

∂t∂x2
− ∂2p

∂x2

which gives the desired form on re-arranging.

(b) (2 points) Assume that p(x, t) can be written in the form

p(x, t) = Re [p0 exp(iωt+ λx)] .

For p satisfying (18), find the equation that must be satisfied by λ, and solve
for λ in terms of ρ0, c, µ and ω.
ANSWER: We have

∂2p

∂t2
= Re

[
−ω2p0 exp(iωt+ λx)

]
∂2p

∂x2
= Re

[
λ2p0 exp(iωt+ λx)

]
∂3p

∂t∂2x
= Re

[
iλ2ωp0 exp(iωt+ λx)

]

Page 10



Substitute

Re

[(
−ρ0cω2 − λ2 − 4

3
µciωλ2

)
p0 exp(iωt+ λx)

]
= 0.

To make this zero at all times t and positions x, the expression inside the
round brackets must be zero:

−ρ0cω2 − λ2 − 4

3
µciωλ2 = 0.

Hence

λ =

(
−ρ0cω2

1 + i4
3
µcω

)1/2

= ±
i
√
ρcω(

1 + i4
3
µcω

)1/2 .
(c) (2 points) The answer you get should be in the form

λ = ±ia/(1 + ib)1/2 (19)

The Taylor expansion of (1 + x)−1/2 for small x is

(1 + x)−1/2 = 1− 1

2
x+ . . .

For small b, find an approximation to (19) of the form

λ = ±(α + iβ)

with α and β real quantities that depend on ρ0, c, µ and ω. If ω = 2000π s−1,
ρ0 = 1000 kg m−3, c = 4.6 × 10−10 Pa−1, µ = 1.7 × 10−3 Pa a, is this
approximation valid?
ANSWER: We have(

1 + i
4

3
µcω

)−1/2
= 1− i2

3
µcω + . . .

and hence

λ = ±

[
i
√
ρ0cω

(
1 + i

4

3
µcω

)−1/2]

≈ ±
[
i
√
ρ0cω

(
1− i2

3
µcω

)]
≈ ±

[
i
√
ρ0cω +

2

3
µc
√
ρ0cω

2

]
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To satisfy the boundary condition p → ∞, λ must have negative real part.
Hence we have to choose the − sign out of ±, and

λ ≈ −i√ρ0cω −
2

3
µc
√
ρ0cω

2.

To determine whether the approximation above is valid, calcuate

4

3
µcω = 6.5× 10−9

Clearly, this is small so

(d) (3 points) Given your answer to part c, express p(x, t) in real terms in the
form

p(x, t) = p0 cos [ω(t− x/v)] exp(−x/x0),
making sure to give expressions for v and x0 in terms of ρ0, c, µ and ω,
and justifying your choice of signs. What is the wave velocity? What is the
wavelength? What is the distance over which the wave amplitude decreases
by a factor of 1/e (this is the ‘e-folding distance’)? If ω = 2000π s−1,
ρ0 = 1000 kg m−3, c = 4.6× 10−10 Pa−1, give numerical values for velocity,
wavelength and the e-folding distance.
Taking the real part,

p(x, t) = Re [p0 exp(iωt+ λx)]

≈ Re

[
p0 exp

(
iωt− i√ρ0cωx−

2

3
µc
√
ρ0cω

2x

)]
= p0 exp

(
−2

3
µc
√
ρ0cω

2x

)
cos [ω(t−√ρ0cx)]

The wave velocity is therefore

1
√
ρ0c

= 1470 m s−1

while the e-folding distance is

1
2
3
µc
√
ρcω2

= 7.2× 1011m

(e) (1 point) The corresponding S-wave problem would be

ρ0
∂v

∂t
− µ∂

2v

∂x2
= 0 for x > 0,

v(0, t) = v0 cos(ωt) at x = 0,

v → 0 as x→∞,
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where v is velocity transverse to the x-axis. Using methods from the course,
it can be shown that the solution is (no need to derive this yourself! —
simply use this formula)

v = v0 cos

(
ωt−

√
ρ0ω

2µ
x

)
exp

(
−
√
ρ0ω

2µ
x

)
With the values for ρ0, ω and µ given above, calculate the distance over
which v decays to 1/e of its value at x = 0.
ANSWER: The e-folding distance in this example is√

2µ

ρ0ω
= 2.3× 10−5m.
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4. You are given a slanted triangular surface S with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

(a) (2 points) Your are given a temperature field

T = x+ 2y + 3z

and a constant thermal conductivity k = 1. What is the rate at which heat
passes from above S to below (this rate has dimensions of energy over time)?
ANSWER: The heat flux is

q = −∇T = −i− 2j− 3k.

The normal that points from above the surface to below is

n = − i + j + k√
3

.

The surface is an equilateral triangle with side length
√

2, and so has area
one half base times height = 1/2×

√
2×
√

2 cos(π/3) =
√

3/2. The surface
being flat (with constant normal) and the flux being constant, we do not
need to integrate. The rate of heat transfer is simply

q · nS = 3.

(b) (3 points) You have a stress tensor σij given in matrix form by 1 0 1
0 0 1
1 1 0


What is the force exerted by the material above S on the material below S?
ANSWER: The surface is flat, so the normal is a constant vector. Similarly,
the stress tensor is a constant. Hence no intergration is necessary. The force
is therefore

Fi = σijnjS

where n now points from below the surface to above, so n1 = n2 = n3 =
1/
√

3. Hence, using the fact that σijnj =
∑3

j=1 σijnj signifies the ith com-
ponent of the product of the matrix σ with the vector n, we have

F = σn× S

=

 1 0 1
0 0 1
1 1 0




1√
3
1√
3
1√
3

× √3

2

=

 1
1/2
1



Page 14



(c) (1 point) What is the pressure p that corresponds to the stress tensor in
part b?
ANSWER: We have p = −σii/3 = −(σ11 + σ22 + σ33)/3 = −1/3.

(d) (6 points) Let ρ = 1 and u = (x2,−x1, x3). Compute the angular momen-
tum contained in the volume bounded by S and the planes x1 = 0, x2 = 0
and x3 = 0.
ANSWER: We have Lij =

∫
V
ρ(xiuj − xjui) dV . We only need to compute

L12, L13 and L23. With the values given for ρ, u1, u2 and u3, we get

L12 =

∫
−x21 − x22 dV

L13 =

∫
V

x1x3 − x3x2 dV

L23 =

∫
V

x2x3 + x3x1 dV.

By symmetry (the volume looks the same in the x1- x2 and x3-directions),
we expect

∫
V
x1x3 dV =

∫
V
x2x3 dV and

∫
V
x21 dV =

∫
V
x22 dV . Immediately

we have that L13 = 0. Also∫
V

x21 dV =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

x21 dx3 dx2 dx1

=

∫ 1

0

∫ 1−x1

0

x21(1− x1 − x2) dx2 dx1

=

∫ 1

0

x21(1− x1)2 − x21(1− x1)2/2 dx1

=

∫ 1

0

x21(1− x1)2/2 dx1

=
[
−x21(1− x1)3/6

]1
0
−
∫ 1

0

−2x1(1− x1)3/6 dx1

=

∫ 1

0

x1(1− x1)3/3 dx1

=
[
−x21(1− x1)4/12

]1
0
−
∫ 1

0

−(1− x1)4/12 dx1

=

[
−1

6
(1− x1)5

]1
0

=
1

60
.

Hence

L12 = −2

∫
V

x21 dV = − 1

30
.
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Also∫
V

x1x2 dV =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

x1x2 dx3 dx2 dx1

=

∫ 1

0

∫ 1−x1

0

x1x2(1− x1 − x2) dx2 dx1

=

∫ 1

0

∫ 1−x1

0

x1x2 dx2 dx1 −
∫ 1

0

∫ 1−x1

0

x21x2 dx2 dx1 −
∫ 1

0

∫ 1−x1

0

x1x
2
2 dx2 dx1

=

∫ 1

0

x1(1− x1)2/2 dx1 −
∫ 1

0

x21(1− x1)2/2 dx1 −
∫ 1

0

x1(1− x1)3/3 dx1

Do each of these integrals in turn:∫ 1

0

x1(1− x1)2/2 dx1 =
[
−x1(1− x1)3/6

]1
0
−
∫ 1

0

−(1− x1)3/6 dx1

=

[
− 1

24
(1− x1)4

]1
0

=
1

24

and∫ 1

0

x21(1− x1)2/2 dx1 =
[
−x21(1− x1)3/6

]1
0
−
∫ 1

0

−x1(1− x1)3/3 dx1

=
[
−x1(1− x1)4/12

]1
0
−
∫ 1

0

−(1− x1)4/12 dx1

=

[
− 1

60
(1− x1)5

]1
0

=
1

60

as well as∫ 1

0

x1(1− x1)3/3 dx1 =
[
−x21(1− x1)4/12

]1
0
−
∫ 1

0

−(1− x1)4/12 dx1

=
1

60

which could also have been deduced from the previous calculation by sym-
metry. Combining the last three results,∫

V

x1x2 dV =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

x1x2 dx3 dx2 dx1 =
1

24
− 1

30
=

1

120
.
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Hence

L23 = 2×
∫
V

x1x2 dV =
1

60
.
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