Final Practice: EOSC 352

30 November, 2009

1. Consider heat conduction with sinusoidally varying surface heat flux. Mathemat-
ically, this can be written as

or  o0*T
Porgy —hgs = 0 forx >0 (1a)
T
- kg_x . = qo cos(wt) at t =0 (1b)
T —0 as r — 00 (1c)

where qq is constant.

(a) (4 points) Assume the solution can be written in the form
T(x,t) = Re [Ty exp(iwt + A\x)] (2)

Substitute this into the heat equation to find A. Explain carefully the choice

of signs in A.
ANS: This should be familiar by now.

T
‘96_t = Re [iwT exp(iwt + Az)]
0*T :
o2 Re [\*Ty exp(iwt 4 Az)]

Substituting into the heat equation
Re [Ty exp(iwt + Az)] =0

which is the case if
rhocyiw — kA? = 0.

A:i,/z'chpw:x/% pcgw.

Rearranging,




But Vi = \/exp(in/2) = exp(in/4) = cos(n/4) + isin(r/4) = (1 4+1)/v/2.

Hence
N [ pCpw
A= =£(1 )
(1+14)4/ ok

If we choose the plus sign, the answer ends up being

PCpw [ pe,w
T(x,t) o exp ( ok x) cos (wt + Sr x) :

This does not satisfy the boundary condition 7' — oo as + — 0. Hence we
must pick the negative root,

A:—(1+z‘),/’)g—pw.

(b) (4 points) At this point, you do not know 7Tj. In fact, you cannot assume
that Tp is real. Instead, substitute T from (2) into (1b), and re-write this in
the form

Re {[(a + ib)Ty — qo] exp(iwt)} =0

where A is real. Use this to deduce Tj.
ANS Substituting, we get

9T

e = Re [M\Tp exp(iwt)] = qo cos(wt) = Re [qo exp(iwt)] .

=0

Rearranging,

e {[(2 /) 1 ] eoin} -0

which is the case if

. qo 2k
14\ pow’

0

(c) (2 points) Use the fact that i + 1 = v/2exp(in/4) to rewrite T'in (2) in the
form

T(x,t) = Re [Aexp(iwt — Az + i0)].

Use this to write T'(x,t) in terms of real quantities only.
ANS. We have

___ @ 2K _ oexp(—in/a), |2
Vaexp(in/4) \| pew — T pepw’

To
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(a)

Therefore

2 /
T(z,t) = Re {qo pcfw expt (wt — pgl;:)x — 7T/4> exp <— —pg‘zwx> }
2k / /
=q P exp <— P;zl;w x) cos (wt — p;,];wx -7/ 4) )

(1 point) Write the differential equation that represents conservation of mass
in subscript notation. What does this simplify into if density p is constant?

ANS: 5 o)
p Pl
e Vs /A
which reduces to
8:1:'2- N

when p is constant.
(4 points) Conservation of momentum requires

d(pu;) N O(puiu;) _ Doy
ot 0.’13]‘ 81']'

+ fi (3)

For a Newtonian viscous fluid, p is constant and stress takes the form

o auz_i_au] DS
i = H c%j al‘l P

with viscosity p also constant. Substitute o;; into (3), and show that this
can be simplified into the form

Oui 0w _ Owi  Op
P\ ot "o, ) = Mow,00; o,

+ fi (4)

ANS: We can pull p out of the derivatives because it is constant:

Apu;)  O(puju;) [ Ou;  Ouguy
at | or, "\ "o, )

Further, we have by the product rule

ouiy) _ Ou5 o O O
8$j N Z('?xj ]8l'j_ ]al'j
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where we have used the answer to part a to get rid of du;/0x;. Also, we

have
aO'Z‘j . (9 (9uz (9 8Uj 0p
8:1:j N 8:1:j (Mal’J> + 8a:j (Mal’z) 6” 8x]-

0%, D*u; op
= lua 1 —
ill'ja.]?j 3.%]8@ 8:172
PPy N 0 (Ju;\  Op
0%, op

- M@:Uj(?xj B 05177,

where we have again used du;/Ox; = 0. Substituting these three results
back into (3) gives the required result.

(c) (1 point) Suppose that you are told that you have a flow in which velocity
u is everywhere parallel to the zi-axis, and that the form of the velocity
field depends only on the coordinates transverse to the x; axis and on time.
Mathematically, this means that

Uy = Ul(flfg,.l‘g,t), Uy = 0, us = 0 (5)

Show that this satisfies the mass conservation equation you stated in part a.
ANS: We need to have du;/0dx; = 0. But this is

(‘9ui . aul 8u2 aU3 o 6u1 o
3_%—8I1+8x2+8x3 _8x1 =0

because uy = u3 = 0 and u; does not depend on ;.

(d) (4 points) Assume that you have the velocity field in (5) and that body force
fi = 0. Show that

dp  Op

Ory O
From this it follows that p = p(x7). Next, show that the momentum equation
can be reduced to

=0

Ou p(Pu  Pu _ Op (6)
ot  p\ox: 023)  Oxy
Why does it follow that Op/0x; is actually constant? What is equation (6)

called?

ANS: First, let us look at (4) with ¢ = 2 or 3. Then u; = 0, and all the
derivatives of u; are also zero. Hence the only term left is dp/dx;, which
must therefore equal zero. So

dp  Op

Oy 95 "
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So p depends only on x7, as does dp/dx;. Next, look at i = 1 in (4). We

have
ouq ouq ouq Ouy Puy 0wy 0y dp
ot +u18x1 T 01, +u3(91:3 p + O3 + 03 3 0xy’
But us = uz = 0 and duy/0z; = 0. This gives us, taking the viscous stress
term onto the left-hand side
Jui Puy  Puy\ _Op
ot p\ox: 023)  Om

Now the left-hand side depends only on z5 and z3 (because us depends only
x9 and z3) while the right-hand side depends only on x1. This is only possible
if both sides equal a constant. This equation for u; takes the form of the
heat equation in 2D, as
0? 0?
_u21 _u21 = Vu,
Jxs ~ Oxj
is the Laplacian of u;.

(a) (1 point) Take equation (6) above. Assume that dp/0x; = 0, and that u,
depends on zo and z3 as u; = u(r,t), where r = /23 + z3. In cylidnrical
polar coordinates, where

T =z, Ty =1 Cosb, x3 = rsinf,
the Laplacian can be written as

10 [ 99 1 8% 9%
(TE>+ﬁw+w

ANS: As discussed above,
82'&1 82u1 2
or3 = Ox2 Vi

is the Laplacian of u;. But u; is now assumed depend on x5 and x3 only
through r (but not through 6, and u; also does not depend on z = x3. Hence

Ouy /00 = duy /0z = 0, and
82U1 82U1 V2 . 1g ( Bul) .

dzi Oz ror \ or

The required form of (6) follows.

Page 5



(b) (3 points) Suppose you have a fluid initially at rest, and that a small amount
of fluid is injected at time ¢ = 0 at high velocity along the line r = 0. A
mathematical model for this is

ou pulo ou
— ————=|r=— ] =0 fi 0,t>0 7
ot pror (Tar> orr="01t= (7)
u(r,0) =0 for all 7 > 0 (7h)
u(r,t) — 0asr — oo for all t >0 (7c)
/ 2ru(r, t)rdr = By for all t > 0 (7d)
0

where P, is a constant related to the amount of momentum contained in the
fluid injected at t = 0. Consider a similarity solution of the form

u(r,t) =t70 (%) :

Substitute this into (7), and derive a differential equation for € in terms of
the similarity variable ¢ = x/t®. What do a and 3 have to be to make a
similarity solution work?
ANS: Noting that

0 _%0 _ 59

Ox  Ox O o€’
(the 0/0¢ meaning a partial derivative with respect to £ while ¢ is held
constant), we get

= —at™*710 (&) — BTl (€)

10 (0u) _ 1 50 (4 5@)
r or (r(%“)—tﬂft € <t T

sl d [ de
= ()

Putting this into the momentum equation equation, we get

d [ do
—ar e i0(©) - e (6 - e (6,

or, rearranging,
k 1d
—af (&) — BEY' (&) — —t172P-—
(€)= B8 (©) — o
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To get rid of ¢ in this equation, we need 1 — 23 = 0, or # = 1/2. Putting
the similarity solution into the rest of (7), we get, putting x = t%¢ into the
integral,
0(&) — 0as & — oo
/ o2t (6)tPEt’ d¢ = P,
0

The last equation can be rewritten as
(o) P
twa/ f(E)EdE = 2. 9
G 9

To get rid of ¢t on the left-hand side, we must have

a=20=1.

(c) (3 points) The ordinary differential equation for 6 in terms of the similarity

variable £ = z/t? can be re-written in the form
d d dé
— 0 +b—= (=) =0. 10
4G )+d§<€d§) (10)

What are a and b7
ANS: Putting a = 1 and 3 = 1/2 into (8) gives

Guided by (10), we rearrange this into

2u d do
260/ (&) + £%0(&) + —— <§—) =0
The first two terms can be combined (using the product rule in reverse) to

give
d 5 2u d doy
e €0+ 5 (65¢) 0

which is of the required form (a = 2, b = 2u/p).

(d) (3 points) Use separation of variables to solve for 6 as a function of £ with

i, p and Py as parameters. You may assume that df/d¢ =0 at £ =0 (and
consequently also that 6 remains finite at £ = 0).
ANS: Integrate once to find

22

20
SOt e

:C,
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or 40
T Ly L
d¢ 2 I
Now, at & = 0, the left-hand side and first term on the right-hand side are
finite, so the last term on the right-hand side cannot be infinite. This is only

possible if C' = 0. So

db_ _rep

d¢ 2u
Separating variables,

1do— p ¢

gde  2u

Integrating both sides,

log(0) = —ﬁﬁ + constant.

Rearranging,
0 = Cexp (—£§2) .
Ap
To find C, use the last relation in (7), which we have already rewritten in
(9) as
00 PO
0(&)Edé = —.
| oosac =3

Substituting,
Py - > P 2
27r_/0 Cexp( 4ﬂs)s ¢
[em(ge),
0
p
S
? O = Pop
 dwp
and .
_ top _ P
() = T Xp( 4u€>
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