
Final: EOSC 352

18 December, 2012

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.
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1. Consider two-dimensional heat conduction with cylindrical symmetry about the
origin, so the termperature field T (r, t) depends only on time t and distance r
from the origin. There is no heat flow ‘at infinity’, but there is a heat source at
the origin that is switched on at t = 0. Prior to t = 0, the temperature is uniform
at T = 0. In non-dimensional form, this situation can be described by

∂T

∂t
− 1

r

∂

∂r

(
r
∂T

∂r

)
= 0 everywhere for t > 0 (1a)

T (r, 0) = 0 for all r > 0. (1b)

lim
r→0

(
−2πr

∂T

∂r

)
= 1 for all t > 0 (1c)

−∂T
∂r
→ 0 as r →∞. (1d)

In this question, you will construct a similarity solution to the problem.

(a) (4 points) Let
T (r, t) = t−αΘ(r/tβ). (2)

and define
ξ = r/tβ.

Substitute this into (1a), converting partial derivatives with respect to r and
t into ordinary derivatives with respect to ξ. Show that you get

−αt−α−1Θ(ξ)− βt−α−1ξdΘ

dξ
− t−α−2β 1

ξ

d

dξ

(
ξ

dΘ

dξ

)
= 0. (3)

What value does β have to take in order for a similarity solution (2) to hold?
ANS: We have

∂T

∂t
= −αt−α−1Θ(ξ)− βrt−α−β−1Θ′(ξ)

= −αt−α−1Θ(ξ)− βt−α−1ξΘ′(ξ)
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as well as

∂T

∂r
= t−α−βΘ′(ξ)

r
∂T

∂r
= rt−α−βΘ′(ξ)

= t−αξΘ′(ξ)

∂

∂r

(
r
∂T

∂r

)
=

∂

∂r

(
t−αξΘ′(ξ)

)
= t−α

∂

∂r
(ξΘ′(ξ))

= t−α
∂ξ

∂r
× (ξΘ′(ξ))

′

= t−α−β (ξΘ′(ξ))
′

1

r

∂

∂r

(
r
∂T

∂r

)
= t−α−βr−1 (ξΘ′(ξ))

′

= t−α−2β(r/t−β)−1 (ξΘ′(ξ))
′

= t−α−2β
1

ξ
(ξΘ′(ξ))

′

Substituting these into (1a) gives (3). The factors t−α−1 and t−α−2β must
cancel as Θ must not depend explicitly on time t, so their exponents must
be the same. It follows that β = 1/2.

(b) (2 points) Next, show that the initial condition (1b) and boundary condition
(1d) can be expressed as

r−α/βξα/βΘ(ξ)→ 0 as ξ →∞ at any fixed r > 0, (4a)

t−α−βΘ′(ξ)→ 0 as ξ →∞ at any fixed t > 0. (4b)

ANS: We have ξ = r/tβ so that t = (r/ξ)1/β and t−α = ξα/β/rα/β. The limit
t→ 0 at fixed r therefore corresponds to ξ →∞ while r remains fixed. (1b)
needs to be interpreted as limt→0 T (r, t) = 0 for any fixed r, which we can
re-write as

lim
t→0

T (r, t) = lim
t→0

(
t−αΘ(r/tβ)

)
= lim

ξ→∞
ξα/β/rα/βΘ(ξ) = 0.

Similarly, we have from above that

∂T

∂r
= t−α−βΘ′(ξ)→ 0

as ξ →∞ at fixed t.
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(c) (1 point) Show that the heat source condition (1c) takes the form

lim
ξ→0

(
−t−α2πξΘ′(ξ)

)
= 1 for any fixed t > 0. (4c)

Why does it follow that α = 0?
ANS: From above, we have that

r
∂T

∂r
= t−αξΘ′(ξ)

and the limit r → 0 corresponds to ξ → 0 at fixed t. The condition (1c)
therefore takes the required form. The only way that the left-hand side
above can take the value of 1 regardless of time t is if the exponent −α is
zero,

(d) (2 points) Put the value of β you have deduced and α = 0 into (3). Exapnd
the last term in (3) using the product rule. Separate variables to show that

Θ′(ξ) =
C

ξ
exp

(
−ξ

2

4

)
(5)

Show that C = −1/2π.
ANS: Substituting and cancelling the factors t−α−1 = t−α−β gives

−1

2
ξΘ′(ξ)− 1

ξ

d

dξ
(ξΘ′(ξ))

′
= 0

Expanding the second term gives

1

ξ

d

dξ
(ξΘ′(ξ)) =

1

ξ
Θ′(ξ) + Θ′′(ξ)

so that

−1

2
ξΘ′(ξ)− 1

ξ
Θ′(ξ)−Θ′′(ξ) = 0.

Separating variables gives

Θ′′(ξ)

Θ′(ξ)
= −1

2
ξ − 1

ξ
.

Integrating both sides, we get

log(Θ′(ξ)) = −1

4
ξ2 − log(ξ) +K.
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Exponentiating gives

Θ′(ξ) = exp

(
−1

4
ξ2 − log(ξ) +K

)
=

exp(K)

exp(log(ξ))
exp

(
−ξ

2

4

)
=
C

ξ
exp

(
−ξ

2

4

)
To find C, use the boundary condtion (1c) in transformed form with α = 0,

lim
ξ→0

(−2πξΘ′(ξ)) = 1.

In the solution above, this requires

−ξΘ′(ξ) = −C exp

(
−ξ

2

4

)
and so limξ→0(−2πξΘ′(ξ)) = −2πC = 1. Hence C = −1/(2π).

(e) (2 points) Show that

T (r, t) = Θ(ξ) =

∫ ∞
ξ

1

2πξ′
exp

(
−ξ
′2

4

)
dξ′.

The upper incomplete gamma function is defined as

Γ(s, x) =

∫ ∞
x

ts−1 exp(−t) dt.

Show that

T (r, t) =
1

4π
Γ

(
0,
r2

4t

)
.

ANS: Integrate Θ′(ξ) from ξ to∞, taking care not to use the same symbol ξ
as a limit of integration and as an integration variable. By the fundamental
theorem of calculus,

Θ(∞)−Θ(ξ) =

∫ ∞
ξ

Θ′(ξ′) dξ′

But from (4a) with α = 0, we have limξ→∞Θ(ξ) = 0, so

Θ(ξ) = −
∫ ∞
ξ

Θ′(ξ′) dξ′

=

∫ ∞
ξ

1

2πξ′
exp

(
−ξ
′2

4

)
dξ′
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To transform this to an upper incomplete gamma function, put t = ξ′2/4,
ξ′ = 2t1/2, dξ′ = t−1/2 dt. Substituting gives

Θ(ξ) =

∫ ∞
ξ2/4

1

4πt1/2
exp (−t) t−1/2 dt

=
1

4π

∫ ∞
ξ2/4

1

t
exp(−t) dt

=
1

4π
Γ
(
0, ξ2/4

)
=

1

4π
Γ

(
0,
r2

4t

)
.
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2. The following is a model for temperature waves in the ground, driven by seasonally
varying solar radiation intensity. The mean temperature T̄ of the ground surface
is given by a balanace of incoming radiation and outgoing radiation,

q̄ = σT̄ 4, (6)

where q̄ = 1350 W m−2 is the solar constant and σ = 5.67 × 10−8 W m−2 K−4

is the Stefan-Boltzmann constant, and T̄ is expressed in Kelvins. Variations in
incoming radiation about their mean q̄ are balance by radiation back in space
and conduction of heat into the ground. This leads to the following energy con-
servation model in the ground (x > 0):

ρc
∂T

∂t
− k∂

2T

∂x2
= 0 for x > 0, (7a)

q0 cos(ωt) = −k∂T
∂x

+ 4σT̄ 3T at x = 0, (7b)

−k∂T
∂x
→ 0 as x→∞. (7c)

Let k = 2 W m−1 K−1, ρ = 2000 kg m−3, c = 8×102 J kg−1 K−1, and q0 = 0.2× q̄.
(a) (3 points) Define dimensionless variables through T = [T ]T ∗, t = [t]t∗, x =

[x]x∗. Show that the problem can be rendered in the form

∂T ∗

∂t∗
− ∂2T ∗

∂x∗2
= 0 for x∗ > 0, (8a)

cos(t∗) = −α∂T
∗

∂x∗
+ T ∗ at x∗ = 0, (8b)

−∂T
∗

∂x∗
→ 0 as x∗ →∞. (8c)

Define the scales [x], [t] and [T ] in terms of ρ, c, k, q̄, q0, ω and σ. For
the values given above, give numerical values for these scales and for the
parameter α. Is there a useful approximation you could make to (8)?
ANS: We have

∂T

∂t
=

[T ]

[t]

∂T ∗

∂t∗

∂T

∂x
=

[T ]

[x]

∂T ∗

∂x∗

∂2T

∂x2
=

[T ]

[x]2
∂2T ∗

∂x∗2
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Substitute this into (7) to get

ρc[T ]

[t]

∂T ∗

∂t∗
− k[T ]

[x]2
∂2T ∗

∂x∗2
= 0 for [x]x∗ > 0,

q0 cos(ω[t]t∗) = −k[T ]

[x]

∂T ∗

∂x∗
+ 4σT̄ 3[T ]T ∗ at [x]x∗ = 0,

−k[T ]

[x]

∂T ∗

∂x∗
→ 0 as [x]x∗ →∞.

Divide to give

ρc[x]2

k[t]

∂T ∗

∂t∗
− ∂2T ∗

∂x∗2
= 0 for x∗ > 0,

cos(ω[t]t∗) = − k[T ]

q0[x]

∂T ∗

∂x∗
+

4σT̄ 3[T ]

q0
T ∗ at x∗ = 0,

−∂T
∗

∂x∗
→ 0 as x∗ →∞.

To get the desired form, we need

ρc[x]2

k[t]
= 1, ω[t] = 1

4σT̄ 3[T ]

q0
= 1,

which leads to

[t] =
1

ω
, [x] =

k

ρcω
, [T ] =

q0
4σT̄ 3

.

To express [T ] not in terms of T̄ but q̄, we need T̄ = (q̄/σ)1/4, so

[T ] =
q0

4 σ(q̄/σ)3/4
=

q0
4σ1/4q̄3/4

.

The dimensionless group α is

α =
k[T ]

q0[x]

Numerical values with the parameter values above are

[t] = 5.026 s, [x] = 6.27 m, [T ] = 19.6 K

and
α = 0.0232.

An obvious approximation would be to set α = 0.
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(b) (4 points) Look for a solution

T ∗(x∗, t∗) = Re[A exp(it∗ + λx∗)]

Find λ so that (8a) and (8c) are satisifed simultaneously. Show that you can
write (8b) in the form

Re{[A(1− αλ)− 1] exp(it∗)} = 0

for any t∗. Give a solution for A in terms of α.
ANS: Substituting in (8a) and performing standard manipulations gives

Re
(
A(i− λ2) exp(it∗ + λx∗)

)
= 0,

and to ensure that this holds regardless of the value of x∗ and t∗ requires

λ2 = i.

Hence

λ =
√
i = ±1 + i√

2

In order to pick which root to use, can look at (8c). If we pick the ‘+’
sign, the solution will have oscillations whose size increases exponentially as
x∗ →∞, which cannot satisfy (8c). Hence we must pick the minus sign, and
the oscillations will decay exponentially as x∗ →∞. We still have to satisfy
(8b). Substitute cos(t∗) = Re[exp(it∗)] and the solution above to get

Re[exp(it∗)] = Re[−αλA exp(it∗)] + Re[A exp(it∗)].

Combine into one:

Re{[A(1− αλ)− 1] exp(it∗)} = 0.

To satisfy this for all t∗, set the factor A(1− αλ)− 1 to zero:

A =
1

1− αλ
=

1

1 + α(1 + i)/
√

2
.

(c) (2 points) Write A in polar form

A = |A| exp(iθ),

and find |A| and θ in terms of α. You may either find an exact version of
the polar form, or try approximating it using α� 1. Note that, for a small
number θ, cos(θ) ≈ 1 and sin(θ) ≈ θ. For the value of α you have computed
above, how big is θ? (Note that the approximation θ = 0 will not get you
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any points.)
ANS: We have

A =
1

1 + α/
√

2 + iα/
√

2
so

A−1 = |A|−1 exp(−iθ) = 1 + α/
√

2 + iα/
√

2.

Using Euler’s formula

|A|−1 cos(θ) = 1 + α/
√

2

−|A|−1 sin(θ) = α/
√

2

Squaring both equations and adding gives

|A|−2 = (1 + α/
√

2)2 + α2/2,

so

|A| = 1/

√
(1 + α/

√
2)2 + α2/2.

Divinding the two equations, we have

tan(θ) = −α/(
√

2 + α).

or

θ = tan−1
(

α

α +
√

2

)
.

An approximate solution can be found if we assume α is small, so Taylor
expanding in α,

A ≈ 1− α(1 + i)√
2

.

At leading order, this is A ≈ 1, so θ is small. Doing slightly better than this,

|A| exp(iθ) = |A| cos(θ) + i|A| sin(θ) ≈ |A|+ i|A|θ.

Comparing real and imaginary parts,

|A| ≈ 1− α/
√

2, |A|θ ≈ −α/
√

2

so
θ ≈ α

α +
√

2
≈ − α√

2
.

(d) (1 point) What is the dimensional amplitude of temperature variations? By
how many days does the surface temperature peak lag the surface insolation
peak? In the northern hemisphere, which date does this correspond to?
ANS: The amplitude of oscillations in dimensional terms is |A|[T ] With
[T ] = 19.64 and α = .0232, we have an amplitude of 19.31 K. Also, the
phase lag is θ/(2 ∗ pi) times one period of oscillation (365 days), which gives
9.4 days. In the northern hemisphere, this is about June 30th.
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3. This question is about flow in a pipe. Assume the pipe is aligned with the
x1-axis and has a cross-section that does not change along the length of the
pipe. Consider a fluid of constant density ρ with an unidirectional velocity field
u = (u1, 0, 0) (meaning that velocity components that point across the pipe are
zero) that depends only on time t and position (x2, x3) in the cross-section but
not on distance x1 along the pipe. Assume also that the body force fi does not
depend on position or time. In addition, the velocity is zero at the wall of the
pipe, so u1 = 0 there. Start with the Navier-Stokes equations for fluid flow

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (9a)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

+ fi, (9b)

where

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− pδij.

(a) (4 points) For the geometry assumed above, show that the Navier-Stokes
equations (9) reduce to

ρ
∂u1
∂t
− µ

(
∂2u1
∂x22

+
∂2u1
∂x22

)
= − ∂p

∂x1
+ f1 (10a)

0 = − ∂p

∂x2
+ f2 (10b)

0 = − ∂p

∂x3
+ f3 (10c)

(10d)

ANS: We have u2 = u3 = 0 and ∂u1/∂x1 = 0. The mass conservation equa-
tion (9a) is always satisfied because ρ is constant and ∂u1/∂x1 = ∂u2/∂x2 =
∂u3/∂x3 = 0. The only non-zero components of σij are

σ11 = σ22 = σ33 = −p, σ12 = σ21 = µ
∂u1
∂x2

, σ13 = σ31 = µ
∂u1
∂x3

.

Also, all momentum advection terms uj∂ui/∂xj vanish: ui is only non-zero
if i = 1, but we have u1∂u1/∂x1 = 0 because u1 does not depend on x1.
Substituting into (9b) for i = 1 gives

ρ
∂u1
∂t

=
∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

+ f1

= − ∂p

∂x1
+

∂

∂x2

(
µ
∂u1
∂x2

)
+

∂

∂x3

(
µ
∂u1
∂x3

)

Page 11



which can be rearranged into

ρ
∂u1
∂t
− µ

(
∂2u1
∂x22

+
∂2u1
∂x23

)
= − ∂p

∂x1
+ f1. (11)

Substituting into (9b) for i = 2 gives

0 =
∂σ21
∂x1

+
∂σ22
∂x2

+ f2

=
∂

∂x1

(
µ
∂u1
∂x2

)
− ∂p

∂x2
+ f2

= − ∂p

∂x2
+ f2

as u1 and hence ∂u1/∂x2 do not depend on x1. Following exactly the same
procedure, we can also find

− ∂p

∂x3
+ f3 = 0.

(b) (2 points) Recall that f1, f2 and f3 are assumed to be constant. Show that
we must have

p = f2x2 + f3x3 − Cx1 +D

for some constants C and D.
ANS: From

− ∂p

∂x3
+ f3 = 0

we know that
∂(p− f3x3)

∂x3
= 0,

and hence p− f3x3 cannot depend on x3. Similarly, from

− ∂p

∂x2
+ f2 = 0,

we know that
∂(p− f2x2 − f3x3)

∂x3
= 0,

and hence p − f3x3 − f2x2 can depend neither on x3 nor on x2. In other
words,

p = f2x2 + f3x+ 3 + p0(x1),

where p0 is some function of x1. But we can differentiate (11) with respect
to x1 and use ∂u1/∂x1 = 0 to find

∂2u1
∂x1∂t

− µ
(

∂3u1
∂x1∂x22

+
∂3u1
∂x1∂x23

)
= −∂

2p

∂x21
= 0

Page 12



Substitute p = f2x2 + f3x+ 3 + p0(x1) to find

d2p0
dx21

= 0,

from which it follows, integrating twice, that

p0 = −Cx1 +D,

where C and D are constants of integration.

(c) (3 points) Assume that C = 0, and that the flow is in steady state, so
u1 is independent of t. Assume also that the pipe has a circular cross-
section with radius R centered on (x2, x3) = (0, 0). We can then define
plane polar coordinates (r, θ) through x2 = r cos(θ), x3 = r sin(θ). If the
velocity u1 = u1(r) depends only on distance r from the centre of the pipe,
then the Laplacian of u1 can be written as

∂2u1
∂x22

+
∂2u1
∂x23

=
1

r

d

dr

(
r

du1
dr

)
(12)

From this, derive that

u1(r) =
f1
4µ

(R2 − r2).

Make sure to justify the choice of any constants of integration.
ANS: We have

−µ1

r

d

dr

(
r

du1
dr

)
= f1.

Separating variables,
d

dr

(
r

du1
dr

)
= −f1r

µ
.

Integrate

r
du1
dr

= −f1r
2

2µ
+ C.

Separate variables
du1
dr

= −f1r
2µ

+
C

r
.

Integrate again

u1 = −f1r
2

4µ
+ C log(r) +D.

We want a bounded velocity field, so the logarithm term needs to go away
with C = 0.1 We need to have zero velocity at the wall of the pipe r = R,

1It could also be shown that C 6= 0 corresponds to a force exerted along a line at the centre of
the pipe, which is unphysical.
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so

0 = −f1R
2

4µ
+D,

and hence

D =
f1R

2

4µ
,

and

u1 =
f1(R

2 − r2)
4µ

.

(d) (1 point) Show that the rate at which mass passes through any given cross-
section of the pipe is given by

2πρ

∫ R

0

f1
4µ

(R2 − r2)r dr.

ANS: From basic continuum physics, the rate at which mass passes through
the cross-section is ∫

S

ρu · n dS.

With a cross-section at right-angles to the x1-axis, we have n = (1, 0, 0) and
u ·n = u1. Also, the cross section S is the circle r < R, with surface element
dS = r dr dθ. Hence∫

S

ρu · n dS =

∫ 2π

0

∫ R

0

ρu1r dr dθ

=

∫ R

0

ρρ
f1(R

2 − r2)
4µ

r dr ×
∫ sπ

0

dθ

= 2πρ

∫ R

0

ρρ
f1(R

2 − r2)
4µ

r dr.
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4. This question is about stresses in a unidirectional flow. Consider a semicircular
channel of radius R, aligned with the x1-axis and open to the atmosphere at the
top (see figure 1). The region occupied by the fluid is given by

x22 + x23 < R2 and x3 < 0.

For a fluid of constant viscosity µ and density ρ, the velocity field in this region
is given by u = (u1, 0, 0), where

u1 =
ρg sin(α)

4µ
(R2 − x22 − x23)

where g is acceleration due to gravity and α the angle of inclination of the channel
to the horizontal. The pressure field is

p = −ρg cos(α)x3.

(a) (3 points) For an incompressible viscous fluid, stress σij is given by

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδij.

For the velocity field given above, compute σij as a function of x2, x3, R, µ,
ρ, g and α. Write your answer as a matrix.
ANS: We have u2 = u3 = 0 and hence the only non-zero stress components
are

σ11 = σ22 = σ33 = −p, σ12 = σ21 = µ
∂u1
∂x2

, σ13 = σ31 = µ
∂u1
∂x3

.

Forming the relevant derivatives, we get

σ =

 ρg cosαx3 −ρg sin(α)x2/2 −ρg sin(α)x3/2
−ρg sin(α)x2/2 ρg cosαx3 0
−ρg sin(α)x3/2 0 ρg cosαx3


(b) (1 point) Show that, at the upper surface at x3 = 0, we have σijnj = 0,

where ni is the normal to that surface.
ANS: As a column vector, we have n = (0, 0, 1)T and the product

σn =

 ρg cosαx3 −ρg sin(α)x2/2 −ρg sin(α)x3/2
−ρg sin(α)x2/2 ρg cosαx3 0
−ρg sin(α)x3/2 0 ρg cosαx3

 0
0
1


=

 ρg sin(α)x3/2
0

ρg cos(α)x3


= 0

as x3 = 0 at the surface.
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(c) (1 point) Next, consider a small area element ∆S just below the the upper
surface of the flow at (0, x2, 0), but with normal (cos(θ), sin(θ), 0). Note that
this is not the normal to the upper surface, so ∆S is not parallel to the upper
surface. Compute the force ∆Fi = σijnj∆S exerted by the fluid flow on the
surface ∆S as a function of x2, R, µ, ρ, g and α.
ANS: A similar computation to the above gives, with x3 = 0,

σn∆S =

 0 −ρg sin(α)x2/2 0
−ρg sin(α)x2/2 0 0

0 0 0

 cos(θ)
sin(θ)

0

∆S

=

 −ρg sin(α) sin(θ)x2/2
−ρg sin(α) cos(θ)x2/2

0

∆S.

(d) (1 point) Show that the component ∆Fn = ∆Fini of ∆Fi normal to ∆S is
given by

∆Fn = −ρg sin(α) cos(θ) sin(θ)x2∆S.

The normal component is

∆S
(
−ρg sin(α) sin(θ)x2/2 −ρg sin(α) cos(θ)x2/2 0

) cos(θ)
sin(θ)

0

 =

= −ρg sin(α) sin(θ) cos(θ)x2∆S.

(e) (2 points) Keep the size of the area element ∆S and its position x2 fixed,
but allow its orientation (given by the angle θ) to vary. If x2 > 0, what angle
maximizes ∆Fn? What angle maximizes ∆Fn if x2 < 0? (Hint. Recall that
cos2(θ)− sin2(θ) = cos(2θ).)
ANS: Two possiblities here. First, we have sin(θ) cos(θ) = sin(2θ)/2. This
is maximized if 2θ = π/2 + 2nπ, θ = (n + 1/4)π, and minimized for 2θ =
−π/2 + 2nπ, θ = (n− 1/4)π, where n is an integer. We can limit ourselves
to −π < θ ≤ π. If x2 > 0, the maximum value of ∆Fn occurs when
sin(θ) cos(θ) attains its minimum, so π = −θ/4 or π = 3/4. Note that
θ = 3π/4 corresponds to the same orientation of ∆S as θ = −π/4, but ni
pointing in the opposite direction. When x2 < 0, the maximum occurs when
sin(θ) cos(θ) attains a maximum, so π = θ/4 or θ = −3π/4; again these
correspond to the same orientation for ∆S.
The second possiblity, using the hint, would be the following: A necessary
(but not sufficient!) condition for a maximum is that ∂∆Fn/∂θ = 0. We
have

∂∆Fn
∂θ

= −ρg sin(α)∆Sx2[cos2(θ)− sin2(θ)]

= −ρg sin(α)∆Sx2 cos(2θ)
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Hence we must have cos(2θ) = 0, θ = (1 + 2n)π/4 where n is an integer.
In addition to maxima, these may also correspond to minima (or less likely,
inflection points). We can restrict ourselves to −π < θ ≤ π, so we have
θ = −3π/4. − π/4, π/4, 3π/4. But for these, we have

∆Fn = −ρg sin(α)x2∆S/2

if θ = π/4 or θ = −3π/4, and

∆Fn = −ρg sin(α)x2∆S/2

for θ = −π/4 or θ = 3π/4. This leads to the same answer as above.

(f) (2 points) Glacier ice flows as an incompressible viscous fluid, but can crack
to form crevasses when subjected to high enough stresses. Specifically,
crevasses form along surfaces in the ice that experience large enough normal
forces ∆Fn/∆S. The orientation of crevasses when they first form is there-
fore such as to maximize ∆Fn, and they form first at those positions on the
surface where ∆Fn is biggest. Consider a glacier flowing down a semicircular
channel. Where will crevasses first form? Sketch the channel and indicate
the flow direction as in figure 1, and indicate the pattern of crevasses you
expect to form.
ANS: The maximum value of ∆Fn is always ρg sin(α)∆S|x2|/2, so is greatest
at the edge of the channel where |x2| = R is largest. The orientation of the
crevasses are inclined at 45 degress to the upstream direction as shown in
figure 1
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Figure 1: Sketch of the semicircular channel of question 4. The radius of the semicir-
cular cross-section is R.
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