Final: EOSC 352

21 April, 2011

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.



1. Consider one-dimensional heat conduction between two half-spaces that are ini-
tially at uniform but different temperatures. There is no heat flow ‘at infinity’,
i,e., coming in from long distances from the contact between the two half-spaces
at x = 0. In non-dimensional form, this situation can be described by

T T
%_t — g? =0 everywhere for ¢t > 0 (1a)
1 x>0
T(z,0) = { a0 (1b)
T
_g_x_>() as r — +0o (1c)

In this question, you will construct a similarity solution to the problem.
(a) (4 points) Let
T(z,t) =t “O(x/t"). (2)
and define
& =zx/t8. (3)
Substitute this into (1a), converting partial derivatives with respect to x and
t into ordinary derivatives with respect to £&. Show that you get

—at™O(€) — A0/ () — 170" (€) = 0. (4)

What value does /8 have to take in order for a similarity solution (2) to hold?
ANSWER: Using the product and chain rules, we have

o, . e NN
En (t0()) = —at™ 0§+t (f)a

= —at™*7'O(¢) + t7O/(¢)(-Bat !

= —at™*71O(E) — IO (€)
Also,
82
= (re(9) = e ().

Substituting in (1a)
= 9() - BETIEO(€) — () =

Rearranging
—77 (ab(€) + EO'(€)) — ©"(€) = 0. ()
This must not contain ¢ explicitly in order to ensure that § depends only on
&, so
1
=3
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(b) (2 points) Next, show that the initial condition (1b) and boundary condition
(1c) can be expressed as

z=o/BeBO(€) = +1 as & = £oo at any fixed z, (6a)
t= P (€) = 0 as & — too at any fixed t. (6b)

Why does it follow that o = 07
ANSWER: To transform the boundary condition (1c), note that

oT
— =t
= ©
and that the limit + — 400 at fixed time ¢ > 0 corresponds to & — Fo00.

Hence (1c¢) becomes

lim t~*7PQ'(¢) = 0 at any fixed ¢ > 0.

£—00

Because the limit is taken at fixed ¢, we can simplify to

lim ©'(§) =0  at any fixed t > 0.

£—o0
Next, the initial condition (1b) should be interpreted as

1 z >0
-1 <0

i 7(z.0) = { )

for any fixed x > 0. But the limit ¢ — 0 corresponds to & — oo for z > 0,
and £ — —oo for x < 0. Similarly, for fixed x, t = (2/£)'/# from (3). Hence,
substituting from (2) in (7)

lim (2/€)*/°0(¢) = £1

E—+o0

at any fixed z. Now, x and £ have the same sign for ¢t > 0, so (z/§) = |z|/|¢],
and we can re-write this as

lim |¢]7*PO(¢) = £|z|*/"
E—+o0

for any fixed x. But none of the quantities on the left depend on x, so neither
should the right-hand side. It follows that we must have o/ = 0, or a = 0.

(c) (3 points) Put the value of 5 you have deduced and o = 0 into (4). Separate
variables to show that

() = o () 8
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The definition of the error function is
erf(z) = 2 /x exp(—z'%) da,
VT Jo

which behaves as erf(z) — £1 as © — £oo. Use this and the boundary
conditions in (6) to show that

o(¢) = erf (g) . )

ANSWER: Putting o =0, § = 1/2 into (5),

1
580~ #(€) =0
Use ©"(£) = dO’/d{ and separate variables as
Ldo' 1
o) ¢ 2

Integrate both sides with respect to & to get

1 d®’ 1
o dsz—/§£d£.

SO

or

Integrate again

Change variables to u = £/2, so d§ = 2du, we get

0= 2C’/exp(—u2)du

N
-0~
O R

= Cy/merf(u) + Cy

= C/merf (g) + Cs.

exp(—u?) du
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But © — +1 as £ — 00, so (taking & — —oo first)

—1=-Cyrn+Cy
and (taking & — o)
1=CVr+ Cy,
from which it follows that Cy; = 0 and
1
C=—.
VLS
Hence
O¢) = erf (g) |

the same graph, sketch the solution 7T'(z,t) as a function of

(d) (1 point) O
1,2, 4.

n
fort=0,1, 2

Y
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2. This question is about seismic P-waves ('primary’ or 'pressure’ waves generated
by earthquakes, explosions or impacts) in a viscous liquid. The equations of
motion for a compressible fluid (mass and momentum conservation) are

dp  O(pui)
E + 6% = 0, (10&)
8%; (9uz 80'7;]'
) =Y 1
P ( ai +“Jaxj> oz, (10b)

where

R _z Sii | — pdys.
7 M(@xj+8xi 3 Oxy, ]) P
To transmit P-waves, the fluid must be at least slightly compressible, and we
assume that
p=po(l+cp) (10c)

with pg a mean density and ¢ a compressibility, both of which are constant.
Assume also that p is constant.

(a) (3 points) To model a P-wave propagating in the z;-direction, assume that
motion is only in the x;-direction, with velocity and pressure dependent only
on i,
uyp = uy(xy,t), Uy =0 us = 0, p = p(x1,1t),

and impose boundary conditions at x; = 0 in the form of a pressure oscilla-

tion
p(0,t) = po cos(wt), (11a)
with (10) holding for z; > 0. Show that
dp  9(pu1)
-F = 11b
ot o, " (L1b)
8u1 8u1 4 821/4 3p
it — )=y - == 11
P ( ot +u18x1) 3522 Bay (11c)
p = po(1+cp) (11d)

ANSWER: With uy = uz = 0 and u; dependent only on z; and ¢, we have

— 4t u—=—+4u U U
ot Jal’j ot lﬁxl 28(1]2 38%3
[ G twmGs ifi=1
0 otherwise

We also have

Ou;  Ouj 20U ifj=j=1
+ L ={ "om .
Ox;  Ox; 0 otherwise
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and

Oourp, Ouy Ouy Ous Owy

al'k N 81‘1 81‘2 81‘3 N le'

so the only non-zero components of o;; are

48U1
T
28U1
722 = _§3x1 - P
28u1
033 = _5_8331 - b

and, with u; and p independent of x5 and x3, we have

80'@' 80'1'1 801-2 ao’ig

3:15]- (9:161 3962 (9373
{ 9ou if =1
_ 1

10 otherwise

Putting this into the second equation in (10), we get for ¢ = 1

8u1 1w 8u1 B 60'11 I 8 é 8U1 _ 4 02u1 6p
ot ' "or,  0x1 0w \3'0zm T

37027 O

and 0 = 0 for 4 = 2, 3. Similarly, p depends only on x; and so
O(pui) _ O(pu) + O(puz) i O(pus) _ O(pur)

(%ci (9.%1 (9(132 8(133 axl

and the first equation in (10) becomes

9 I(pu1)

=0.
875 81’1

(b) (5 points) Define scales [z], [t], [u], [p] and dimensionless variables

* *

ry = [z, t=[, w=[u, p=[pp

*

such that the equations (11) can be written in the form

. [ Ou* Lou* 4 9*u*  Op* .
op*  Ol(1 +apt)ur] _ .
o + B =0 for z* >0 (12b)

p*(0,t%) = cos(t*) at 2" =0. (12c)
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Find the dimensionless groups « and « in terms of pg, ¢, 1, po, w. (HINT: It
may be easiest if you substitute for p in (11b) and (11c¢) before introducing
dimensionless variables)

ANSWER: Substituting for p in (11b) and bearing in mind that py and ¢
are constants, we get

op n Apo(1 + cp)uy]

— = 0. 13
ot O (13)
We can similarly substitute in (11c)
Ouy Ouy 4 O%*u;  Op
1 — — | =chm — . 14
po(L+cp) ( ot +u18$1) 5" 02 or (14)

Define dimensionless variables as follows

*

= [xq1]2", t = [t]t", uy = [ug]u®, p = [plp*.
Substituting, we get

poclp) 9p*  polua] O[(1 + c[plp*)u’]
[t] ot [21] ox*

=0.

and

polua] ((9%* [ ][1] *3U*) _ 4 [w] 0%ut [p] Op

] \ot " (] 0rr)  3"w2or? T [n]0xr

while the boundary condition (11a) becomes

[plp"(0, ") = po cos(w[t]t")
Rearranging,
clpllza] Op* | O[(1 + c[p]p")u]
[uq][t] Ot Ox*

Jlo] (0w [w]lf] 0w\ _ 4 plw] 0% Op*
(015* [21] 83:*)

:O,

polur
[p][t]

3p|[ey] B2 Bz

p*(0, 1) = %cos(w[t]t*)

We obtain the desired form if we equate the following dimensionless groups
to unity:
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The dimensionless parameters a and ~ are then given by

this follows from the first equation in (15).

(¢) (2 points) For a (deafening!) 90 dB sound wave in water at 1000 Hz, we
have py = .045 Pa, w = 20007 s~%, pg = 1000 kg m~3, ¢ = 4.6 x 1071° Pa~!,
p=1.7x 1072 Pa s. Find numerical values of a and . Show how these can
be used to motivate the simplified model

ou* 2 0*u*  Op*

o~ 3790 B 0 for x* >0 (16a)

op*  ou* .
5 + T 0 for x* >0 (16b)
p*(0,t") = cos(t") at * = 0. (16¢)

ANSWER: We have o = c[p] = ¢py = 2.1 x 1071, In addition, we have
[t] = 1/w = 1.6 x 10~* s. Manipulating the first equation in (15), we also
get

bw] _ cp)

ENCE

and substituting in the definition of ~,

7= [M[M] — B0 46 x 107",

pllza]  [1]

The simplified equations above result if we ignore terms multiplied by « (on
the basis that o < 1) while retaining v (which is somewhat larger than «,
though still small).
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3. This question is about solving a seismic P- and S-wave problem in a viscous fluid.
A simplified model for seismic P-waves in viscous fluid is

Dy f 1
5 = 3 02 T ba or x>0 (17)
dp Ou
e fi 1
68t+8x 0 orx >0 (17b)
p(0,t) = po cos(wt) at z =0 (17¢)
p—0 as & — 0o (17d)

You will solve this by complex variable methods, and compare with the solution
of an S-wave problem.

(a) (2 points) By differentiating (17a) and substituting from another equation
in (17), show that
Pp Pp 4 Pp
A P S c— 18
P~ 902 T 3" 0a201 (18)
ANSWER: Differentiate (17a) with respect to x:

Pu 4 Pu

Potor ~ 3025~ 922
But, from (17b),
Ou _ _ Op
oxr Ot
Substituting therefore gives
S S O i S
P2 = T3 0022 T 022

which gives the desired form on re-arranging.

(b) (2 points) Assume that p(x,t) can be written in the form
p(z,t) = Re[po exp(iwt + Ax)].

For p satisfying (18), find the equation that must be satisfied by A, and solve
for A in terms of py, ¢, p and w.
ANSWER: We have

0%*p
9z = Re [—w?pg exp(iwt + Az)]
2
% = Re [Npo exp(iwt + Az)]
T
P*p o .
pre Re [iAwpo exp(iwt + Az)]
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Substitute

4
Re {(—poch — 22— gucin) po exp(iwt + Az)| = 0.

To make this zero at all times ¢ and positions x, the expression inside the
round brackets must be zero:

4
—pocw® — A% — gucz’w)\Q = 0.

Hence

— 2\ /2 i/ pCw
N = (P -+ P
1+ipucw (1 Fpr: 1/2°
3 zS,ucw)

(2 points) The answer you get should be in the form
A = +ia/(1+ib)"/? (19)

The Taylor expansion of (1 4 z)~'/? for small z is

1
(1+x)*1/2:1—§x—|—...

For small b, find an approximation to (19) of the form
A=x(a+if)

with a and 3 real quantities that depend on pg, ¢, p and w. If w = 20007 s~ 1,
po = 1000 kg m™3, ¢ = 4.6 x 107 Pa™!, u = 1.7 x 107® Pa a, is this
approximation valid?
ANSWER: We have

1+ 4 o 1 2 +
71— UCW = — 1= UCW
a 3t

and hence

4 ~1/2
A==+ |iy/pocw (1 + ig,ucw) ]

[ 2
Rt |1/ pocw (1 — igucw)}

[ 2
~ + |iy/pocw + g,uc\/pocwﬂ
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(e)

To satisfy the boundary condition p — oo, A must have negative real part.
Hence we have to choose the — sign out of +, and

2
AR —iy/pocw — g/w\/pocw?

To determine whether the approximation above is valid, calcuate
4
gMCW =6.5x 107

Clearly, this is small so

(3 points) Given your answer to part c, express p(z,t) in real terms in the
form

p(z,t) = pocos [w(t — z/v)] exp(—z/x0),
making sure to give expressions for v and z(y in terms of pg, ¢, p and w,
and justifying your choice of signs. What is the wave velocity? What is the
wavelength? What is the distance over which the wave amplitude decreases
by a factor of 1/e (this is the ‘e-folding distance’)? If w = 20007 s~
po = 1000 kg m™3, ¢ = 4.6 x 1071 Pa~!, give numerical values for velocity,
wavelength and the e-folding distance.
Taking the real part,

p(x,t) = Re[po exp(iwt + Az)]
2
~ Re {po exp (z’wt — i/ pocwT — g,uc pocwzx)]
2
= pp exp (—gﬂc./pocw%) cos [w(t — v/pocz)]

The wave velocity is therefore
1
v/ PocC
while the e-folding distance is
1
2 2
SHCy/pew

(1 point) The corresponding S-wave problem would be

= 1470 m s~ !

=72x10"m

v v
poa—u@:() for x > 0,
v(0,t) = vy cos(wt) at x =0,
v—0 as T — 00,
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where v is velocity transverse to the z-axis. Using methods from the course,
it can be shown that the solution is (no need to derive this yourself! —
simply use this formula)

Pow Pow
v=1pcos |wt —,/—x |exp| —4/—=—=x
( V 24 ) ( 2p )

With the values for pg, w and p given above, calculate the distance over
which v decays to 1/e of its value at x = 0.
ANSWER: The e-folding distance in this example is

9
R = 2.3 % 1075,
Pow
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4. You are given a slanted triangular surface S with vertices (1,0,0), (0,1,0) and
(0,0,1).

(a)

(2 points) Your are given a temperature field
T=x42y+ 3z

and a constant thermal conductivity £ = 1. What is the rate at which heat
passes from above S to below (this rate has dimensions of energy over time)?
ANSWER: The heat flux is

q=—-VT =—-i—-2j—3k.
The normal that points from above the surface to below is
_ititk
.

The surface is an equilateral triangle with side length /2, and so has area
one half base times height = 1/2 x v/2 x v/2cos(7/3) = v/3/2. The surface
being flat (with constant normal) and the flux being constant, we do not
need to integrate. The rate of heat transfer is simply

q-nS =3.

(3 points) You have a stress tensor o;; given in matrix form by

—_ O =
— o o

1
1
0

What is the force exerted by the material above S on the material below S7?7
ANSWER: The surface is flat, so the normal is a constant vector. Similarly,
the stress tensor is a constant. Hence no intergration is necessary. The force
is therefore
E = Uijan

where n now points from below the surface to above, so ny = ny = nz =
1/4/3. Hence, using the fact that o;n; = 23:1 o;jn; signifies the ¢th com-
ponent of the product of the matrix ¢ with the vector n, we have

F=onxS§S
101 N
={ o001 %x?
110 z
1
= 12
1



(c¢) (1 point) What is the pressure p that corresponds to the stress tensor in
part b?
ANSWER: We have P = _011/3 = —(0'11 + 099 + 0'33)/3 = —]_/3

(d) (6 points) Let p =1 and u = (x9, —21,x3). Compute the angular momen-
tum contained in the volume bounded by S and the planes z; = 0, o = 0
and x3 = 0.

ANSWER: We have L;; = fv p(z;u; — xju;) dV. We only need to compute
Lo, L3 and Loz. With the values given for p, uy, us and ug, we get

L12 = /—13% - fL’g dVv
L13 = / T1X3 — T3T2 dv
1%
L23 = / ToZ3 + X3xq dv.
v
By symmetry (the volume looks the same in the x1- x5 and z3-directions),

we expect [, 2123dV = [, z925dV and [, 27dV = [, 23dV. Immediately
we have that L3 = 0. Also

1 1—x1 1—xz1—xo
/ r1dV = / / / v} drs dzy dr
1% 0o Jo 0
1 1—z1
= / / 21(1 — zy — 29) dwy day
0o Jo

1
/ 21 —21)* —23(1 — 21)%/2dx,
0

2 )
/01 231 —21)?/2dx,
[~22(1 — 2,)%/6],, — /0 —221(1 — 2)%/6 day
)’

1
/ ZL’1<]_ — I /3(:1[)31

-
-

60'

1
21(1 — 1) /12] /—(1—951)4/12(11-1
0

1—131 1

ODIH

Hence
1

Lip——2 [ 22dV = ——.
12 /Vxl 30
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Also

l—z1—x2
/:1:1932 dV = / / / 129 dxs dzy day
0o Jo 0

/ 1'11’2 ]_ — 1 — ZEQ) dZEQ dl‘l

/ / 129 drodr; — / / :r;lxg dxoydz — / / x1x2 dzo dzy
0o Jo

/ (1= 20)?/2da; — /xl(l—xl) /2dz, — /xl(l—xl) /3day

0 0

Do each of these integrals in turn:

/Oxl(l—x1)2/2dx1:[—xl(l—x1)3/6](1)—/0 (1= 21)3/6 da

and
1
/x%(l—xl)z/del [—23(1 — 2y) /6 1(1—21)%/3dxy
0

[
[—21(1 — 1) /12 /O (1—21)*/12dx,

do-ar]

1
" 60
as well as
1 1
/ 21(1—21)?/3day = [~22(1 —21)1/12], — / —(1—ay)*/12day
0 B { 0
~ 60

which could also have been deduced from the previous calculation by sym-
metry. Combining the last three results,

1—x1 1—x1—x2 1
/ T1X2 dV = / / / T1To de?g dl’g dxl ﬂ — % 120
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Hence

1
— dV = —.
L23 2 X / T1X2 60
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