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Overview

These notes provide the basic knowledge of complex variables you need to solve some
partial differential equations with them:

• Basic definitions and concepts

• Algebra with complex numbers

• Taylor series

• Complex exponentials

Basic definitions and concepts

All ordinary numbers that you will be familiar with from high school (natural num-
bers, integers, rational and irrational numbers, together making up the ‘real’ numbers)
have positive squares: if x is a real number, then x2 ≥ 0. To formally solve equations
like x2 = −1, imaginary numbers were invented, and these turn out to have a lot of
uses. The ‘imaginary unit’ i is defined as

i =
√
−1.

An imaginary number is i times a real number, for instance 4i or −πi are imaginary
numbers.

A complex number is the sum of a real and a complex number, for instance

z = 4 + 7i.
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More generally, a complex number takes the form

z = a+ ib

where a and b are real. Obviously any real number is also a complex number (put
b = 0) and any imaginary number is likewise a complex number (put a = 0). z is a
commonly used symbol for a complex number, even though this can cause confusion
with the vertical coordinate z in many Cartesian coordinate systems (so it is impor-
tant to be explicit). When written in this form, a is called the ‘real’ part of z and b
is called the imaginary part, often denoted by

a = Re(z), b = Im(z).

Two complex numbers can only be equal to one another if their real and imaginary
parts are the same. Let z1 = a+ ib and z2 = c+ id. In order to have z1 = z2 we must
have a = c, b = d. To see this, put

a+ ib = c+ id

Rearranging,
a− c = i(d− b).

But a real number a− c can only equal an imaginary number i(d− b) if they are both
equal to zero: taking the square on both sides,

(a− c)2 = −(d− b)2.

The left hand side is positive if a 6= c while the right-hand side is negative if b 6= d,
and so the only way both sides can be equal is if a = c and b = d.

The complex conjugate z̄ of a complex number z = a+ ib is defined as

z̄ = a− ib,

i.e. the same as z but with the sign of the imaginary part reversed. The modulus of
a complex number z = a+ ib is defined as

|z| =
√
a2 + b2

Note that |z̄| = |z|. For a real number z = a, we have |z| =
√
a2 = a if a > 0 or −a

if a < 0, so |z| = |a|, where |a| is the usual absolute value of a real number. This
ensures that there is no ambiguity in using the notation | · |, as it generalizes taking
the absolute value to complex numbers.

More generally, the modulus of z can be seen as the length of a vector with
x-component a and y-component b. In fact, complex numbers are often described
geometrically in this way: namely, as points lying in a plane (the complex plane)
with coordinate of the point relative to one axis (the ‘imaginary axis’) giving the
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imaginary part of the complex number, while the coordinate along the other (‘real’)
axis giving the real part of the complex number. Note that

|z| = 0

implies that z = 0.

Exercise 1 Find z̄ and |z̄| for

1. z = 3 + 4i

2. z = −1 + i

3. z = πi

Algebra

The usual rules of algebra still hold in complex algebra, like commutativity (you can
switch the order of two terms in a sum or product), associativity (when multiplying or
adding more than two numbers together, the order in which this is done is immaterial)
and distributivity (expanding brackets when multiplying a sum by another number).
In particular, if z1, z2 and z3 are complex mumbers, then

z1 + z2 = z2 + z1

(z1 + z2) + z3 = z1 + (z2 + z3)

z1 × z2 = z2 × z1
(z1 × z2)× z3 = z1 × (z2 × z3)
z1 × (z2 + z3) = z1 × z2 + z1 × z3.

Addition and subtraction

To add two complex numbers, simply add their real and imaginary parts. So, if
z1 = a+ ib and z2 = c+ id, then

z1 + z2 = (a+ c) + i(b+ d).

Therefore
(4 + i) + (2− 3i) = 6− 2i.

To subtract two complex numbers, subtract their real and imaginary parts instead:

z1 − z2 = (a− c) + i(b− d).

Therefore
(4 + i)− (2− 3i) = 2 + 4i.
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As a result of the above, you can see that the real part of z1 + z2 (= a+ b) is the real
part of z1 (= a) plus the real part of z2 (= b):

Re(z1 + z2) = Re(z1) + Re(z2).

It is however not true in general that |z1 + z2| = |z1|+ |z2|.

Note 1 Note that the real and imaginary parts of a complex number z can be ex-
pressed in terms of z and z̄: If z = a+ ib then z̄ = a− ib and so

Re(z) = a =
z + z̄

2
,

Im(z) = b =
z − z̄

2
.

Exercise 2 Calculate |z1|, |z2| and |z1 + z2| for z1 = 4− 3i, z2 = 1 + i.

Multiplication

To multiply imaginary numbers with each other, you only have to remember that
i2 = −1 and hence i3 = −i, i4 = 1, i5 = i and so forth. To multiply two complex
numbers, simply expand the product and use the fact that i2 = −1. If z1 = a + ib
and z2 = c+ id, then

z1z2 = (a+ ib)(c+ id)

= ac+ iad+ ibc+ i2bd

= ac− bd+ i(ad+ bc)

I don’t recommend memorizing this as a formula, instead, just expand whenever you
need to do a product:

(4 + i)× (2− 3i) = 4× 2− i× 4× 3 + i× 2− i2 × 3 (1)

= 8− 12i+ 2i+ 3 (2)

= 11− 10i. (3)

There is a use to the general formula above though: first, we can show that the
modulus of z1z2 is the same as the modulus of z1 times the modulus of z2. We have

|z1||z2| =
√
a2 + b2

√
c2 + d2

=
√

(a2 + b2)(c2 + d2)

=
√
a2c2 + a2d2 + b2c2 + b2d2
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while

|z1z2| =
√

(ac− bd)2 + (ad+ bc)2

=
√

(a2c2 − 2acbd+ b2d2) + (a2d2 + 2adbc+ b2c2)

=
√
a2c2 + b2d2 + a2d2 + b2c2

= |z1||z2|

It is generally not true however that Re(z1z2) is the same as Re(z1) times Re(z2).
From the general formula, Re(z1z2) = ac− bd, while Re(z1)Re(z2) = ac.

We can also show that the square of the modulus of a complex number is given
multiplying the complex number by its conjugate:

z1z̄1 = (a+ ib)(a− ib)
= a2 − iab+ iba− i2b2

= a2 + b2

= |z1|2

Division

Division is the only slightly difficult thing about complex algebra. What we are after
is a way of writing

z1
z2

=
a+ ib

c+ id

in the form e + if , with e and f real. The trick is to multply by top and bottom of
the fraction by the complex conjugate of z2:

z1
z2

=
z1z̄2
z2z̄2

(4)

=
z1z̄2
|z2|2

, (5)

where the denominator |z2|2 = c2 + d2 is now a real number and all we need to know
is how to multiply two complex numbers, z1 and z̄2.

More explicitly,

a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)

=
ac− iad+ ibc− i2bd

c2 + d2

=
ac+ bd+ i(bc− ad)

c2 + d2

Again, I don’t recommend memorizing this formula, instead learn the method.
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As an example, take

1 + i

5− i
=

(1 + i)(5 + i)

(5− i)(5 + i)

=
5 + i+ 5i+ i2

25 + 1

=
4 + 6i

26

Note also that ∣∣∣∣1z
∣∣∣∣ =

∣∣∣∣ z̄|z|2
∣∣∣∣ =

1

|z|2
× |z̄| = 1

|z|2
× |z|

=
1

|z|

and therefore that ∣∣∣∣z1z2
∣∣∣∣ =

∣∣∣∣ 1

z2
× z1

∣∣∣∣ =

∣∣∣∣ 1

z2

∣∣∣∣ |z1|
=
|z1|
|z2|

Exercise 3 Express the following in the form a+ ib where a and b are real:

1. z1 + z2 if z1 = −3 + 2i, z2 = 2− 3i

2. z1 − z2 if z1 = −3 + 2i, z2 = 2− 3i

3. (4 + 2i)(−3 + i)

4. (1− 2i)/(4 + 3i)

5. (2 + i)(8− 4i)

Distributivity revisited

Distributivity is key when you are doing algebra: basically, how / when can you
exchange the order of operations? Which complex algebra, there are some subtleties
that can lead you into mistakes. For standard algebraic operations, multiplication
and division are distributive over addition and subtraction, so

z1 × (z2 + z3) = z1 × z2 + z1 × z3,
z2 + z3
z1

=
z2
z1

+
z3
z1
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but not vice versa:

z1 + z2 × z3 6≡ (z1 + z2)× (z1 + z3), z1 + z2/z3 6≡ (z1 + z2)/(z1 + z3),

and — getting this being a common beginner mistake —

z1
z2 + z3

6≡ z1
z2

+
z1
z3
.

(note that 6≡ means that the two sides are not necessarily equal, in “most cases” won’t
be, but you can construct special cases in which equality does hold, usually involving
one of the complex numbers involved being zero. ‘≡’ is a symbol for equality used to
indicate an identity, a statement that always holds, while ‘=’ may be an equation.)

Complex algebra introduces additional operations: taking moduli, complex con-
jugation and taking real and imaginary parts. Here it is easy to go wrong, so tread
carefully. Below is a collection of a few relevant observations, most of which repeat
what we have established already

|z1z2| ≡|z1||z2| modulus is distributive over multiplication

|z1/z2| ≡|z1|/|z2| ditto for division

|z1 + z2| 6≡|z1|+ |z2| but not addition

|z1 − z2| 6≡|z1| − |z2| or subtraction

z1 + z2 ≡z̄1 + z̄2 complex conjugation is distributive over addition

z1 − z2 ≡z̄1 − z̄2 and subtraction

z1 × z2 ≡z̄1 × z̄2 and multiplication

z1/z2 ≡z̄1/z̄2 and divison

Re(z1 + z2) ≡Re(z1) + Re(z2) Re is distributive over addition

Re(z1 − z2) ≡Re(z1)− Re(z2) ditto subtraction

Re(z1 × z2) 6≡Re(z1)× Re(z2) but not multiplication

Re(z1/z2) 6≡Re(z1)/Re(z2) or division

‘Im’ satisfies the same distributivity rules as ‘Re’. One important exception to dis-
tributivity over multiplication is that Re and Im are distributive over multiplication
if one factor is real, so

Re(az1) = Re(a)Re(z1) = aRe(z1),

if a is real, while
Im(az1) = aIm(z1)

if a is again real.
As usual, you should not necessarily memorize these rules: you should know the

definitions of | · |, ·̄ and Re(·), Im(·) and be able to use them to derive the relevant
result when necessary.
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Taylor series

We eventually want to make sense of functions of complex variables rather than
real variables. While functions like cos and sin have a geometrical interpretation for
real arguments, this is not possible for complex arguments: we only have the rules of
algebra above. What is done instead is typically to define functions in terms of infinite
series: sums that involve powers of the variable, so each term can be understood in
terms of the algebraic operations above.

The basic idea of a Taylor series is to approximate a function by its tangent. This
means that, close to a point x0, the change in f can be related to the change in x by
the derivative of f ,

f ′(x0) ≈
f(x)− f(x0)

x− x0
,

or
f(x) ≈ f(x0) + f ′(x0)(x− x0).

Of course, this approximation becomes poor when the point x is a longer distance
from x0. To wit, if we take f(x) = cos(x) and x0 = 0, we have f(x) = 1 and
f ′(x0) = 0. The formula above would then suggest that f(x) = 1, which is a poor
approximation at larger x.

A more systematic way to developing an approximation is by using the fundamen-
tal theorem of calculus

f(x)− f(x0) =

∫ x

x0

f ′(x1) dx1.

Beware that x1 here is just a dummy variable: it doesn’t matter what we use as the
integration variable, so long as it is a variable that can represent a sum going from x0
to x. This means for instance that we cannot use x as a variable of integration: the
expression

∫ x
x0
f(x) dx doesn’t make sense because x simultaneously has to be fixed

(the limit) and vary (the integration variable).
From this we also have

f(x) = f(x0) +

∫ x

x0

f ′(x1) dx1.

But we can deal with the integral by writing

f ′(x1) = f ′(x0) +

∫ x1

x0

f ′(x2) dx2,
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where x2 is another dummy variable. So∫ x

x0

f ′(x1) dx1 =

∫ x

x0

f ′(x0) +

[∫ x1

x0

f ′′(x2) dx2

]
dx1

=

∫ x

x0

f ′(x0) dx1 +

∫ x

x0

[∫ x1

x0

f ′′(x2) dx2

]
dx1

= f ′(x0)(x− x0) +

∫ x

x0

[∫ x1

x0

f ′′(x2) dx2

]
dx1

This gives

f(x) = f(x0) + f ′(x0)(x− x0) +

∫ x

x0

[∫ x1

x0

f ′′(x2) dx2

]
dx1. (6)

The right-hand side gives the first two terms of the Taylor series, plus a correction
(the integral). The correction is small if the first derivative remains close to f ′(x0)
throughout the interval from x0 to x.

To get more terms in the Taylor series, we can apply the same approach again to
f ′′(x2),

f ′′(x2) = f ′′(x0) +

∫ x2

x0

f ′′′(x3) dx3

where x3 is another dummy variable. Substituting in (6) gives

f(x) = f(x0)+f
′(x0)(x−x0)+

∫ x

x0

∫ x1

x0

f ′′(x0) dx2 dx1+

∫ x

x0

[∫ x1

x0

[∫ x2

x0

f ′′′(x3) dx3

]
dx2

]
dx1.

We can work out the first integral on the right-hand side exactly∫ x

x0

∫ x1

x0

f ′′(x0) dx2 dx1 = f ′′(x0)

∫ x1

x0

(x1 − x0) dx1

= f ′′(x0)
[
(x1 − x0)2/2

]x
x0

= f ′′(x0)
(x− x0)2

2

and substituting into (6) gives us the first three terms of the Taylor series plus another
correction term:

f(x) = f(x0)+f
′(x0)(x−x0)+f ′′(x0)

(x− x0)2

2
+

∫ x

x0

[∫ x1

x0

[∫ x2

x0

f ′′′(x3) dx3

]
dx2

]
dx1.

We can continue like this to get any number of terms in the Taylor series (assuming
the function is smooth enough to keep differnetiating). Let f (n)(x0) = dnf/ dxn|x=x0
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be the nth derivative of f at x0 (this is easier to write than putting n primes on f).
The general form of the correction term after n terms is∫ x

x0

[∫ x1

x0

. . .

[∫ xn−1

x0

f (n)(xn) dxn

]
. . . dx2

]
dx1 =∫ x

x0

[∫ x1

x0

. . .

[∫ xn−1

x0

[
f (n)(x0) +

∫ xn

x0

f (n+1)(xn+1) dxn+1

]
dxn

]
. . . dx2

]
dx1 =∫ x

x0

[∫ x1

x0

. . .

[∫ xn−1

x0

f (n)(x0) dxn

]
. . . dx2

]
dx1

+

∫ x

x0

[∫ x1

x0

. . .

[∫ xn

x0

f (n+1)(xn+1) dxn+1

]
. . . dx2

]
dx1

The term on the last line represents another correction, while f (n)(x0) being a constant
allows us to compute the integral immediately after the last equality directly:∫ x

x0

[∫ x1

x0

. . .

[∫ xn−1

x0

f (n)(x0) dxn

]
. . . dx2

]
dx1 =

f (n)(x0)

∫ x

x0

[∫ x1

x0

. . .

[∫ xn−2

x0

[∫ xn−1

x0

1 dxn

]
dxn−1

]
. . . dx2

]
dx1 =

f (n)(x0)

∫ x

x0

[∫ x1

x0

. . .

[∫ xn−3

x0

[∫ xn−2

x0

(xn−1 − x0) dxn−1

]
dxn−2

]
. . . dx2

]
dx1 =

f (n)(x0)

∫ x

x0

[∫ x1

x0

. . .

[∫ xn−3

x0

(xn−2 − x0)2

2
dxn−2

]
. . . dx2

]
dx1

Every time we compute one of the integrals, we increase the power of (xn−i − x0) by
one and divide by that power. As there are n nested integrals in total, we get∫ x

x0

[∫ x1

x0

. . .

[∫ xn−1

x0

f (n)(x0) dxn

]
. . . dx2

]
dx1 = f (n)(x0)(x− x0)n/n!.

Hence we can write

f(x) =
N∑
n=0

f (n)(x0)(x− x0)n/n!

+

∫ x

x0

[∫ x1

x0

. . .

[∫ xN

x0

f (N+1)(xN+1) dxN+1

]
. . . dx2

]
dx1

An infinite series can then be constructed if the last term (the integral) becomes small
for large N →∞, in which case

f(x) =
∞∑
n=0

f (n)(x0)(x− x0)n/n!.

This does not always work, but for the functions we’re interested in, it does work.
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Exponentials and trigonometric functions

The exponential function f(x) = exp(x) is particularly simple to expand in a Taylor
series. For any n, we have

dnf

dxn
= exp(x).

Picking x0 = 0, we have f (n)(x0) = 1, and so

exp(x) =
∞∑
n=0

xn

n!
.

Note 2 As an aside, we could equally have picked an arbitrary x0 to find

exp(x) =
∞∑
n=0

exp(x0)
(x− x0)n

n!

= exp(x0)
∞∑
n=0

(x− x0)n

n!

= exp(x0) exp(x− x0),

which is nothing more than the statement that exp(a + b) = exp(a) exp(b) if we pick
a = x0 and b = x− x0.

The trigonometric functions cos(x) and sin(x) are similarly easy to expand. If
f(x) = sin(x), then f ′(x) = cos(x), f ′′(x) = − sin(x), f ′′′(x) = − cos(x), f ′′′′(x) =
sin(x). Because f ′′′′(x) = f(x), it follows that f (i)(x) = f (i+4)(x) = f (i+4n)(x) if n is
any integer. Hence

f (4n)(x) = sin(x)

f (4n+1)(x) = cos(x)

f (4n+2)(x) = − sin(x)

f (4n+3)(x) = − cos(x).

In particular, if we put x0 = 0, we have

f (4n)(x0) = 0

f (4n+1)(x) = 1

f (4n+2)(x) = 0

f (4n+3)(x) = −1.

With this in hand, we can write down the Taylor series for sin(x), expanding about
x0 = 0. From our calculations of derivatives, it follows that all the even terms in the
series are zero, and the odd terms alternatve sign, so we get

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− . . .
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The same procedure can also be applied to cos(x), in which case all the odd terms
vanish, and the even terms change sign, to give

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

Exercise 4 Find the Taylor expansion for log(1 + x), expanding about x0 = 0. Will
this always work as an infinite series? If not, give a reason.

Complex exponentials

To make sense of exp(z) for a complex argument z, we define the exponential function
by its Taylor series,

exp(z) = 1 + z +
z2

2
+
z3

3!
+
z4

4!
+ . . .

Now, if we choose z = ix, this gives

exp(ix) = 1 + ix+
(ix)2

2
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ . . .

We can expand all the powers to find that (ix)2 = −x2, (ix)3 = −ix3, (ix)4 = x4

(ix)5 = ix5 and so on. Then

exp(ix) = 1 + ix− x2

2
− ix

3

3!
+
x4

4!
+ i

x5

5!
+ . . .

Next, group all the terms that have a factor i and those that do not:

exp(ix) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

+i

(
x− x3

3!
+
x5

5!
− x7

7!
+ . . .

)
But the two series, the one with a factor i and the one without, can be recognized

as the Taylor expansions of sin(x) and cos(x), respectively, so that

exp(ix) = cos(x) + i sin(x).

This is known as Euler’s formula, and plays an important role in the use of complex
variables in physics-based applications. A simple consequence is that

cos(x) = Re(exp(ix)) =
exp(ix) + exp(−ix)

2
.

For more general complex exponentials, we can use

exp(x+ iy) = exp(x) exp(iy) = exp(x) [cos(y) + i sin(y)]

So
Re(exp(x+ iy)) = exp(x) cos(y).
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Exercise 5 If you are familiar with hyperbolic sine and cosine functions, you will
know that these are

cosh(x) =
exp(x) + exp(−x)

2
, sinh(x) =

exp(x)− exp(−x)

2
.

From Euler’s formula, deduce that

cosh(ix) = cos(x), sinh(ix) = i sin(x)

How would you demonstrate that

cos(ix) = cosh(x), sin(ix) = i sinh(x)?

Exercise 6 Express the following in the form a+ ib, where u, v, x and y are real:

1. (u+ iv) exp(ix)

2. exp(u+iv)
x+iy

3. |exp(x+ iy)|

4. z̄ if z = exp(x + iy). Can you also express this as exp(u + iv) for some choice
of real u and v?

5. Re ((u+ iv) exp(− exp(ix)))

Exercise 7 Euler’s formula makes it easier to derive trignometric formulas involving
sums and multiples of an angle. Take for instance cos(A+B) and sin(A+B), which
you can expand as a sum of cosines and sines of A and B. To derive the relevant
formulas, begin with

cos(A+B) + i sin(A+B) = exp[i(A+B)] = exp(iA) exp(iB)

Expand exp(iA) and exp(iB) using Euler’s formula, and manipulate to show that

cos(A+B) = cos(A) cos(B)−sin(A) sin(B), sin(A+B) = sin(A) cos(B)+cos(A) sin(B).

The polar form of a complex number

With the result exp(iθ) = cos(θ) + i sin(θ), we can represent any complex number in
the polar form

a+ ib = r exp(iθ) = r(cos(θ) + i sin(θ)).

To do so, note that this amounts to finding r and θ so that

a = r cos(θ), b = r sin(θ).
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Exercise 8 Show that

r =
√
a2 + b2, tan(θ) =

b

a
. (7)

The inverse of tan is non-unique. More precisely, it is unique up to the addition of
nπ, where n is an integer: if tan(θ) = b/a, then we also have tan(θ + nπ) = b/a for
any integer n. Show that the choice of inverse tan above is actually more restrictive: if
a+ib = r exp(iθ) with r and θ given by (7), then we also have a+ib = r exp(iθ+2nπ)
but not a+ ib = r exp(iθ+ (2n+ 1)π). What does r exp(iθ+ (2n+ 1)π) equal in terms
of a and b? The way to choose which inverse tan to use is given by the fact that
we have taken r to be positive, and so cos(θ) has the same sign as a. If we restrict
θ so that −pi < θ ≤ π, then only one of the possible inverse tangents satisfies this
requirement.

As exercise 8 shows, if z = a+ ib = r exp(iθ), then

r = |z|.

The angle θ is known as the argument of z, denoted by arg(z), which is usually
restricted lie in the range −π < θ ≤ π. The polar form of complex numbers can make
some operations much easier, because of the rules governing the multiplication and
exponentiation of exponentials. Take for instance the multiplication of two complex
numbers

z1 = r1 exp(iθ1), z2 = r2 exp(iθ2).

Then
z1z2 = r1 exp(iθ1)× r2 exp(iθ2) = r1r2 exp[i(θ1 + θ2)],

or
z1z2 = |z1||z2| exp{i[arg(z1) + arg(z2)]}

The modulus of the product is the product of moduli, and the argument of the product
is the sum of arguments:

|z1z2| = |z1||z2|, arg(z1z2) = arg(z1) + arg(z2).

Similarly, consider taking the square root of a complex number. This is apparently
straightforward in polar form since we can write

z1/2 = [r exp(iθ)]1/2 = r1/2 exp(iθ/2) = |z|1/2 exp[i arg(z)/2].

Apparently, we take the square root of the modulus and halve the argument. There
is a caveat, however: when writing z = r exp(iθ), it does become important that θ is
not unique, but we can add 2nπ to θ for any integer n and obtain the same complex
number, so z = r exp(iθ) + r exp[i(θ + 2nπ)], and hence we obtain

z1/2 = r1/2 exp[i(θ/2 + nπ)] = r1/2 exp(iθ/2) exp(inπ).
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But exp(inπ) = cos(nπ) + i sin(nπ). If n is an integer, sin(nπ) ≡ 0 (since sin(0) =
sin(π) = sin(2π) = . . . = 0. Similarly, cos(nπ) = 1 if n is even (since cos(0) =
cos(2π) = cos(4π) = . . . = 1 and cos(nπ) = −1 if n is odd (since cos(π) = cos(3π) =
cos(5π) = . . . = −1. Hence exp(inπ) = ±1, depending on the value of n chosen, and
we find

z1/2 = ±r1/2 exp(iθ/2) = ±|z|1/2 exp[i arg(z)/2]

with arg(z) being the argument of z that lies between 0 and 2π. The sign ambiguity
of the square root is explicit here: if z is not real, then we cannot fall back on the
usual convention that

√
x is equal to the positive number a satisfying a2 = x.1

In fact, we can go further and similarly use the polar form of a complex number
to write any power of a complex number (including fractional powers, that is, roots)
as

zα = |z|α exp{i[α arg(z) + 2αnπ]};
picking a particular value of n is usually referred to as picking the branch of the power
of z.

Exercise 9 Find both values of
√
i in the form a + ib, starting with the polar form

of i. Similarly, find all third roots (−1)1/3 in the form a+ ib.

Note 3 A situation you are likely to meet in applications of complex variables is
finding the real part of f(t) = A exp(iωt), where A is a complex number, ω is a real
number (often an ‘angular frequency’) and t is a real variable, often time. Using polar
forms, this is simply

Re(f(t)) =Re (A exp(iωt))

=Re [|A| exp(iθ) exp(iωt)]

=Re (|A| exp[i(ωt+ θ)])

=|A| cos(ωt+ θ)

where θ = arg(A) represents a phase shift to the cosine function.

Exercise 10 Instead of having to take the real part of f(t) = A exp(iωt) as in note
3., you may simply have a function of the form

g(t) = A exp(iωt) +B exp(−iωt)

Suppose you are told that g(t) is real for all t. Show that this implies that

B = Ā

and that
g(t) = 2|A| cos(ωt+ θ), θ = arg(A)

which is simply twice the real part of f(t).
1If we accept that arg(z) lies between −π and π, then we are guaranteed that the

|z|1/2 exp(i arg(z)/2) has a positive real part, which is the reason why the argument is usually
defined to lie between −π and π.
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Differentiation

Calculus with complex variables is a vast subject with many applications. Here we
will be concerned with only a small part thereof: how to differentiate a complex
function with respect to a real argument. Let

f(t) = g(t) + ih(t)

where g and h are real, so that f is complex. We have

df

dt
=

dg

dt
+

dh

dt

so that

Re

(
df

dt

)
=

dg

dt
.

But g = Ref , so

Re

(
df

dt

)
=

d(Re(f(t)))

dt
.

In other words, the order of Re and d/ dt can be interchanged.

Example 1 Let f(t) = exp(it), so that Ref(t) = cos(t) and

dRe(f(t))

dt
=

d(cos(t))

dt
= − sin(t).

But
df

dt
= i exp(it) = i(cos(t) + i sin(t)) = − sin(t) + i cos(t)

so that

Re

(
df

dt

)
= − sin(t) =

d(Re(f(t)))

dt

as promised.
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