
Final Practice: EOSC 352

30 November, 2009

1. Consider heat conduction with sinusoidally varying surface heat flux. Mathemat-
ically, this can be written as

ρcp
∂T

∂t
− k∂

2T

∂x2
= 0 for x > 0 (1a)

− k∂T
∂x

∣∣∣∣
x=0

= q0 cos(ωt) at x = 0 (1b)

T → 0 as x→∞ (1c)

where q0 is constant.

(a) (4 points) Assume the solution can be written in the form

T (x, t) = Re [T0 exp(iωt+ λx)] (2)

Substitute this into the heat equation to find λ. Explain carefully the choice
of signs in λ.
ANS: This should be familiar by now.

∂T

∂t
= Re [iωT0 exp(iωt+ λx)]

∂2T

∂x2
= Re

[
λ2T0 exp(iωt+ λx)

]
Substituting into the heat equation

Re [T0 exp(iωt+ λx)] = 0

which is the case if
rhocpiω − kλ2 = 0.

Rearranging,

λ = ±
√
i
ρcpω

k
=
√
i

√
ρcpω

k
.
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But
√
i =

√
exp(iπ/2) = exp(iπ/4) = cos(π/4) + i sin(π/4) = (1 + i)/

√
2.

Hence

λ = ±(1 + i)

√
ρcpω

2k
.

If we choose the plus sign, the answer ends up being

T (x, t) ∝ exp

(√
ρcpω

2k
x

)
cos

(
ωt+

√
ρcpω

2k
x

)
.

This does not satisfy the boundary condition T → ∞ as x → 0. Hence we
must pick the negative root,

λ = −(1 + i)

√
ρcpω

2k
.

(b) (4 points) At this point, you do not know T0. In fact, you cannot assume
that T0 is real. Instead, substitute T from (2) into (1b), and re-write this in
the form

Re {[(a+ ib)T0 − q0] exp(iωt)} = 0

where A is real. Use this to deduce T0.
ANS Substituting, we get

− k∂T
∂x

∣∣∣∣
x=0

= Re [λT0 exp(iωt)] = q0 cos(ωt) = Re [q0 exp(iωt)] .

Rearranging,

Re

{[(√
ρcpω

2k
+ i

√
ρcpω

2k

)
T0 − q0

]
exp(iωt)

}
= 0.

which is the case if

T0 =
q0

1 + i

√
2k

ρcpω
.

(c) (2 points) Use the fact that i+ 1 =
√

2 exp(iπ/4) to rewrite T in (2) in the
form

T (x, t) = Re [A exp(iωt− λx+ iθ)] .

Use this to write T (x, t) in terms of real quantities only.
ANS. We have

T0 =
q0√

2 exp(iπ/4)

√
2k

ρcpω
= q0 exp(−iπ/4)

√
2k

ρcpω
.

Page 2



Therefore

T (x, t) = Re

{
q0

√
2k

ρcpω
exp i

(
ωt−

√
ρcpω

2k
x− π/4

)
exp

(
−
√
ρcpω

2k
x

)}

= q0

√
2k

ρcpω
exp

(
−
√
ρcpω

2k
x

)
cos

(
ωt−

√
ρcpω

2k
x− π/4

)
.

2. (a) (1 point) Write the differential equation that represents conservation of mass
in subscript notation. What does this simplify into if density ρ is constant?
ANS:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0,

which reduces to
∂ui
∂xi

= 0

when ρ is constant.

(b) (4 points) Conservation of momentum requires

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=
∂σij
∂xj

+ fi. (3)

For a Newtonian viscous fluid, ρ is constant and stress takes the form

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδij,

with viscosity µ also constant. Substitute σij into (3), and show that this
can be simplified into the form

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= µ

∂2ui
∂xj∂xj

− ∂p

∂xi
+ fi. (4)

ANS: We can pull ρ out of the derivatives because it is constant:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= ρ

(
∂ui
∂t

+
∂uiuj
∂xj

)
.

Further, we have by the product rule

∂(uiuj)

∂xj
= ui

∂uj
∂xj

+ uj
∂ui
∂xj

= uj
∂ui
∂xj
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where we have used the answer to part a to get rid of ∂uj/∂xj. Also, we
have

∂σij
∂xj

=
∂

∂xj

(
µ
∂ui
∂xj

)
+

∂

∂xj

(
µ
∂uj
∂xi

)
− δij

∂p

∂xj

= µ
∂2ui
∂xj∂xj

+ µ
∂2uj
∂xj∂xi

− ∂p

∂xi

= µ
∂2ui
∂xj∂xj

+ µ
∂

∂xi

(
∂uj
∂xj

)
− ∂p

∂xi

= µ
∂2ui
∂xj∂xj

− ∂p

∂xi

where we have again used ∂uj/∂xj = 0. Substituting these three results
back into (3) gives the required result.

(c) (1 point) Suppose that you are told that you have a flow in which velocity
u is everywhere parallel to the x1-axis, and that the form of the velocity
field depends only on the coordinates transverse to the x1 axis and on time.
Mathematically, this means that

u1 = u1(x2, x3, t), u2 = 0, u3 = 0. (5)

Show that this satisfies the mass conservation equation you stated in part a.
ANS: We need to have ∂ui/∂xi = 0. But this is

∂ui
∂xi

=
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

=
∂u1

∂x1

= 0

because u2 = u3 = 0 and u1 does not depend on x1.

(d) (4 points) Assume that you have the velocity field in (5) and that body force
fi = 0. Show that

∂p

∂x2

=
∂p

∂x3

= 0

From this it follows that p = p(x1). Next, show that the momentum equation
can be reduced to

∂u1

∂t
− µ

ρ

(
∂2u1

∂x2
2

+
∂2u1

∂x2
3

)
= − ∂p

∂x1

. (6)

Why does it follow that ∂p/∂x1 is actually constant? What is equation (6)
called?
ANS: First, let us look at (4) with i = 2 or 3. Then ui = 0, and all the
derivatives of ui are also zero. Hence the only term left is ∂p/∂xi, which
must therefore equal zero. So

∂p

∂x2

=
∂p

∂x3

= 0
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So p depends only on x1, as does ∂p/∂x1. Next, look at i = 1 in (4). We
have

∂u1

∂t
+ u1

∂u1

∂x1

+ u2
∂u1

∂x2

+ u3
∂u1

∂x3

=
µ

ρ

(
+
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

)
− ∂p

∂x1

.

But u2 = u3 = 0 and ∂u1/∂x1 = 0. This gives us, taking the viscous stress
term onto the left-hand side

∂u1

∂t
− µ

ρ

(
∂2u1

∂x2
2

+
∂2u1

∂x2
3

)
= − ∂p

∂x1

Now the left-hand side depends only on x2 and x3 (because u2 depends only
x2 and x3) while the right-hand side depends only on x1. This is only possible
if both sides equal a constant. This equation for u1 takes the form of the
heat equation in 2D, as

∂2u1

∂x2
2

+
∂2u1

∂x2
3

= ∇2u1

is the Laplacian of u1.

3. (a) (1 point) Take equation (6) above. Assume that ∂p/∂x1 = 0, and that u1

depends on x2 and x3 as u1 = u(r, t), where r =
√
x2

2 + x2
3. In cylidnrical

polar coordinates, where

x1 = z, x2 = r cos θ, x3 = r sin θ,

the Laplacian can be written as

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+
∂2φ

∂z2
.

Show that (6) becomes

∂u

∂t
− µ

ρ

1

r

∂

∂r

(
r
∂u

∂r

)
= 0.

ANS: As discussed above,

∂2u1

∂x2
2

+
∂2u1

∂x2
3

= ∇2u1

is the Laplacian of u1. But u1 is now assumed depend on x2 and x3 only
through r (but not through θ, and u1 also does not depend on z = x3. Hence
∂u1/∂θ = ∂u1/∂z = 0, and

∂2u1

∂x2
2

+
∂2u1

∂x2
3

= ∇2u1 =
1

r

∂

∂r

(
r
∂u1

∂r

)
.

The required form of (6) follows.

Page 5



(b) (3 points) Suppose you have a fluid initially at rest, and that a small amount
of fluid is injected at time t = 0 at high velocity along the line r = 0. A
mathematical model for this is

∂u

∂t
− µ

ρ

1

r

∂

∂r

(
r
∂u

∂r

)
= 0 for r > 0, t > 0 (7a)

u(r, 0) = 0 for all r > 0 (7b)

u(r, t)→ 0 as r →∞ for all t > 0 (7c)∫ ∞
0

2πu(r, t)r dr = P0 for all t > 0 (7d)

where P0 is a constant related to the amount of momentum contained in the
fluid injected at t = 0. Consider a similarity solution of the form

u(r, t) = t−αθ
( r
tβ

)
.

Substitute this into (7), and derive a differential equation for θ in terms of
the similarity variable ξ = x/tβ. What do α and β have to be to make a
similarity solution work?
ANS: Noting that

∂

∂x
=
∂ξ

∂x

∂

∂ξ
= t−β

∂

∂ξ
,

(the ∂/∂ξ meaning a partial derivative with respect to ξ while t is held
constant), we get

∂u

∂t
= −αt−α−1θ

( x
tβ

)
− βt−α−β−1xθ′

( x
tβ

)
= −αt−α−1θ

(
ξt)− βt−α−1ξθ′ (ξ)

1

r

∂

∂r

(
r
∂u

∂r

)
=

1

tβξ
t−β

∂

∂ξ

(
tβξt−β

∂(t−αθ)

∂ξ

)
= t−α−2β 1

ξ

d

dξ

(
ξ

dθ

dξ

)
Putting this into the momentum equation equation, we get

−αt−α−1θ (ξ)− βt−α−1ξθ′ (ξ)− µ

ρ
t−α−2β 1

ξ

d

dξ

(
ξ

dθ

dξ

)
,

or, rearranging,

−αθ (ξ)− βξθ′ (ξ)− k

ρcp
t1−2β 1

ξ

d

dξ

(
ξ

dθ

dξ

)
= 0. (8)
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To get rid of t in this equation, we need 1 − 2β = 0, or β = 1/2. Putting
the similarity solution into the rest of (7), we get, putting x = tβξ into the
integral,

θ(ξ)→ 0 as ξ →∞∫ ∞
0

2πt−αθ(ξ)tβξtβ dξ = P0

The last equation can be rewritten as

t2β−α
∫ ∞

0

θ(ξ)ξ dξ =
P0

2π
. (9)

To get rid of t on the left-hand side, we must have

α = 2β = 1.

(c) (3 points) The ordinary differential equation for θ in terms of the similarity
variable ξ = x/tβ can be re-written in the form

d

dξ
(ξaθ) + b

d

dξ

(
ξ

dθ

dξ

)
= 0. (10)

What are a and b?
ANS: Putting α = 1 and β = 1/2 into (8) gives

−θ (ξ)− 1

2
ξθ′ (ξ)− µ

ρ

1

ξ

d

dξ

(
ξ

dθ

dξ

)
= 0

Guided by (10), we rearrange this into

2ξθ′(ξ) + ξ2θ(ξ) +
2µ

ρ

d

dξ

(
ξ

dθ

dξ

)
= 0.

The first two terms can be combined (using the product rule in reverse) to
give

d

dξ

(
ξ2θ
)
) +

2µ

ρ

d

dξ

(
ξ

dθ

dξ

)
= 0

which is of the required form (a = 2, b = 2µ/ρ).

(d) (3 points) Use separation of variables to solve for θ as a function of ξ with
µ, ρ and P0 as parameters. You may assume that dθ/ dξ = 0 at ξ = 0 (and
consequently also that θ remains finite at ξ = 0).
ANS: Integrate once to find

ξ2θ +
2µ

ρ
ξ

dθ

dξ
= C,
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or
dθ

dξ
= − ρ

2µ
ξθ +

ρ

2µ

C

ξ2
.

Now, at ξ = 0, the left-hand side and first term on the right-hand side are
finite, so the last term on the right-hand side cannot be infinite. This is only
possible if C = 0. So

dθ

dξ
= − ρ

2µ
ξθ.

Separating variables,
1

θ

dθ

dξ
= − ρ

2µ
ξ.

Integrating both sides,

log(θ) = − ρ

4µ
ξ2 + constant.

Rearranging,

θ = C exp

(
− ρ

4µ
ξ2

)
.

To find C, use the last relation in (7), which we have already rewritten in
(9) as ∫ ∞

0

θ(ξ)ξ dξ =
P0

2π
.

Substituting,

P0

2π
=

∫ ∞
0

C exp

(
− ρ

4µ
ξ2

)
ξ dξ

=

[
−2µ

ρ
C exp

(
− ρ

4µ
ξ2

)]∞
0

=
2µ

ρ
C

So

C =
P0ρ

4πµ

and

θ(ξ) =
P0ρ

4πµ
exp

(
− ρ

4µ
ξ2

)
.
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