Final: EOSC 352

18 December, 2012

This exam consists of four questions worth ten marks each. Available marks for
each part of a question are indicated in brackets. Attempt THREE questions. You
have 2 hours 20 minutes.



1. Consider two-dimensional heat conduction with cylindrical symmetry about the
origin, so the termperature field T'(r,t) depends only on time ¢ and distance r
from the origin. There is no heat flow ‘at infinity’, but there is a heat source at
the origin that is switched on at t = 0. Prior to ¢ = 0, the temperature is uniform
at T'= 0. In non-dimensional form, this situation can be described by

or 10 ( 0T
i (TW) =0 everywhere for ¢ > 0 (la)
T(r,0)=0 for all r > 0. (1b)
lim <—27T7“8—T) =1 forallt >0 (1c)
r—0 or
T
_88_7“ —0 as r — 00. (1d)

In this question, you will construct a similarity solution to the problem.
(a) (4 points) Let
T(r,t) =t0(r/t"). (2)
and define
£ =r/t8.
Substitute this into (1a), converting partial derivatives with respect to r and
t into ordinary derivatives with respect to £&. Show that you get

doe 1d /. do
—at™*T'O(E) — Bt — — TS — (g-) =0. 3
What value does  have to take in order for a similarity solution (2) to hold?
ANS: We have
or
= —atle(e) - gt o)

= —at™1e(E) — B0 (©)
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as well as

Ol o s
o t o'(¢)
Tg—z = rt=PO/(¢)

=t76O'(€)

% <r§—T) = aﬁ (t¢0'(9))

= (o)
=% g0l

)
e G B N ()
B ) ()

- t“ﬁ% (€0'(€))

Substituting these into (1a) gives (3). The factors -1 and +~*~2 must
cancel as © must not depend explicitly on time ¢, so their exponents must
be the same. It follows that 5 = 1/2.

(b) (2 points) Next, show that the initial condition (1b) and boundary condition
(1d) can be expressed as

P BB (€) = 0 as £ — oo at any fixed r > 0, (4a)

t7Pe'(€) = 0 as & — oo at any fixed ¢ > 0. (4b)

ANS: We have ¢ = r/t? so that t = (r/&)V/? and t=* = ¢%/# /r®/8. The limit

t — 0 at fixed r therefore corresponds to £ — oo while r remains fixed. (1b)

needs to be interpreted as limy o T'(r,t) = 0 for any fixed r, which we can
re-write as

lim T(r,t) = lim (t7°0(r/t7)) = Jim ¢8Il () = 0.

t—0
Similarly, we have from above that

or
5 =06 = 0

as & — oo at fixed t.
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(c¢) (1 point) Show that the heat source condition (1c) takes the form

lim (—t~*27£0'(€)) =1 for any fixed ¢ > 0. (4c)

£—0

Why does it follow that a = 07
ANS: From above, we have that

or —a ey
Ty T t7¢0'(§)

and the limit » — 0 corresponds to & — 0 at fixed ¢. The condition (1c)
therefore takes the required form. The only way that the left-hand side
above can take the value of 1 regardless of time ¢ is if the exponent —a« is
7Z€ero,

(d) (2 points) Put the value of § you have deduced and o = 0 into (3). Exapnd
the last term in (3) using the product rule. Separate variables to show that

09 = e (—%) 5)

Show that C' = —1/2.
ANS: Substituting and cancelling the factors t=*~! = t=*5 gives

1 oo1d
—559 (5)_Ed_§(£@ (€) =0

Expanding the second term gives

1d / _1 / "
£ dE (£O'(€)) = 59 (&) +0"(§)
so that . ]

5600 - (OO - () =0.

Separating variables gives

) _ 1,1
G

Integrating both sides, we get

l08(8/(€)) = — 1€ ~ los(€) + K.
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Exponentiating gives

0(6) = exp (¢~ 06l + K )

)

To find C, use the boundary condtion (1c) in transformed form with oo = 0,
lim (—27£0'(¢)) = 1.
£—0

In the solution above, this requires

—£0'(§) = —Cexp (—%)

and so limg_,o(—27€0'(€)) = —27C = 1. Hence C = —1/(2m).
(e) (2 points) Show that

0o 12
T(rt) = O(¢) — /£ 2; 7 o (—%) a’

The upper incomplete gamma function is defined as

F(s,x):/ t5 1 exp(—t) dt.

Show that

1 r?

ANS: Integrate ©'(£) from & to oo, taking care not to use the same symbol &
as a limit of integration and as an integration variable. By the fundamental
theorem of calculus,




To transform this to an upper incomplete gamma function, put t = £2/4,
¢ =2t1/2  d¢’ = t~1/2dt. Substituting gives

) 1 B
o= /@/4 i P (T de
1 1
= — = exp(—t) dt
i ooy 1 0D
1

= EF (0,€%/4)

1 r?
=—I(0,—]).
A <74t>
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2. The following is a model for temperature waves in the ground, driven by seasonally
varying solar radiation intensity. The mean temperature 7' of the ground surface
is given by a balanace of incoming radiation and outgoing radiation,

g=oT" (6)

where ¢ = 1350 W m~2 is the solar constant and o = 5.67 x 1078 W m~2 K—*
is the Stefan-Boltzmann constant, and T is expressed in Kelvins. Variations in
incoming radiation about their mean ¢ are balance by radiation back in space
and conduction of heat into the ground. This leads to the following energy con-
servation model in the ground (z > 0):

or  o*T
pegy —hos = 0 for x > 0, (7a)
or s
o cos(wt) = —k% +40T°T at x =0, (7b)
T
_kg_x — 0 as T — 00. (7c)

Let k=2Wm K™ p=2000kgm™3, c=8x102J kg ! K™, and ¢y = 0.2 x .
(a) (3 points) Define dimensionless variables through 7' = [T|T*, t = [t|t*, © =
[x]z*. Show that the problem can be rendered in the form

or* 9T+

5 9 0 for ¥ > 0, (8a)
T*
cos(t*) = —agm* + 1T at ¥ =0, (8b)
T*
_gx* — 0 as £ — 00. (8¢c)

Define the scales [z], [t] and [T] in terms of p, ¢, k, @, qo, w and o. For
the values given above, give numerical values for these scales and for the
parameter «. Is there a useful approximation you could make to (8)7

ANS: We have
or 10T~
ot 1] ot
oT  [T)OT*
or m Ox*
o*T [T 0°T*
Ox2  [x)2 0x*?
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Substitute this into (7) to get

pc| T 0T*  Kk[T] 0°T*

_ — f *
0ot a2 0n7 0 or [z]z* >0,
k[T oT* _
qo cos(w[t]t") = —%% + 40T [T T* at [z]z" =0,
k[T]0T* «
- as [z]z" — oo.
[z] Ox*
Divide to give
pclz)? oT*  &*T* .
_ =0 f 0
ki) ot 012 orv =%
T)0T* 40T3[T
cos(w[tt™) = — kT] 9 +2 [ ]T* at ¥ =0,
qo[z] O o
ar* .
— — 0 as - — 00.
ox*
To get the desired form, we need
2 73
pclx] _1 Wit = 1 40T [T 1,
k[t] o
which leads to
1 k q
w pew 40T

To express [T] not in terms of 7' but ¢, we need T = (g/c)/*, so

4 0((7/0)3/4 - 401/4q3/4'

7] = do qo0

The dimensionless group « is

Numerical values with the parameter values above are
[t] = 5.02%s, [z] = 6.27m, [T] =19.6K

and
o = 0.0232.

An obvious approximation would be to set o = 0.
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(b)

(4 points) Look for a solution
T*(x*,t") = Re[Aexp(it* + Az")]

Find A so that (8a) and (8c) are satisifed simultaneously. Show that you can
write (8b) in the form

Re{[A(1 — aX) — 1]exp(it*)} =0

for any t*. Give a solution for A in terms of «.
ANS: Substituting in (8a) and performing standard manipulations gives

Re (A(i — A?) exp(it* + Az*)) = 0,
and to ensure that this holds regardless of the value of z* and t* requires
N =i

Hence

141
A=+Vi=+
B

In order to pick which root to use, can look at (8c). If we pick the ‘4’
sign, the solution will have oscillations whose size increases exponentially as
x* — oo, which cannot satisfy (8c). Hence we must pick the minus sign, and
the oscillations will decay exponentially as * — co. We still have to satisfy
(8b). Substitute cos(t*) = Re[exp(it*)] and the solution above to get

Relexp(it*)] = Re[—aAA exp(it*)] + Re[A exp(it*)].
Combine into one:
Re{[A(1 — a)X) — 1] exp(it*)} = 0.
To satisfy this for all t*, set the factor A(1 — a)) — 1 to zero:

1 1

o T Traa

(2 points) Write A in polar form
A = [Al exp(i6),

and find |A| and 6 in terms of a. You may either find an exact version of
the polar form, or try approximating it using @ < 1. Note that, for a small
number 6, cos() ~ 1 and sin(#) ~ §. For the value of o you have computed
above, how big is 87 (Note that the approximation § = 0 will not get you
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any points.)

ANS: We have 1

A T Vet ia

A7 = A exp(—if) = 1 + a/V2 +ia/V2.

Using Euler’s formula

SO

|A| " cos(8) =1+ a/V2
—|A| sin(d) = a/V2
Squaring both equations and adding gives
|A]72 = (1 + a/V2)? +a?/2,

SO

4] = 1/y/(1 4+ a/V2)? + a2/2.

Divinding the two equations, we have

tan(f) = —a/(V2 + a).

0= tan—' [ —2 )
o (a+\/§

An approximate solution can be found if we assume « is small, so Taylor
expanding in «,

or

a(l+1)
oA
At leading order, this is A & 1, so # is small. Doing slightly better than this,
| Al exp(if) = |A] cos(0) + i|A| sin(F) ~ |A| + i|A|6.

Ax1-—

Comparing real and imaginary parts,
Al~1—a/V2, |Af=x—a/V2

SO
« «

0 —— ~ ———.
a—l—\/§ \/§

(d) (1 point) What is the dimensional amplitude of temperature variations? By
how many days does the surface temperature peak lag the surface insolation
peak? In the northern hemisphere, which date does this correspond to?
ANS: The amplitude of oscillations in dimensional terms is |A|[T] With
[T] = 19.64 and o = .0232, we have an amplitude of 19.31 K. Also, the
phase lag is 6/(2 * pi) times one period of oscillation (365 days), which gives
9.4 days. In the northern hemisphere, this is about June 30th.
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3. This question is about flow in a pipe. Assume the pipe is aligned with the
xrp-axis and has a cross-section that does not change along the length of the
pipe. Consider a fluid of constant density p with an unidirectional velocity field
u = (u1,0,0) (meaning that velocity components that point across the pipe are
zero) that depends only on time ¢ and position (z,z3) in the cross-section but
not on distance z; along the pipe. Assume also that the body force f; does not
depend on position or time. In addition, the velocity is zero at the wall of the
pipe, so u; = 0 there. Start with the Navier-Stokes equations for fluid flow

dp  Opu;) _
By + o, 0, (9a)
8ui 8ul i 3017
P (W + uj(?_g:]) = al‘j + fi, (9b)

where

Ou;  Ouj;  20uy
= _2TRS ) — poys.
7is ”(&vj - Ox; 3 0xg ]) b
(a) (4 points) For the geometry assumed above, show that the Navier-Stokes
equations (9) reduce to

Ouy Puy 0wy op
g (2t vy 9P 1
arn (axg Hr oo, TN (10a)
dp
N 1
D2y + fo ( Ob)
dp
0= ——ax?’ + f3 (10C)

(10d)

ANS: We have us = ug = 0 and duy/0z; = 0. The mass conservation equa-
tion (9a) is always satisfied because p is constant and Juy /0z1 = Jug/Jxy =
Ouz/0x3 = 0. The only non-zero components of o;; are

aul aul

011 = 022 = 033 = —D, 012 = 021 = b, 013 =031 = b7
81'2 61’3

Also, all momentum advection terms u;0u;/0x; vanish: wu; is only non-zero
if i = 1, but we have u;0u;/0x; = 0 because u; does not depend on ;.
Substituting into (9b) for i = 1 gives

0u1 . 80'11 8012 8013 —|—f
P 8t N 81’1 81‘2 81‘3 !

__(9p+(9 ouq +(9 ouy
N 8x1 81'2 Iual'g axg Iual'g
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which can be rearranged into

ouy (92% 82ul . 8}9
Par 1 (8:62 022 _7+f1' (11)

Substituting into (9b) for i = 2 gives

8021 80'22

0= 81‘1 6@ + f2
0 Oouq op
N 8.1:1 (Iuaxg) 8x2 + f2
_ 9
- 81’2 + f2

as u1 and hence Ju; /0xy do not depend on z;. Following exactly the same
procedure, we can also find

Op
s

(b) (2 points) Recall that fi, fo and f3 are assumed to be constant. Show that
we must have

+ f3=0.

p = fawa + faws — Caoy + D

for some constants C' and D.

ANS: From op
- =0
D + f3=
we know that
I(p — f373) —0
81'3 ’
and hence p — f3rs cannot depend on x3. Similarly, from
Op
=0,
o1, + fo=

we know that
A(p — faxs — fsxs)
81’3
and hence p — fzrz — faxs can depend neither on x3 nor on x,. In other
words,

=0,

= fowa + f3x + 3+ po(x1),

where pg is some function of z;. But we can differentiate (11) with respect
to z1 and use duy/0x; = 0 to find

0%uy B ( Py Py )__(92]9

IP_y
000t "\ omort T omon 022
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Substitute p = foxs + fsz + 3 + po(x1) to find

d2p0
dz?

=0,

from which it follows, integrating twice, that
bo = —Cl'l + D7

where C' and D are constants of integration.

(¢) (3 points) Assume that C' = 0, and that the flow is in steady state, so
uy is independent of . Assume also that the pipe has a circular cross-
section with radius R centered on (x9,23) = (0,0). We can then define
plane polar coordinates (r,0) through xzo = rcos(), x3 = rsin(f). If the
velocity u; = ui(r) depends only on distance r from the centre of the pipe,
then the Laplacian of u; can be written as

82u1 82u1 13( du1>

o912 ' 022 rdr "ar

(12)

From this, derive that
fi

=1
Make sure to justify the choice of any constants of integration.

ANS: We have
rdr " dr ) 7V

4 (du) S
dr \' dr ) u-

duy f17“2
— =—-——4C.
" dr 2/ *

(R* —1?).

uy (1)

Separating variables,
Integrate

Separate variables

du r C

duw S C

dr 2u T
Integrate again

flTQ
U = ———
! 4

p + Clog(r) + D.

We want a bounded velocity field, so the logarithm term needs to go away
with C' = 0.! We need to have zero velocity at the wall of the pipe r = R,

Tt could also be shown that C' # 0 corresponds to a force exerted along a line at the centre of
the pipe, which is unphysical.
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SO

and hence

and

(1 point) Show that the rate at which mass passes through any given cross-
section of the pipe is given by

R
S 2 2
27rp/ — (R —r*)rdr.
i 4u( )

ANS: From basic continuum physics, the rate at which mass passes through

the cross-section is
/ pu-ndS.
S

With a cross-section at right-angles to the x;-axis, we have n = (1,0,0) and

u-n = u;. Also, the cross section S is the circle r < R, with surface element
dS = rdrdf. Hence

2w R
/pu~ndS:/ / puyr drdf
S o Jo
2 _ .2

R ST
:/ pp—fl(R 4 )?”dT ></ do
0 dp 0

R RQ _ 2
= 27Tp/ pp%r dr.
0 H
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4. This question is about stresses in a unidirectional flow. Consider a semicircular
channel of radius R, aligned with the x;-axis and open to the atmosphere at the
top (see figure 1). The region occupied by the fluid is given by

r3+ a5 < R? and x3 < 0.

For a fluid of constant viscosity p and density p, the velocity field in this region
is given by u = (uy,0,0), where

_ pysin(a)
=

where ¢ is acceleration due to gravity and « the angle of inclination of the channel
to the horizontal. The pressure field is

U (R = a5 — x3)

p = —pg cos(a)xs.
(a) (3 points) For an incompressible viscous fluid, stress o;; is given by
Ju; — Ou;
= L J ) _ i
i a ((9:1:] 0@) Poij

For the velocity field given above, compute o0;; as a function of x5, z3, R, p,
p, g and a. Write your answer as a matrix.
ANS: We have us = uz = 0 and hence the only non-zero stress components

are
8U1 aUJl
011 = 022 = 033 = —D, 012 =021 = b, 013 =031 = U
8:62 al'g
Forming the relevant derivatives, we get
Py COS T3 —pgsin(a)xs/2 —pgsin(a)zs/2
o= | —pgsin(a)ry/2 pg COS (L3 0
—pgsin(a)zs/2 0 pg COS (T3

(b) (1 point) Show that, at the upper surface at z3 = 0, we have o;;n; = 0,
where n; is the normal to that surface.
ANS: As a column vector, we have n = (0,0, 1)" and the product

pg COS a3 —pgsin(a)zry/2 —pgsin(a)rs/2 0
on= | —pgsin(a)zy/2 pg COS (LT3 0 0
—pgsin(a)xs/2 0 pg COS LT3 1
pgsin(a)xs/2
= 0

pg cos(a)xs
=0

as vz = 0 at the surface.

Page 15



(c¢) (1 point) Next, consider a small area element AS just below the the upper
surface of the flow at (0, g, 0), but with normal (cos(f), sin(f),0). Note that
this is not the normal to the upper surface, so AS is not parallel to the upper
surface. Compute the force AF; = 0;jn,;AS exerted by the fluid flow on the
surface AS as a function of zo, R, i, p, g and a.

ANS: A similar computation to the above gives, with x5 = 0,

0 —pgsin(a)zz/2 0 cos(0)
onAS = | —pgsin(a)zy/2 0 0 sin(d) | AS
0 0 0 0
—pgsin(a) sin(f)x /2
= | —pgsin(a)cos(f)z2/2 | AS.
0

(d) (1 point) Show that the component AF,, = AF;n; of AF; normal to AS is
given by
AF, = —pgsin(a) cos(d) sin(0)z2AS.

The normal component is

cos(0)
AS ( —pgsin(a)sin(@)z2/2 —pgsin(a) cos(f)z2/2 0 ) [ sin(6

~—

= —pgsin(«a) sin(f) cos(#)x2 AS.

(e) (2 points) Keep the size of the area element AS and its position xs fixed,
but allow its orientation (given by the angle ) to vary. If 5 > 0, what angle
maximizes AF,,? What angle maximizes AF,, if xo < 07 (Hint. Recall that
cos?(f) — sin?(0) = cos(26).)

ANS: Two possiblities here. First, we have sin(#) cos(f) = sin(26)/2. This
is maximized if 20 = 7/2 + 2nw, § = (n + 1/4)7w, and minimized for 20 =
—m/2+2nm, 0 = (n — 1/4)7, where n is an integer. We can limit ourselves
to —m < 0 < 7. If 29 > 0, the maximum value of AF, occurs when
sin(f) cos(f) attains its minimum, so 7 = —6/4 or 7 = 3/4. Note that
0 = 3m/4 corresponds to the same orientation of AS as § = —x/4, but n;
pointing in the opposite direction. When x5 < 0, the maximum occurs when
sin(f) cos(f) attains a maximum, so 7 = 0/4 or § = —37/4; again these
correspond to the same orientation for AS.

The second possiblity, using the hint, would be the following: A necessary
(but not sufficient!) condition for a maximum is that JAF, /08 = 0. We
have

agg " _ _pgsin(a)ASzs[cos®(8) — sin?(6)

= —pgsin(a)ASxs cos(20)
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Hence we must have cos(20) = 0, § = (1 4 2n)7/4 where n is an integer.
In addition to maxima, these may also correspond to minima (or less likely,
inflection points). We can restrict ourselves to —m < 6 < m, so we have
0 = —3r/4. — /4, 7/4, 3n/4. But for these, we have

AF, = —pgsin(a)r,AS/2
if 0 =7/4 or § = —3m/4, and
AF, = —pgsin(a)r,AS/2

for = —m/4 or § = 3w /4. This leads to the same answer as above.

(2 points) Glacier ice flows as an incompressible viscous fluid, but can crack
to form crevasses when subjected to high enough stresses. Specifically,
crevasses form along surfaces in the ice that experience large enough normal
forces AF,,/AS. The orientation of crevasses when they first form is there-
fore such as to maximize AF,,, and they form first at those positions on the
surface where AF), is biggest. Consider a glacier flowing down a semicircular
channel. Where will crevasses first form? Sketch the channel and indicate
the flow direction as in figure 1, and indicate the pattern of crevasses you
expect to form.

ANS: The maximum value of AF,, is always pgsin(a)AS|z2|/2, so is greatest
at the edge of the channel where |z5] = R is largest. The orientation of the
crevasses are inclined at 45 degress to the upstream direction as shown in
figure 1

Page 17



Figure 1: Sketch of the semicircular channel of question 4. The radius of the semicir-
cular cross-section is R.
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