
Final: EOSC 352

18 December, 2012

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.
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1. Consider two-dimensional heat conduction with cylindrical symmetry about the
origin, so the termperature field T (r, t) depends only on time t and distance r
from the origin. There is no heat flow ‘at infinity’, but there is a heat source at
the origin that is switched on at t = 0. Prior to t = 0, the temperature is uniform
at T = 0. In non-dimensional form, this situation can be described by

∂T

∂t
− 1

r

∂

∂r

(
r
∂T

∂r

)
= 0 everywhere for t > 0 (1a)

T (r, 0) = 0 for all r > 0. (1b)

lim
r→0

(
−2πr

∂T

∂r

)
= 1 for all t > 0 (1c)

−∂T
∂r
→ 0 as r →∞. (1d)

In this question, you will construct a similarity solution to the problem.

(a) (4 points) Let
T (r, t) = t−αΘ(r/tβ). (2)

and define
ξ = r/tβ.

Substitute this into (1a), converting partial derivatives with respect to r and
t into ordinary derivatives with respect to ξ. Show that you get

−αt−α−1Θ(ξ)− βt−α−1ξdΘ

dξ
− t−α−2β 1

ξ

d

dξ

(
ξ

dΘ

dξ

)
= 0. (3)

What value does β have to take in order for a similarity solution (2) to hold?

(b) (2 points) Next, show that the initial condition (1b) and boundary condition
(1d) can be expressed as

r−α/βξα/βΘ(ξ)→ 0 as ξ → ±∞ at any fixed r > 0, (4a)

t−α−βΘ′(ξ)→ 0 as ξ → ±∞ at any fixed t > 0. (4b)

(c) (1 point) Show that the heat source condition (1c) takes the form

lim
ξ→0

(
−t−α2πξΘ′(ξ)

)
= 1 for any fixed t > 0. (4c)

Why does it follow that α = 0?

(d) (2 points) Put the value of β you have deduced and α = 0 into (3). Exapnd
the last term in (3) using the product rule. Separate variables to show that

Θ′(ξ) =
C

ξ
exp

(
−ξ

2

4

)
(5)

Show that C = −1/2π.
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(e) (2 points) Show that

T (r, t) = Θ(ξ) =

∫ ∞
ξ

1

2πξ′
exp

(
−ξ
′2

4

)
dξ′.

The upper incomplete gamma function is defined as

Γ(s, x) =

∫ ∞
x

ts−1 exp(−t) dt.

Show that

T (r, t) =
1

4π
Γ

(
0,
r2

4t

)
.
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2. The following is a model for temperature waves in the ground, driven by seasonally
varying solar radiation intensity. The mean temperature T̄ of the ground surface
is given by a balanace of incoming radiation and outgoing radiation,

q̄ = σT̄ 4, (6)

where q̄ = 1350 W m−2 is the solar constant and σ = 5.67 × 10−8 W m−2 K−4

is the Stefan-Boltzmann constant, and T̄ is expressed in Kelvins. Variations in
incoming radiation about their mean q̄ are balance by radiation back in space
and conduction of heat into the ground. This leads to the following energy con-
servation model in the ground (x > 0):

ρc
∂T

∂t
− k∂

2T

∂x2
= 0 for x > 0, (7a)

q0 cos(ωt) = −k∂T
∂x

+ 4σT̄ 3T at x = 0, (7b)

−k∂T
∂x
→ 0 as x→∞. (7c)

Let k = 2 W m−1 K−1, ρ = 2000 kg m−3, c = 8×102 J kg−1 K−1, and q0 = 0.2× q̄.
(a) (3 points) Define dimensionless variables through T = [T ]T ∗, t = [t]t∗, x =

[x]x∗. Show that the problem can be rendered in the form

∂T ∗

∂t∗
− ∂2T ∗

∂x∗2
= 0 for x > 0, (8a)

cos(t∗) = −α∂T
∗

∂x∗
+ T ∗ at x∗ = 0, (8b)

−∂T
∗

∂x∗
→ 0 as x∗ →∞. (8c)

Define the scales [x], [t] and [T ] in terms of ρ, c, k, q̄, q0, ω and σ. For
the values given above, give numerical values for these scales and for the
parameter α. Is there a useful approximation you could make to (8)?

(b) (4 points) Look for a solution

T ∗(x∗, t∗) = Re[A exp(it∗ + λx∗)]

Find λ so that (8a) and (8c) are satisifed simultaneously. Show that you can
write (8b) in the form

Re{[A(1− αλ)− 1] exp(it∗)} = 0

for any t∗. Give a solution for A in terms of α.
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(c) (2 points) Write A in polar form

A = |A| exp(iθ),

and find |A| and θ in terms of α. You may either find an exact version of
the polar form, or try approximating it using α� 1. Note that, for a small
number θ, cos(θ) ≈ 1 and sin(θ) ≈ θ. For the value of α you have computed
above, how big is θ? (Note that the approximation θ = 0 will not get you
any points.)

(d) (1 point) What is the dimensional amplitude of temperature variations? By
how many days does the surface temperature peak lag the surface insolation
peak? In the northern hemisphere, which date does this correspond to?
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3. This question is about flow in a pipe. Assume the pipe is aligned with the
x1-axis and has a cross-section that does not change along the length of the
pipe. Consider a fluid of constant density ρ with an unidirectional velocity field
u = (u1, 0, 0) (meaning that velocity components that point across the pipe are
zero) that depends only on time t and position (x2, x3) in the cross-section but
not on distance x1 along the pipe. Assume also that the body force fi does not
depend on position or time. In addition, the velocity is zero at the wall of the
pipe, so u1 = 0 there. Start with the Navier-Stokes equations for fluid flow

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (9a)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

+ fi, (9b)

where

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− pδij.

(a) (4 points) For the geometry assumed above, show that the Navier-Stokes
equations (9) reduce to

ρ
∂u1
∂t
− µ

(
∂2u1
∂x22

+
∂2u1
∂x22

)
= − ∂p

∂x1
+ f1 (10a)

0 = − ∂p

∂x2
+ f2 (10b)

0 = − ∂p

∂x3
+ f3 (10c)

(10d)

(b) (2 points) Recall that f1, f2 and f3 are assumed to be constant. Show that
we must have

p = f2x2 + f3x3 − Cx1 +D

for some constants C and D.

(c) (3 points) Assume that C = 0, and that the flow is in steady state, so
u1 is independent of t. Assume also that the pipe has a circular cross-
section with radius R centered on (x2, x3) = (0, 0). We can then define
plane polar coordinates (r, θ) through x2 = r cos(θ), x3 = r sin(θ). If the
velocity u1 = u1(r) depends only on distance r from the centre of the pipe,
then the Laplacian of u1 can be written as

∂2u1
∂x22

+
∂2u1
∂x23

=
1

r

d

dr

(
r

du1
dr

)
(11)
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From this, derive that

u1(r) =
f1
4µ

(R2 − r2).

Make sure to justify the choice of any constants of integration.

(d) (1 point) Show that the rate at which mass passes through any given cross-
section of the pipe is given by

2π

∫ R

0

f1
4µ

(R2 − r2)r dr.
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4. This question is about stresses in a unidirectional flow. Consider a semicircular
channel of radius R, aligned with the x1-axis and open to the atmosphere at the
top (see figure 1). The region occupied by the fluid is given by

x22 + x23 < R2 and x3 < 0.

For a fluid of constant viscosity µ and density ρ, the velocity field in this region
is given by u = (u1, 0, 0), where

u1 =
ρg sin(α)

4µ
(R2 − x22 − x23)

where g is acceleration due to gravity and α the angle of inclination of the channel
to the horizontal. The pressure field is

p = −ρg cos(α)x3.

(a) (3 points) For an incompressible viscous fluid, stress σij is given by

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδij.

For the velocity field given above, compute σij as a function of x2, x3, R, µ,
ρ, g and α. Write your answer as a matrix.

(b) (1 point) Show that, at the upper surface at x3 = 0, we have σijnj = 0,
where ni is the normal to that surface.

(c) (1 point) Next, consider a small area element ∆S just below the the upper
surface of the flow at (0, x2, 0), but with normal (cos(θ), sin(θ), 0). Note that
this is not the normal to the upper surface, so ∆S is not parallel to the upper
surface. Compute the force ∆Fi = σijnj∆S exerted by the fluid flow on the
surface ∆S as a function of x2, R, µ, ρ, g and α.

(d) (1 point) Show that the component ∆Fn = ∆Fini of ∆Fi normal to ∆S is
given by

∆Fn = −ρg sin(α) cos(θ) sin(θ)x2∆S.

(e) (2 points) Keep the size of the area element ∆S and its position x2 fixed,
but allow its orientation (given by the angle θ) to vary. If x2 > 0, what angle
maximizes ∆Fn? What angle maximizes ∆Fn if x2 < 0? (Hint. Recall that
cos2(θ)− sin2(θ) = cos(2θ).)

(f) (2 points) Glacier ice flows as an incompressible viscous fluid, but can crack
to form crevasses when subjected to high enough stresses. Specifically,
crevasses form along surfaces in the ice that experience large enough normal
forces ∆Fn/∆S. The orientation of crevasses when they first form is there-
fore such as to maximize ∆Fn, and they form first at those positions on the
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surface where ∆Fn is biggest. Consider a glacier flowing down a semicircular
channel. Where will crevasses first form? Sketch the channel and indicate
the flow direction as in figure 1, and indicate the pattern of crevasses you
expect to form.
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Figure 1: Sketch of the semicircular channel of question 4. The radius of the semicir-
cular cross-section is R.
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