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Overview

These notes cover the following

• Densities revisited

• Mass conservation in integral form

• Mass conservation in differential equation form

• Generalization to other scalar quantities

• Constitutive relations

• The heat equation

Densities

The ‘high school’ definition of density as

ρ =
mass of body

volume

gives an average density for a body. Here we are interested in the density field
ρ(x, y, z, t), or the density at a point (x, y, z) at a time t. This can obviously be
different from the definition above. Take a biological example. Measuring mass over
volume for an animal will be different from making the same measurement for different
body parts: bones and muscles will have a higher density, fat a lower density.
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The density field is instead something you can think of as measuring the concen-
tration of mass near a point (x, y, z) at time t. By saying ‘near’, what we really mean
is taking the amount of mass δm in a small volume δV centered on (x, y, z), and
defining

ρ(x, y, z, t) =
δm

δV
,

or better still, taking the limit as δV → 0.1 At the heart of this definition is the idea
that mass δm of an object should be proportional to its volume δV , provided that
the volume is small: taking twice the volume should lead to an body that has twice
the mass, provided that the properties of the material within it do not vary. This
last requirement is ensured by making sure the volume is very small. Mathematically,
this is where the limit comes in.

Density is then the ‘constant of proportionality’ that relates volume to mass, in
the sense that

δm = ρδV,

only that the constant of proportionality can now vary from place to place, and in
time. The total mass of a body V can then be found by chopping it up into lots of
little bits δV centered on different points (x, y, z), working out the individual masses
of these δV ’s through δm = ρδV and summing. In the limit of small δV ’s, this
becomes a volume integral, so the mass M of a body V is

M =

∫
V

ρ dV.

The high school definition of density then gives

ρ̄ =

∫
V
ρ dV

V
=

∫
V
ρ dV∫

V
1 dV

which we can see as an average of ρ over V (abstracting from averaging as adding up
ρ’s and dividing by the number of sample points to taking an integral and dividing
by the volume of which we integrate instead).

Now, there is no reason why we should confine this concept of ‘density’ to mass.
Densities can be associated with lots of other physical quantities. The simplest of

1You could get technical here and point out that you could have a very elongated shape centered
on (x, y, z) that has a very small volume δV but encompasses points that are a long way from (x, y, z).
What we mean of course is a volume that shrinks towards (x, y, z) from all directions, like a sphere
of diminishing raidus. There is something of a physical caveat here: at very small scales, matter is
made up of discrete objects, such as nuclei and electrons. The purpose of continuum mechanics is
to understand behaviour at much larger scales, so by taking the limit δV → 0, we assume that δV
can be made very small compared with the scale we’re interested in but much larger than the scale
of an individual atom.
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these that you will be familiar with is chemical concentration. In high school, this
would be

c =
number of molecules or moles of a chemical

volume of sample
.

If we see concentration c(x, y, z, t) as a field, then instead we would take the number
of molecules or moles δn of a chemical contained in a small volume δV about (x, y, z)
at time t and divide by δV :

c =
δn

δV
.

By the same argument as above, the total number of molecules or moles in a volume
V is then given by

n =

∫
V

c dV.

You can define densities analogously for all kinds of quantities, for instance a ‘heat
density’ field h(x, y, z, t) if you take the amount of heat2 δE in a small volume δV
around (x, y, z) and divide by δV

e =
δE

δV
,

so that the total amount of heat in a volume V is

E =

∫
V

e dV.

More generally still, you can define a density field φ(x, y, z, t) for some quantity Φ
that is distributed in space as being the amount δφ in a small volume δV :

φ =
δΦ

δV

and the total amount of Φ in a volume V is

Φ =

∫
V

φ dV

Continuum dynamics is concerned with describing how different densities evolve
in time, and how the associated physical quantities can be transported.

Exercise 1 Let the velocity field of a continuum be u = (u, v, w). What is the density
field associated with kinetic energy? Momentum in the x-direction? Do not rely on
dimensional arguments.

2internal energy, to be thermodynamically precise
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Conservation of mass

There are different ways of arriving at the same answer here. Those of you who have
taken EOSC 250 (‘Fields and Fluxes’) will have seen a slightly different version of
the same thing. Here we consider a Langrangian volume V (t): this is a volume that
always includes the same ‘particles’ or ‘bits of matter’. As a result, the volume will
in general change shape over time, hence the notation V (t). Because the volume
includes the same particles at all times, its surface moves at a velocity given by the
local velocity field u of the particles that sit on its surface.

Mass is a conserved quantity, and if V (t) always contains the same bits of matter,
then the mass M(t) contained in it must not change. In other words,

dM(t)

dt
=

d

dt

∫
V (t)

ρ(x, y, z, t) dV = 0. (1)

Our aim is ultimately to turn this into a differential equation, because there are
methods we can use to solve differential equations. Naturally, with ρ appearing in
this expression, we expect to find a differential equation for ρ. But how to get there?

Note 1 The first thing we have to do is manipulate the derivative. How do you
differentiate an integral? The fundamental theorem of calculus is not of direct use
here, as the derivative is not of the form d/ dx

∫ x
f(y) dy. But the analogue of a

single rather than multiple integral is still instructive. Imagine a case where density
depends only on x and t, and the volume V (t) is a cuboid of base area A that extends
from x1(t) to x2(t). Then

M(t) = A

∫ x2(t)

x1(t)

ρ(x, t) dx.

Differentiation with respect to t gives

dM

dt
= A

d

dt

∫ x2(t)

x1(t)

ρ(x, t) dx.

Now all you have to remember is what a derivative is:

df

dt
= lim

δt→0

f(t+ δt)− f(t)

δt
.

Put f(t) =
∫ x2(t)
x1(t)

ρ(x, t) dx. Then

df

dt
= lim

δt→0

∫ x2(t+δt)
x1(t+δt)

ρ(x, t+ δt) dx−
∫ x2(t)
x1(t)

ρ(x, t) dx

δt
.
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The hard part here is that the two integrals have different limits. But we can split the
first integral up:∫ x2(t+δt)

x1(t+δt)

ρ(x, t+δt) dx =

∫ x1(t)

x1(t+δt)

ρ(x, t+δt) dx+

∫ x2(t)

x1(t)

ρ(x, t+δt) dx+

∫ x2(t+δt)

x2(t)

ρ(x, t+δt) dx.

Using this

df

dt
= lim

δt→0

[∫ x1(t)
x1(t+δt)

ρ(x, t+ δt) dx+
∫ x2(t)
x1(t)

ρ(x, t+ δt) dx
∫ x2(t+δt)
x2(t)

ρ(x, t+ δt) dx

δt

−

∫ x2(t)
x1(t)

ρ(x, t) dx

δt

]

= lim
δt→0

∫ x2(t)

x1(t)

ρ(x, t+ δt) dx− ρ(x, t)

δt
dx+ lim

δt→0

∫ x1(t)
x1(t+δt)

ρ(x, t+ δt) dx

δt

+ lim
δt→0

∫ x2(t+δt)
x2(t)

ρ(x, t+ δt) dx

δt

There seem to be a lot of terms here, but just look at the three after the last equality
sign. The first one has [ρ(x, t + δt) − ρ(x, t)]/δt as the integrand, and this will turn
into ∂ρ/∂t in the limit δt → 0.3 This term clearly describes the effect of a changing
density on the mass contained in V (t). But if this term was the only one we had, then
any change in density would lead to a change in mass, contrary to our assumption
that mass must be conserved. Clearly the other two terms must account for this.

To deal with the second and third terms, note that when δt is small, x1(t + δt) is
very close to x1(t). But for an integral over a very small interval, the integrand is
nearly constant, and so we can write∫ x1(t)

x1(t+δt)

ρ(x, t+ δt) dx ≈ ρ(x1(t+ δt), t+ δt)[x1(t)− x1(t+ δt)]

and so

lim
δt→0

∫ x1(t)
x1(t+δt)

ρ(x, t+ δt) dx

δt
= lim

δt→0

[
−ρ(x1(t+ δt), t+ δt)

x1(t+ δt)− x1(t)
δt

]
= −ρ(x1, t)

dx1
dt

Similarly, we can show that

lim
δt→0

∫ x2(t+δt)
x2(t)

ρ(x, t+ δt) dx

δt
= ρ(x2, t)

dx2
dt

.

3We ingore the complications introduced by interchanging the limit and the integral here.
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The point about V (t) being a Lagrangian volume is now that the faces x = x1(t)
and x = x2(t) must move at the velocity of the material at those interfaces. In other
words

dx1
dt

= u(x1, t),
dx2
dt

= u(x2, t)

where u is the velocity of material in the x-direction. Therefore

dM

dt
= A

∫ x2

x1

∂ρ

∂t
dx+ ρ(x2, t)u(x2, t)A− ρ(x1, t)u(x1, t)A = 0.

As discussed, the first term signifies the rate of change of mass in V due to changes in
density. The second and third describe the effect of deforming the boundaries of V (t)
at the velocity U of the material in it. Together, these effects must add up to zero: if
∂ρ/∂t < 0, then the first term is negative (diminishing density tends to reduce mass).
To offset this, we must have u(x2, t) > 0 or u(x1, t) < 0 or both: this implies the ends
of the interval moving outwards, or the volume expanding to account for diminishing
volume within it. (Think of a bicylce pump: density within it will drop if you pull the
piston out while holding the valve shut. The drop in density is offset by an increase
in volume, so the total mass can remain the same.)

From here, it is relatively straightforward to construct a differential equation. The
first step is to recognize that the difference between the ρuA terms evaluated at (x2, t)
and (x1, t) can be written as an integral by the fundamental theorem of calculus:

ρ(x2, t)u(x2, t)A− ρ(x1, t)u(x1, t)A = A

∫ x2

x1

∂(ρu)

∂x
dx

so that dM/ dt can be written as a single integral

dM

dt
= A

∫ x2

x1

∂ρ

∂t
+
∂(ρu)

∂x
dx = 0.

The last step is the most subtle. The point is that, while x1(t) and x2(t) move at the
local velocity u, their initial positions are completely arbitrary, so the integral

A

∫ x2

x1

∂ρ

∂t
+
∂(ρu)

∂x
dx

must be zero no matter what its limits are. That, however, turns out to imply that
the integrand is zero.

Because we are in one dimension, one can show this just by formally differentiating
with respect to, say, x2, keeping x1 constant:

0 =
d

dx1

∫ x2

x1

∂ρ

∂t
+
∂(ρu)

∂x
dx =

(
∂ρ

∂t
dx+

∂(ρu)

∂x

)∣∣∣∣
x=x2
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and so
∂ρ

∂t
+
∂(ρu)

∂x
= 0

at any arbitrary position x2 (so the equation holds everywhere). Differentiation with
respect to one of the end points of the range of integration however does not transfer
well to higher dimensions, where there are no discrete end points, and we have instead
a bounding surface. A slightly more subtle argument must be used. The simplest
version of this is to look at x2 close to x1, so the range of integration is short, say
x2 = x1 + δx. Then we can approximately treat the integrand as constant over the
range of integration, and∫ x2

x1

∂ρ

∂t
+
∂(ρu)

∂x
dx ≈

(
∂ρ

∂t
dx+

∂(ρu)

∂x

)∣∣∣∣
x=x1

δx = 0

and again, with δx 6= 0, the integrand must vanish at an arbitrary position x1

∂ρ

∂t
+
∂(ρu)

∂x
= 0.

A more sophisticated — and watertight — argument is given in note 2 below.
The next step is to generalize this argument to three dimensions.

We want to manipulate

dM

dt
=

d

dt

∫
V (t)

ρ(x, y, z, t) dV

into more manageable form. To do so, use the basic definition of a derivative:

df

dt
= lim

δt→0

f(t+ δt)− f(t)

δt
,

or, in the present case,

d

dt

∫
V (t)

ρ(x, y, z, t) dV = lim
δt→0

∫
V (t+δt)

ρ(x, y, z, t+ δt) dV −
∫
V (t)

ρ(x, y, z, t) dV

δt

To turn this into something that contains more recognizeable derivatives, we need to
have integrals that have the same range of integration. Split the range of integration
of the first integral as follows:∫
V (t+δt)

ρ(x, y, z, t+δt) dV =

∫
V (t)

ρ(x, y, z, t+δt) dV +

∫
V (t+δt)−V (t)

ρ(x, y, z, t+δt) dV.

By
∫
V (t+δt)−V (t)

. . . dV we mean an integral over the volume that is contained either

in V (t+ δt) or in V (t) but not in both, with the integral being treated as positive for
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any regions that are only V (t + δ) and not in V (t), and as negative for any regions
that are only in V (t) but not in V (t+ δt) (see figure 1).

Using this,

d

dt

∫
V (t)

ρ(x, y, z, t) dV = lim
δt→0

[∫
V (t)

ρ(x, y, z, t+ δt) dV −
∫
V (t)

ρ(x, y, z, t) dV

δt

+

∫
V (t+δt)−V (t)

ρ(x, y, z, t+ δt) dV

δt

]

= lim
δt→0

[∫
V (t)

ρ(x, y, z, t+ δt)− ρ(x, y, z, t)

δt
dV

]
+ lim

δt→0

∫
V (t+δt)−V (t)

ρ(x, y, z, t+ δt) dV

δt

The first term after the last equality is clearly
∫
V
∂ρ/∂t dV . What about the second?

We need to look at the volume change in the volume, which we have denoted by
‘V (t + δt) − V (t)’. In the limit of small δt, we can expect this volume to be a thin
layer pasted onto v(t) (where V (t+ δt) is bigger than V (t)) or sliced off V (t) (where
V (t + δt) is smaller than V (t)). How can we quantify this volume? The change in
volume occurs because the particles at the surface of V (t) move at the velocity field
u of the continuum, and are therefore displaced by an amount uδt in δt.4 We can
split V (t + δt) − V (t) into small subvolumes by taking the surface S(t) of V (t) and
splitting it up into lots of small parts δS. Then we can identify where the particles
that make up these δS’s have moved to after a short time interval δt, and take the
volume in between the old on new positions of δS as the volume elements δV that
make up V (t+ δt)−V (t). To account for the sign of the integral (negative where the
volume has shrunk in δt, positive where it has expanded), we can take δV as positive
where δS has moved outwards, and as negative where it has moved inwards.

Each δV is then a prism shape with base area δS and side length |uδt|. To get
a volume δV , we need to take base times height, where height is the part of the
side length that is actually perpendicular to δS, or |uδt| cos(θ) where θ is the angle
between the side and the normal n̂ to δS:

δV = δS|uδt| cos(θ).

4There is a second caveat to the applicability of continuum mechanics here, in addition to con-
cerning ourselves only with scales much larger than the atomic scale: we also have to assume that
at any given point (x, y, z) and instant in time t, there is a single velocity field u(x, y, z, t) that
describes the motion of material there. This implies that nearby atoms interact with each other
strongly enough that their net motion occurs at the same velocity. This is appropriate in many
circumstances, especially in solids and liquids. For very low-density gases such as the outer parts of
the earth’s atmosphere or even outer space, particles are too widely spaced to collide often enough.
Particles can therefore maintain unrelated velocities over distances that are “macroscopic” — com-
parable with scales at which we are trying to model the system — and continuum mechanics breaks
down.
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From the definition of a dot product, we have

cos(θ) =
(uδt) · n̂
|uδt||n̂|

.

If we insist that n̂ is a unit normal so that |n̂| = 1, this gives

δV = δSu · n̂δt.

If we further insist that n̂ points to the outside of V (t) (a so-called ‘outward-pointing
unit normal’) then δV even has the correct sign: it is negative where u points into
the volume V (t) and where the volume has therefore shrunk in the time interval δt,
while it is positive where u points out of the volume, meaning the volume has grown.

With these δV ’s in hand, we can write∫
V (t+δt)−V (t)

ρ(x, y, z, t+ δt) dV =
∑

ρδV

=
∑

ρδSu · n̂δt

=

∫
S(t)

ρu · n̂ dSδt

Using this result, we find

lim
δt→0

∫
V (t+δt)−V (t)

ρ(x, y, z, t+ δt) dV

δt
=

∫
S(t)

ρu · n̂ dS

and so
d

dt

∫
V (t)

ρ dV =

∫
V (t)

∂ρ

∂t
dV +

∫
S(t)

ρu · n̂ dS. (2)

This result is actually a general result that holds for any integrand ρ integrated over
a Lagrangian volume V (t). The equality (2) is known as Reynolds’ transport theorem,
and will occur repeatedly in studying conservation laws.

Now, from dM/ dt = 0, we therefore have∫
V (t)

∂ρ

∂t
dV +

∫
S(t)

ρu · n̂ dS = 0. (3)

Conservation of mass as a differential equation

As stated, we would like a differential equation that we can (in principle) apply
solution techniques to that we may (or maybe may not yet. . . ) know about. So far,
what we have in (3) should be called an integro-differential equation. To make this a
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V(t+   t)

V(t)

S

n

u    t

Figure 1: The deformation of a Lagrangian volume in time δt and integrating over
the volume V (t + δt) − V (t). The dashed surface bounds the volume V (t + δt), the
solid surface bounds the volume V (t). The difference V (t + δt) − V (t) is controlled
by the movement of particles on the surface of the volume at velocity u(x, y, z, t).
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little simpler, we can apply the divergence theorem, so that the integrals are at least
taken over the same range of integration:∫

S(t)

ρu · n̂ dS =

∫
V (t)

∇ · (ρu) dV,

so that ∫
V (t)

∂ρ

∂t
+∇ · (ρu) dV = 0. (4)

How do we take the next step? The point here is that V (t) is an arbitrary volume:
conservation of mass is something that must hold for any Lagrangian volume we
choose, not just a specific one. In particular, V (t) does not have to correspond
to a something confined by a physically obvious boundary such as the membrane
of a balloon or the walls of a bicycle pump. It can track the shape of any blob
of matter. Hence we can make V (t) very small indeed. For a small volume, the
integrand ∂ρ/∂t+∇ · (ρu) does not change by much over the volume, so that we can
approximate ∫

V (t)

∂ρ

∂t
+∇ · (ρu) dV ≈

[
∂ρ

∂t
+∇ · (ρu)

]
|V (t)|

where |V (t)| is the size of the volume V (t). But |V (t)| is not zero, and in order to
have

∫
V (t)

∂ρ/∂t +∇ · (ρu) dV = 0, we can therefore demand that the integrand be
zero:

∂ρ

∂t
+∇ · (ρu) = 0. (5)

Note 2 To make this mathematically watertight requires a bit of extra thought, be-
cause the approximation above means that we cannot actually say that [∂ρ/∂t +∇ ·
(ρu)]|V (t)| = 0 but only that it is close to zero. The relevant argument would then
have to say [∂ρ/∂t+∇·(ρu)]|V (t)| = 0 has to be much closer to zero than |V (t)| itself.
This could be done by Taylor expanding about the centre of V (t). There is a simpler
argument that runs as follows: assume that the integrand in (4) is continuous. This
means that variations in the integrand in a box around (x, y, z) approach zero as I
make the size of the box smaller. A mathematical way of putting this is that, for any
variation size ε, there is a distance δ from (x, y, z) so that variations in the integrand
stay smaller than ε. The argument for why the integrand in (4) must be zero then
runs as follows. Suppose that the integrand was not zero somewhere, say at a point
(x, y, z) where D = ∂ρ/∂t+∇·(ρu) 6= 0. To make things, easier, suppose that D > 0.
Picking ε = D in the definition of continuity above. It would then be possible to draw
a sphere of some small radius δ around (x, y, z) so that the integrand varies by less
than D within that sphere, and thefore is positive in the sphere. Picking V (t) to be
that sphere, we would find the integral

∫
V (t)

∂ρ/∂t+∇ · (ρu) dV > 0, which disagrees

with (4). This allows us to say that such a point (x, y, z) cannot exist, and that the
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integrand has to be zero everywhere. Mathematically, this is known as a proof by con-
tradiction: You assume that the thing you want to prove is false, and show that this
necessarily leads to a statement that is not true, leaving only the possibiity that the
thing you wanted to prove in the first place was actually correct. No need to memorize
this argument, however.

Note 3 For a vector field q = qx(x, y, z, t)i + qy(x, y, z, t)j + qz(x, y, z, t)k, the diver-
gence ∇ · q is defined through

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

The divergence theorem meanwhile says that∫
V

∇ · q dV =

∫
S

q · n̂ dS

where S is the surface of the volume V and n̂ is an outward-pointing unit normal
vector. You can use this to develop some intuition about divergences: take a small
volume V , centered on some point (x, y, z). For such a small volume, the volume
integral can be approximated by the value of the integrand at (x, y, z) times the size
of the volume V (because the integrand is approximately constant over the volume).
This allows us to motivate the following alternative definiton of ∇ · q:

∇ · q = lim
V→0

1

V

∫
S

q · n̂ dS.

In other words, ∇ · q is a measure of how much the flow described by the vector field
q is oriented away from (x, y, z): recall that n̂ is an outward-pointing unit normal,
and therefore, in the mean, points away from the centre of the volume (x, y, z). q · n̂
is then a measure of whether q points towards or away from (x, y, z).

Note 4 It should be obvious that, if (5) holds everywhere, then (3) must also auto-
matically hold, simply by working the steps leading up to (5) in reverse. In particular,
we can integrate over the Lagrangian volume V (t) at any point in time to find (4),∫

V (t)

∂ρ

∂t
+∇ · (ρu) dV = 0.

Applying the divergence theorem, this becomes (3),∫
V (t)

∂ρ

∂t
dV +

∫
S(t)

ρu · n dV = 0.

From here, we only have to use Reynolds’ transport theorem to retrieve the original
statement (1),

d

dt

∫
V (t)

ρ dV = 0, .
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Conservation of other quantities

Mass is, in some ways, a rather special quantity to conserve. It cannot be exchanged
between different bits of matter. Other conserved quantities like energy, momentum,
charge etc. are different. Momentum is exchanged through forces, energy through
heat flow, charge through electrical currents. Therefore, if we take the amount of
energy, momentum, charge etc. (denoted by the generic symbol Φ with associated
density φ below) in a Lagrangian volume V (t) we can no longer so that this amount
stays constant in time. Instead, we have to quantify the rate at which the quantity in
question is exchanged with surrounding matter. In continuum mechanics, this process
is called conduction, and is quantified through a flux field q.

We assume that, at any point (x, y, z) and time t, there is a definite direction
in which the quantity in question moves from one bit of matter to another, and we
use that direction as the direction of the flux field q(x, y, z, t). The magnitude of
the flux is then calculated (or measured as follows): take a small surface δS that
is perpendicular to the direction of flow and measure the amount δΦ of whatever
conserved quantity you’re concerned with that is carried by conduction through δS
in a short time δt. Then

|q| = δΦ

δSδt
.

Hence, for δS perpendicular to q, the amount of Φ that passes through in δS is

δΦ = |q|δSδt. (6)

Again, at the heart of this is the idea that the amount δΦ transferred through a
surface δS (of whatever the symbol Φ represents) should be proportional to the size
of that surface and to the time δt elapsed, so long as ‘conditions’ do not change across
the surface or in time — hence once more the insistence on small δS and δt (and δS
is flat). |q| is the constant of proportionality, which can depend on where the surface
δS is located, and on time (just as the ‘constant of proportionality’ ρ that relates
volume δV to mass δm can depend on position and time).

In order to compute the rate at which Φ flows out of the surface of a Lagrangian
volume, we then have to figure out what happens if part δS of the surface S(t) is
not perpendicular to the direction of the flux field q. The answer is that the amount
that passes through δS is now given by |q| times the size of the projection δS ′ of δS
onto a plane perpendicular to q times δt (see figure 2). The size of this projection is
δS ′ = δS cos(θ) where θ is the angle between the normal to δS and q. From this,

δΦ = q · n̂δSδt.

Exercise 2 The argument we have just constructed is actually a bit of a sleight of
hand. Why? See the appendix to these notes for more details.
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To figure out the rate at which Φ passes through a larger surface S, all we need
to do is split that surface into lots of small elements δS, compute δφ for them, and
sum. The rate (amount of Φ that passes through in δt, divided by δt) is then∫

S

q · n̂ dS.

At this point, we might be tempted to say the following: Let Φ(t) be the amount
of Φ in a Lagrangian volume V (t) at time t. The rate at which Φ changes (or more
precisely, increases) is minus the rate at which Φ flows out, so

dΦ

dt
=

d

dt

∫
V (t)

φ dV = −
∫
S(t)

q · n̂ dS.

The snag is that it may also be possible to ‘supply’ Φ. Suppose we take Φ to be
heat. There are other forms of energy (potential, kinetic) that can be converted to
heat at rates that can be computed from basic physics. For instance, if you know the
concentration of a radionuclide, the energy released per decay event and the half-life
of the radionuclide, you can compute how much heat is being produced in the volume
V (t) due to radioactive decay. The way this is usually dealt with is to define a supply
rate per unit volume a as a scalar field through

a(x, y, z, t) =
amount of Φ produced in small volume δV around(x, y, z) in time δt

δV δt
.

Note that, defined in this way, a looks very much like a density: it measures how
concentrated heat production is near (x, y, z). The total rate of heat production in
V (t) is then naturally ∫

V (t)

a dV.

Instead, we therefore get the general conservation law

dΦ

dt
=

d

dt

∫
V (t)

φ dV = −
∫
S(t)

q · n̂ dS +

∫
V (t)

a dV. (7)

The term on the left can be dealt with using Reynolds’ transport theorem:

d

dt

∫
V (t)

φ dV =

∫
V (t)

∂φ

∂t
dV +

∫
S(t)

φu · n̂ dS

so that ∫
V (t)

∂φ

∂t
dV +

∫
S(t)

φu · n̂ dS = −
∫
S(t)

q · n̂ dS +

∫
V (t)

a dV. (8)

Once more we can apply the divergence theorem and rearrange this equation to find∫
V (t)

∂φ

∂t
+∇ · (φu) +∇ · q− a dV = 0 (9)
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n

S

q

Figure 2: Conduction through a surface element δS that is at an oblique angle to the
flux field q. The rate of transfer through δS (shown as a thick solid line) is the same
as the rate of transfer through the projection of δS onto a plane perpendicular to q
(dahsed line). The size of this projection is δS cos(θ) where θ is the angle between δS
and the plane perpendicular to q, so the rate of transfer per unit time is |q|δS cos(θ).
θ is also the angle between q and the unit normal n̂ to δS, so the rate of transfer is
equal to q · n̂δS.

and by the same arguments as we used for conservation of mass, we can show that
the integrand must in fact be zero because the volume V (t) is arbitrary:

∂φ

∂t
+∇ · (φu) +∇ · q− a = 0. (10)

This is the generic form of a conservation law. To understand the terms physically,
we can rewrite it in the form

∂φ

∂t
= a−∇ · (φu)−∇ · q.

The density φ increases due to supply at rate a and decreases due to flow away from
(x, y, z) due to the movement of material (or advection) at a rate −∇ · (φu) and due
to conduction away from (x, y, z) at a rate −∇ · q.

Note 5 One could question if (9) really does mean that the quantity Φ is ‘conserved’.
The volume V (t) clearly experiences a loss

∫
S(t)

q · n dSδt through its surface in time

δt. In addition, an amount
∫
V (t)

a dV δt is added.

The short answer is of course that the advection term
∫
S(t)

q · n dSδt accounts

for a loss from the volume V (t) that is simultaneously added to another neighbouring
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volume, so the total amount of Φ contained in both remains the same. Similarly, the
amount of

∫
V (t)

a dV δt of Φ produced must be accounted for by an equal simultaneous

loss of some other related quantity.
To be specific, take the ‘production’ term

∫
V (t)

a dV δt when Φ is ‘heat’, and suppose

also for simplicity that there is no conduction. Let φ1 be ‘heat density’. In the absence
of conduction, (7) is then

d

dt

∫
V (t)

φ1 dV =

∫
V (t)

a dV.

But
∫
V (t)

a dV δt is the amount of other forms of energy (kinetic, potential) con-

verted to heat in the volume V (t) during time δt. This is the same as saying that
−
∫
V (t)

a dV δt is the amount of non-heat energy gained by the volume V (t). Let φ2

denote the density of ‘other energy’, and suppose again for simplicity that there is no
conductive transport associated with these other forms of energy. Then (7) for ‘other
energy’ becomes

d

dt

∫
V (t)

φ2 dV = −
∫
V (t)

a dV.

But total energy content is the sum of heat and non-heat energy,
∫
V
φ1+φ2 dV . Adding

the two equations above gives

d

dt

∫
V (t)

φ1 dV +
d

dt

∫
V (t)

φ2 dV =

∫
V (t)

a dV −
∫
V (t)

a dV.

or
d

dt

∫
V (t)

φ1 + φ2 dV = 0.

the production term
∫
V (t)

a dV δt therefore does not lead to a gain or loss in total energy

content — it only accounts for conversion of energy from one form to another,
Similarly, to understand the effect of conduction better, consider the case of two

adjoining Lagrangian volumes V1(t) and V2(t) (see figure 3). Suppose that V1(t) and
V2(t) can exchange Φ (think of it as heat if you will) through their common surface
Si by conduction (see figure 3), but that no heat is lost through the outer surface S0

where V1 and V2 do not touch. For simplicity, ignore the production term
∫
V (t)

a dV .

Then (7) for the two reads

d

dt

∫
V1(t)

φ dV = −
∫
Si(t)

q · n1 dS

d

dt

∫
V2(t)

φ dV = −
∫
Si(t)

q · n2 dS,

and adding the two gives

d

dt

∫
V (t)

φ dV = −
∫
Si(t)

q · (n1 + n2) dS

16
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Figure 3: Conservation with conduction only between two neighbouring Lagrangian
volumes.

where V (t) = V1(t) ∪ V2(t) is the total volume. But n1 and n2 are normals to the
same surface, only they point in opposite directions. So n2 = −n2 and the integral
on the right-hand side has zero integrand. Hence

d

dt

∫
V (t)

φ dV = 0

and Φ =
∫
V (t)

φ dV for the whole volume is conserved, though the sub-volumes V1 and

V2 can exchange Φ with each other.

Heat

The conservation law (10) is completely generic, and can describe anything from
conservation of mass (φ = ρ, q = 0, a = 0) to conservation of energy, charge etc.
As such we cannot expect to find a general solution to this equation without making
some more specific choices about some of the quantities involved. Mathematically,
this is reflected in the fact that we have one equation in seven unknowns (φ and three
components apiece for u and q). Phyiscally, this is the result of not having stated
anything about the properties of the materials in question.

While the conservation law (10) states completely fundamental physics, specifying
material properties is generally something that is done empirically as it is usually im-
possible to use detailed microscopic physics at the scale of individual atoms to derive
material behaviour relevant to the much larger scale of a continuum. The relevant
mathematical relationships are then only models that work well as descriptions of the
real world, but they do not have the same fundamental status as a conservation law.
Such mathematical relationships are generally called constitutive relations.

We illustrate this here for the case of conservation of energy, where Φ is what
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I will call heat. Then φ = e is a ‘heat density’,5 and we expect this to depend on
temperature as well as the material in question. Heat capacity (units J kg−1 K−1)
is a measure of how much the heat content per unit mass of some material increases
given a small temperature increase.6 If we treat c as constant, then we get simplest
possible model for φ in this case, namely

φ = ρcT. (11)

In addition, we expect heat conduction to depend on the temperature field as well.
In particular, we expect heat to flow from hot to cold, and heat flux to be greatest
where hot on cold are closest together, i.e. where the temperature gradient is biggest.
The simplest empirical relationship that encapsulates these ideas is Fourier’s law,

q = −k∇T. (12)

k is the thermal conductivity of the material in question, with units of W m−1 K−1.

Note 6 The gradient

∇T =
∂T

∂x
i +

∂T

∂y
j +

∂T

∂z
k

of a scalar field is perpendicular to contours (or ‘isosurfaces’) of T . Its direction is
also the direction in which T increases most rapidly, and its magnitude gives the the
relevant rate of increase. This is easiest to understand if we consider a curve C and
ask how temperature changes along the curve. A curve can be parameterized in the
form (x(s), y(s), z(s)) so that x, y and z are functions of a parameter s, which we can
choose to be distance along the curve (also called ‘arc length’) from a fixed starting
point. An example would be the unit circle. Distance along the unit circle can be
measured through the angle traversed, and the circle can be parameterized as

(x(θ), y(θ), z(θ)) = (cos(θ), sin(θ), 0)

Given a scalar field T (x, y, z), the rate at which T changes with distance s is then
given by

dT

ds
= ∇T · t̂ (13)

where

t̂ =
dx

ds
i +

dy

ds
j +

dz

ds
k

5If you are familiar with thermodynamics, you may recognize that this should be ‘internal energy
density’ rather than ‘heat density’. and Φ should be referred to as ‘internal energy’, not heat.

6To be thermodynamically precise, Φ should not be referred to as ‘heat’ but as ‘internal energy’,
and correspondingly, c would then be heat capacity measured at constant volume, so a change in
temperature does not lead to a finite amount of work done in expanding the material in question.
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is the unit tangent to the curve. Using the chain rule, it is easy to see that (13) holds,
as we have

dT

ds
=
∂T

∂x

dx

ds
+
∂T

∂y

dy

ds
+
∂T

∂z

dz

ds
= ∇T · t̂.

We’d still like to be sure that the interpretation of t̂ as a unit tangent to the curve
holds. To see this consider going a short distance from (x(s), y(s), z(s)) to (x(s +
δs), y(s+ δs), z(s+ δs)). The displacement in doing so is

δxi + δyj + δzk = [(x(s+ δs)− x(s)] i + [(y(s+ δs)− y(s)] j + [(z(s+ δs)− z(s)] k

=
dx

ds
δsi +

dy

ds
δsj +

dz

ds
δsk

= t̂δs

and this vector is clearly tangential to the curve (i.e., along the curve) for small
displacements δs. So t̂ is a tangent vector. It is also a unit vector if we insist that δs
is the length of the displacement undergone in going from s to δs, i.e. if

δs =
√

(δx)2 + (δy)2 + (δz)2.

Rearranging

1 =

√(
δx

δs

)2

+

(
δy

δs

)2

+

(
δz

δs

)2

Or, in the limit, √(
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2

= 1.

But the left-hand side is simply |t̂|, so |t̂| = 1 and t̂ is a unit vector.
Now it is easy to see that, if C is a contour of the scalar field T , then dT/ ds = 0

along C. Hence
∇T · t̂ = 0

if t̂ is tangent to contours of T . In other words, ∇T is perpendicular to temperature
contours.

Moreover, because t̂ is a unit vector, we have

dT

ds
= ∇T · t̂ = |∇T | cos(θ)

where θ is the angle between ∇T and n̂. Now, as cos(θ) ≤ 1, the last expression is
biggest for a given temperature gradient if cos(θ) = 1, i.e. if θ = 0 the curve is aligned
with the gradient of T . Hence ∇T gives the direction of steepest increase in T . With
cos(θ) = 1, we also have

dT

ds
= |∇T |
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Figure 4: The relationship between the gradient ∇T , contours of T , and derivatives
along a curve.

so the magnitude of ∇T also gives the rate of increase in T the direction where this
increase is steepest.

Fourier’s law therefore ensures that, at any point, conductive heat flux is in the
direction in which temperature decreases most rapidly (this is what the minus sign
in (12) is for), and that conductive heat flux is proportional to the rate of decrease
of temperature in that direction. Graphically, heat flux is perpendicular to temper-
ature contours (from hot to cold) and inversely proportional to the distance between
temperature contours.

With (11) and (12), the conservation law (10) becomes

∂(ρcT )

∂t
+∇ · (ρcTu)−∇ · (k∇T ) = a. (14)

This is usually re-written slightly. Note that the product rule can be used to show
that (recall that c is assumed to be constant)

∂(ρcT )

∂t
= cT

∂ρ

∂t
+ ρc

∂T

∂t

and
∇ · (ρcTu) = cT∇ · (ρu) + ρcu · ∇T.
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Substituting these in (14) gives

cT
∂ρ

∂t
+ ρc

∂T

∂t
+ cT∇ · (ρu) + ρcu · ∇T −∇ · (k∇T ) =

cT

[
∂ρ

∂t
+∇ · (ρu)

]
+ ρc

∂T

∂t
+ ρcu · ∇T −∇ · (k∇T ) =

ρc
∂T

∂t
+ ρcu · ∇T −∇ · (k∇T ) = a, (15)

where we have used the mass conservation equation (5). The last line of (15) is a
general form of the so-called heat equation. To get the heat equation that partial
differential equations courses usually present, you have to assume that there is no ad-
vection (u = 0) and that thermal conductivity k is spatially uniform (k = constant).
Then the (15) becomes

ρc
∂T

∂t
− k∇2T = a

where

∇2T = ∇ · ∇T =
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂x2

is called the Laplacian of the scalar field T .

Note 7 We used a procedure in simplifying (14) into (15) above that is very common
in continuum mechanics. This is to write a density φ in the form φ = ρψ, where ψ
now has dimensions of ‘amount of conserved quantity Φ per unit mass’. Then the
first two terms in (10) become, using the product rule,

∂φ

∂t
+∇ · (φu) =

∂(ρψ)

∂t
+∇ · (ρψu)

=
∂ρ

∂t
ψ + ρ

∂ψ

∂t
+∇ · (ρu)ψ + ρu · ∇ψ

= ψ

[
∂ρ

∂t
+∇ · (ρu)

]
+ ρ

∂ψ

∂t
+ ρu · ∇ψ

= ρ

[
∂ψ

∂t
+ u · ∇ψ

]
The combination of terms

Dψ

Dt
=
∂ψ

∂t
+ u · ∇ψ

is often called a material derivative. There is a simple reason for this name. Consider
a point x(t) = (x(t), y(t), z(t)) that moves at the velocity u(x(t), t) of the material.
Imagine following this point and measuring some quantity ψ as you follow that point,
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so that you are looking at ψ(x(t), t). By analogy with the derivation of (13), we can
use the chain rule to write

dψ(x(t), t)

dt
=
∂ψ

∂t
+ (∇ψ) · dx

dt

=
∂ψ

∂t
+ (∇ψ) · u

as velocity is the rate of change of position, u = dx/ dt.

Appendix: Why conductive flux is a vector field

We defined the magnitude of conductive flux, |q|, through equation (6), which really
states that the amount of ‘stuff’ δΦ that passes through a small surface δS in time
δt is proportional to both δS and δt. The problem is that, as long as δS is flat,
proportionality should hold regardless of how the surface δS is oriented. It is not
really obvious that ‘stuff’ flows in a definite direction relative to which we can orient
δS. What we will do here is show that such a direction really can be found, and that
a conductive flux can be defined as a vector field q(x, y, z, t) such that

δΦ = q · n̂δSδt (16)

as we assumed previously. The derivation below is not entirely trivial (especially the
later parts) and is not essential in understanding the remaining notes in this course,
so long as you are happy to take (16) at face value.

The starting point for the derivation has to be only that

δΦ = q̃δSδt (17)

where the constant of proportionality q̃ depends not only on (x, y, z, t) but also on
the orientation of δS, meaning we can write

q̃ = q̃(x, y, z, t, n̂). (18)

n̂ is the unit normal to δS, pointing towards the side of δS to which δΦ is transferred.
We need to show that

q̃(x, y, z, t, n̂) = q(x, y, z, t) · n̂
for a vector field q — which we can then call the ‘conductive flux’.

We start by making one obvious observation: if I change sign of n̂, the magnitude
of q̃ remains the same, but its sign changes. More simply, let Φ represent heat.
Suppose I take joule of heat from one side of δS (call it side A) to the other (call it
side B). I have added that joule to side B and removed it from A, which is the same
as saying I have added minus one joule to side A. This means that

q(x, y, z, t,−n̂) = −q(x, y, z, t, n̂).
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Figure 5: The prism shape of V : a) perspective view and b) top-down view.
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Next, look at the prism in figure 5. Assume to start with that there is no pro-
duction of ‘Φ’, no advection, and that the prism is in steady state. That means that
the total transfer Φ through all the faces of the prism taken together must be zero.
Assume that the prism is small enough so that we can use (17) for each face of the
prism with (x, y, z) = (x0, y0, z0), the position of one of its vertices. Then

q̃(x0, y0, z0, t, n̂1)δS1δt+ q̃(x0, y0, z0, t, n̂2)δS2δt+ q̃(x0, y0, z0, t, n̂3)δS3δt

+q̃(x0, y0, z0, t, n̂4)δS4δt+ q̃(x0, y0, z0, t, n̂5)δS5δt = 0,

the normal n̂ in each case being outward-pointing as shown in the figure. But n̂4 =
−n̂5 and δS4 = δS5, so the last two terms cancel. Put another way, what flows into
the bottom of the prism flows out at the top. This leaves

q̃(x0, y0, z0, t, n̂1)δS1 + q̃(x0, y0, z0, t, n̂2)δS2 + q̃(x0, y0, z0, t, n̂3)δS3 = 0.

Here the top-down view in panel b of the figure helps: clearly, we can write δS1 =
δS3 cos(θ), δS2 = δS3 sin(θ). If we also put

q1 = q̃(x0, y0, z0, t, n̂1), q2 = q̃(x0, y0, z0, t, n̂2), q3 = q̃(x0, y0, z0, t, n̂3),

we have
q3 = −q2 sin(θ)− q1 cos(θ) = 0. (19)

Next, we can play with the orientation of the prism, and with the internal angle
θ. Suppose first I change the orientation of the prism until I have maximized transfer
across the surface δS1. With the orientation of the surface δS1, suppose I change the
size of the internal angle next. The orientation not only of δS1 but also of δS2 is then
fixed before the internal angle is θ is changed, and is not affected by changes in θ.
This means we can treat q1 and q2 as fixed, but q3 must be treated as a function of θ
when the internal angle is changed.

The fact that the face δS1 was oriented to maximize flow across it means that q3
should also be maximized when we change the internal angle so that δS3 becomes
aligned with δS1. In other words,

dq3
dθ

= 0 when θ = 0.

Differentiating both sides of (19) with respect to θ, we get

dq3
dθ

= −q2 cos(θ) + q1 sin(θ) = 0 when θ = 0,

Since cos(0) = 1, sin(0) = 0, this implies that q2 = 0. Then (19) says that

q3 = −q1 cos(θ) = q1n̂1 · n̂3,
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using the basic definition of dot products.
In other words, using the definitions of q3 and q1,

q3 = q̃(x0, y0, z0, t, n̂3) = q̃(x0, y0, z0, t, n̂1)n̂1 · n̂3. (20)

n̂1 was chosen specifically to make q1 as large as possible given the position (x0, y0, z0)
of the prism. With that motivation, we can define conductive heat flux as a vector
field

q(x0, y0, z0, t) = q̃(x0, y0, z0, t, n̂1)n̂1,

and (20) becomes
q̃(x0, y0, z0, t, n̂3) = q(x0, y0, z0, t) · n̂3.

But there was nothing special about choosing the point (x0, y0, z0), or the direction
defined by n̂3, so we can replace them by (x, y, z) and n̂. and (20) turns into

q̃(x, y, z, t, n̂) = q(x, y, z, t) · n̂,

which is the desired equation (18). Notice that we have not only shown that this
holds, but also that the conductive flux q can be understood as having a magnitude
|q(x0, y0, z0, t)| = q(x0, y0, z0, t, n̂1) that is the maximum rate of transfer across a
given surface size, that is, maximized with respect to the orientation of the surface.
Likewise, the direction of the conductive flux q is in the direction in which transfer
is fastest.

The main weak spot in our derivation is that we have assumed that the prism is
in steady state, with no advection or production. In fact, we have also cheated a bit
by saying that we assume the prism to be small enough so that (17) can be applied
to all of its sides. Presumably, (17) means that for a finite-sized body V with surface
S, conduction transfers ‘stuff’ out of V at a rate∫

S

q̃(x, y, z, t, n̂) dS.

In the more general case, where we do not assume steady state or an absence of
advection or production, the equivalent of (7) is then

d

dt

∫
V

φ dV +

∫
S

q̃(x, y, z, t, n̂) dS −
∫
V

a dV = 0. (21)

If you know the basics of Taylor expansions and assume that q̃ is sufficiently smooth7,
then we can write∫
S

q̃(x, y, z, t, n̂) dS = q̃(x0, y0, z0, t, n̂1)δS1 + q̃(x0, y0, z0, t, n̂2)δS2 + q̃(x0, y0, z0, t, n̂3)δS3

+q̃(x0, y0, z0, t, n̂4)δS4 + q̃(x0, y0, z0, t, n̂5)δS5

+a correction that scales as (δa)3

7We generally try to avoid getting into technicalities of this kind in these notes, but they are
necessary at this point.

25



where δa is the edge length of the face δS1 (see figure 5), so that all the faces have sizes
that are proportional to (δa)2 (meaning all the δS ′s have size (δa)2 times a combina-
tion of sines and cosines). The correction comes from the fact that q̃ actually varies
by a small amount over each face — the variation in each case being approximately
proportional to δa.

The two volume integrals in (21) also have sizes comparable to δa3, because that
is how the volume V depends on the edge length δa. In other words, we get

0 = q̃(x0, y0, z0, t, n̂1)δS1 + q̃(x0, y0, z0, t, n̂2)δS2 + q̃(x0, y0, z0, t, n̂3)δS3

+q̃(x0, y0, z0, t, n̂4)δS4 + q̃(x0, y0, z0, t, n̂5)δS5 + a correction that scales as (δa)3

By ’scales as δa3’, we mean of course that, if you change δa, the correction term
is approximately proportional to δa3. But using the fact that δS3 = (δa)2 and our
previous results and notation, this means we get on dividing by δS3 that

q3 + q2 sin(θ) + q1 cos(θ) + a correction that scales as δa = 0.

What the correction term means is that if the sum of the conductive transfer terms
q3 + q2 sin(θ) + q1 cos(θ) is not zero, this will to lead to violation of ‘Φ-conservation’
that is much bigger than the remaining terms (the ‘correction that scales as δ’) can
make up for; more concisely, in the limit of δa→ 0, we are back to (19).
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