
EOS 352 Continuum Dynamics
Convection in porous media

c© Christian Schoof. Not to be copied, used, or revised without explicit written permission from the copyright owner

The copyright owner explicitly opts out of UBC policy # 81.

Permission to use this document is only granted on a case-by case basis. The document is never ‘shared’ under the terms of UBC policy # 81.

May 1, 2020

Overview

These notes cover the following

• the Boussinesq approximation for convection

• linearization and linear stability analysis

• Fourier series solution

• instability and the critical Rayleigh number

• A taster of bifurcations and nonlinear dynamics

A model for convection

Convection is the motion of a fluid driven by density differences, and hence by varia-
tions in the body force ρg, across space: lighter material wants to go up, denser mate-
rial wants to go down. In convection, these density differences are usually caused by
heating and cooling, and sometimes by chemical reactions. Here we will be interested
in the thermal version of convection, which classically works by heating a fluid from
underneath. That causes the fluid at the bottom of the domain to become warmer
and less dense, giving it the tendency to want to rise. In order to do that, however, a
symmetry often needs to be broken: we cannot have all the fluid rising up at once, as
it somehow needs to be replaced by colder fluid descending from above, so we need
the warm fluid to rise up in some parts of the domain, and the cold fluid to descend
in others. This requires the formation of a pattern of motion, which often arises out
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of an initial state that has near-perfect symmetry, with isodensity surfaces that are
almost flat.

The way that this symmetry breaking happens is through an instability. The
initial state does not have perfect symmetry, but small amounts of noise are always
present. In practice, some parts of the bottom of the domain will be slightly warmer
than others that are off to the side of the warmer fluid, and therefore have a greater
tendency to rise than those that are slightly cooler. This can become self-reinforcing,
with the rising of the warmer fluid drawing in other, initially cooler fluid sideways,
which is heated up by the bottom of the domain as it flows, and sustains the upward
motion in the location where the originally hotter fluid was located. The descent of
the cooler fluid meanwhile draws in more cold fluid from above.

The purpose of these notes is to show mathematically how we can model this
process, and also to show that it need not always occur: A fluid heated from below
does not have to convect. If conduction is strong enough, any bits of warm fluid that
try to rise up through the domain are cooled rapidly by conduction, increasing their
density and causing them to sink again. By constructing a mathematical model,
we can identify the conditions under which the tendency of warm fluid to rise is
strong enough to cause self-sustaining convection, and conditions under which this is
suppressed by conduction.

Beyond the specifics of convection, the purpose of these notes is also to draw
together a number of themes that we have covered in this course, and to show how a
modelling problem (can we predict how convection works in a particular setting) can
be tackled from first principles using an array of tools that we have already learnt.
The material covered here is therefore more challenging than what we have done so
far, in the sense that it requires you to draw more fluently on the things you have
learnt, and challenges you to adapt what you know to new situations. There are,
as usual, numerous explanatory notes and exercises to provide context and test your
understanding.

We base our model for convection on flow in a porous medium, rather than the
alternative (and perhaps more common) example of a tank of pure, single-phase fluid
heated from below. The reason is largely practical: the model is somewhat simpler
to analyze for a porous medium, while retaining the essential features of convection
in a pure liquid.

Neither is convection in a porous medium an oddity: it occurs in hydrothermal
systems, and explains the formation of geysers, and of black smokers on the sea floor.
Many mineral deposits in metamorphic rock are the result of hydrothermal alteration,
where convecting hot water selectively dissolves and transports some minerals at
depth, and then deposits them where it cools down as it reaches layers of rock at higher
elevations. Hydrothermal power plants can also rely on convection in groundwater
systems.

Convection is also more challenging than the continuum physics problem we have
encountered so far because it couples conservation of mass, momentum and energy.
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The relevant model in a porous medium is the following: first, we ensure we conserve
mass and momentum. As described in the notes on porous media, this corresponds
to

∂[ρs(1− φ)]

∂t
+∇ · [ρs(1− φ)u] =0 (1a)

∂(ρφ)

∂t
+∇ · (ρφu) +∇ · q =0 (1b)

q =
ρk

µ
(ρg −∇p) (1c)

where ρs is the density of the pure solid phase (the porous matrix), ρ is pure fluid
density, φ is porosity. In order to close the problem, we need to specify the two
densities ρ and ρs, as well as some combination of porosity φ and matrix velocity u.
Our aim here is to construct a minimal model of convection, with all the essential
physics included but devoid of unnecessary complication.

Convection requires variations in the density of the convecting fluid with temper-
ature, and we choose model for ρ that involves a simple, constant thermal expansion
coefficient:

ρ = ρ0(1− α(T − Tb)) (1d)

where T is temperature and Tb is a reference temperature, which we will later equate
with the temperature of the bottom of the porous medium. Because the matrix is
not involved in convection, we also choose a rigid matrix, with constant ρs and φ,
and put

u = 0 (1e)

for the matrix velocity.
The constitutive relation for fluid density ρ requires us to solve a heat equation

for temperature T . Since we are considering a mixture of matrix and fluid, both of
which can store internal energy. If we take V (t) to be a Lagrangian volume with
respect to the solid matrix and assume for the time being a constant heat capacity
cs and c for solid and fluid, respectively, then the internal energy content of V (t) is∫

V (t)

[ρscs(1− φ) + ρcφ]T dV.

The rate at which internal energy is removed from V (t) is controlled by two transport
processes: first, conduction, which we assume follows Fourier’s law with some effective
thermal conductivity κ that accounts for the potentially different conductivities of
pure matrix material and pure fluid. Second, the fluid that moves relative to the
solid matrix with flux q carries internal energy with it. Since q is the rate at which
mass flows, and heat content per unit mass of fluid is cT , the rate of heat transport
out of the volume V (t) is∫

S(t)

−k∇T · n̂ dS +

∫
S(t)

cTq · n̂ dS
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and therefore, since there is no heat produced in the domain

d

dt

∫
V (t)

[ρscs(1− φ) + ρcφ]T dV = −
∫
S(t)

−κ∇T · n̂ dS −
∫
S(t)

cTq · n̂ dS.

On applying Reynolds’ transport theorem with zero matrix velocity u (which is to
say, V (t) is just a fixed volume V ), we get

d

dt

∫
V (t)

[ρscs(1− φ) + ρcφ]T =

∫
V (t)

∂

∂t
{[ρscs(1− φ) + ρcφ]T} dV

and applying the divergence theorem to the surface integrals, assuming a constant
thermal conductivity κ (to distinguish it from the permeability k), this results in∫

V (t)

∂

∂t
{[ρscs(1− φ) + ρcφ]T}+∇ · (cTq)− κ∇2T dV = 0.

As usual, because the Lagrangian volume is ultimately arbitrary, the integrand cannot
be positive in any finite region, nor can it be negative, so

∂

∂t
{[ρscs(1− φ) + ρcφ]T}+∇ · (cTq)− κ∇2T = 0. (1f)

Note that the term cTq is effectively an advective flux of heat, with q taking the role
usually played by ρu in a single-phase fluid.

We can simply this equation and conservation of mass (1b) somewhat. Recall that
c and φ are constant, so we can write

∂(ρcφT )

∂t
+∇·(cTq) = c

(
φ
∂(ρT )

∂t
+∇ · (qT )

)
= c

(
φT

∂ρ

∂t
+ φρ

∂T

∂t
+ T∇ · q + q · ∇T

)
(1g)

by the chain rule. But conservation of mass (1b) with constant porosity and vanishing
matrix velocity becomes

φ
∂ρ

∂t
+∇ · q = 0 (1h)

and hence two terms on the right-hand side cancel to give

∂(ρcφT )

∂t
+∇ · (cTq) = ρφc

∂T

∂t
+ qc · ∇T.

If we also use the fact that ρscs(1 − φ) is constant, the heat equation (1f) becomes
more simply

(ρscs(1− φ) + ρcφ)
∂T

∂t
+ +qc · ∇T − κ∇2T = 0. (1i)

The model as posed is not complete: in fact, it is still missing the actual driver
for convection, which is that the fluid must be heated from beneath. We pick a very
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simple, two-dimensional domain in the xz-plane here to illustrate how convection
works: the strip defined by 0 < z < h, where we assume that this strip is horizontal,
so

g = −gk.

To be definite, we also assume that the solutions are periodic in x with a period
a. This is somewhat artificial (as there is no definite distance a after which the
flow pattern and temperature should repeat, but it avoids the need to specify what
happens as x → ∞. At the upper and lower boundaries, we need to set boundary
conditions on temperature, which we do as

T = Ts at z = h, T = Tb at z = 0. (1j)

That is, we assume that the top and the bottom of the porous layer are kept at fixed
temperatures (‘heat baths’ in thermodynamics), and to cause convection, we expect
we need

Ts < Tb;

the fluid is warmer at the bottom than at the top. There are other choices one could
consider: for instance, one could imagine the upper boundary being a heat bath like
the ocean, while the lower boundary could experience a fixed geothermal heat flux.
The fixed temperature boundary conditions here lead to a simpler analysis while
illustrating the basic physics involved in convection.

In addition to temperature boundary conditions, we need boundary conditions on
the flow. A boundary condition suppressing flow at the lower boundary is the most
obvious choice: this could be an aquifer overlying ‘impermeable’ bedrock, in which
there is no pore water flow. This corresponds to

q · n̂ =
ρk

µ

(
ρg +

∂p

∂z

)
= 0 at z = 0. (1k)

At the top of the domain, one possible choice is a fixed fluid pressure: that for
instance would apply most obviously to an open boundary with an ocean kept at
fixed temperature Ts. It turns out that that makes for a more complicated analysis
later, and a confined aquifer — bounded by impermeable walls at top and bottom
— is easier to deal with. That means we would like to impose the same boundary
condition q · n̂ = 0 at z = h. We cannot, however, do that exactly: the problem
is that it would require the volume of fluid to remain constant, since the size of
the domain does not change and we have prevent any fluid from leaving the domain
by prescribing zero flux on the upper and lower boundaries, and imposed periodic
boundary conditions at the sides, so any fluid that leaves the domain on the right
re-enters on the left. A fixed fluid volume is, however, at odds with the fact that the
density will decrease as the fluid is heated: in particular, if we integrate (1b) over the
domain V given by 0 < z < h, 0 < x < a with φ = constant and u = 0, then we get
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by the divergence theorem ∫
V

φ
∂ρ

∂t
dV +

∫
S

q · n dS = 0.

But q · n = 0 at z = 0 by (1k), while periodic boundary conditions at the side
boundaries at x = 0 and x = a mean the surface integrals over these side boundaries
cancel, so ∫

V

φ
∂ρ

∂t
dV +

∫ a

0

q|z=h · n̂ dx = 0.

so q · n̂ at z = h cannot vanish if ρ is allowed to change over time, even though we
anticipate these density changes will be small.

A slightly awkward device that gets around this problem is to suppose that the
top boundary is a thin layer of very impermeable material, and that there is fixed
pressure ps above that layer. We can then impose a model that relates the rate of
mass loss through the top boundary to the difference between fluid pressure in the
domain at the top boundary and the fixed pressure outside as

q · n̂ =
ρk

µ

(
−ρg +

∂p

∂z

)
= k0(p− ps) at z = 0. (1l)

where k0 is a permeability-like constant for the upper boundary. We will make k0

very small, so as to approximate the condition q · n̂ = 0.

The Boussinesq approximation

The model above is more complicated than it needs to be, and we will non-dimensionalize
it below in order to derive a simpler, approximate version. The basis for this sim-
plification, known as the Boussinesq approximation, is the limit of a small thermal
expansion coefficient α, and a small top layer expansion coefficient k0.

Before we do so, we compact the model stated in the previous section, omitting the
equation for conservation of matrix mass, since the latter is satisfied automatically.
We also employ a trick to simplify our notation later: we expect that the pressure
gradient ∇p in (1c) mostly balances the gravitational body force, which is given by
−ρ0gk plus a much smaller correction: that correction −ρ0α(T − Tb)gk is due to the
fact that the density varies as temperature does. It is also the reason why flow occurs,
and we expect that the total hydraulic gradient

−ρgk−∇p

is comparable in size to the small correction −ρ0α(T−Tb)gk, rather than to the much
larger body force −ρ0gk that excludes temperature effects. To account for this, we
define a reduced pressure p′ through

p′ = p− ps − ρ0g(h− z),
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that is, we remove from the actual pressure variable the hydrostatic pressure variation
ρ0g(h − z) that results from the reference density ρ0. We also remove the constant
‘outside’ pressure ps that appears in (1l) for convenience. For convenience, we also
define a reduced temperature

T ′ = T − Tb.
The convection model then reduces to

φ
∂ρ

∂t
+∇ · q =0 for 0 < z < h, (2a)

[ρscs(1− φ) + ρcφ]
∂T ′

∂t
+ +qc · ∇T ′ − κ∇2T ′ =0 for 0 < z < h, (2b)

q =
ρk

µ
(ρ0αT

′gk−∇p′) for 0 < z < h, (2c)

ρ =ρ0(1− α(T − Tb)) for 0 < z < h, (2d)

T ′ =0 at z = 0, (2e)

T ′ =− (Tb − Ts) at z = h, (2f)

ρk

µ

(
ρ0αT

′g − ∂p′

∂z

)
=0 at z = 0, (2g)

ρk

µ

(
ρ0αT

′g − ∂p′

∂z

)
=k0p

′ at z = 0, (2h)

To non-dimensionalize, introduce scales [x], [t], [q], [ρ], [T ], [p], and write

(x, z) = [x](x∗, z∗), t = [t]t∗, q = [q]q∗, ρ = [ρ]ρ∗, T ′ = [T ]T ∗, p′ = [p]p∗.

Since this is not the first time we non-dimensionalize a problem here, we do not
display all the details here. Suffice it to say that (2) can be written in the following
form

r
∂ρ∗

∂t∗
+∇∗ · q∗ =0 for 0 < z∗ < 1, (3a)

Ra

(
[1 + r(ρ∗ − 1)]

∂T ∗

∂t∗
}+ q∗ · ∇T ∗

)
−∇∗2T ∗ =0 for 0 < z∗ < 1, (3b)

q∗ =ρ∗ (T ∗k−∇∗p∗) for 0 < z∗ < 1, (3c)

ρ∗ =1− δT ∗ for 0 < z∗ < 1, (3d)

T ∗ =0 at z∗ = 0, (3e)

T ∗ =− 1 at z∗ = 1, (3f)

ρ∗
(
T ∗ − ∂p∗

∂z∗

)
=0 at z∗ = 0, (3g)

ρ∗
(
T ∗ − ∂p∗

∂z∗

)
=νp∗ at z∗ = 1, (3h)
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if we choose [x] = h, [ρ] = ρ0, [p] = [ρ]gh, [T ] = Tb − Ts, [q] = [ρ]kρ0α[T ]g/µ,
[t] = (ρscs(1− φ) + ρcφ)h/(c[q]). In addition, the dimensionless parameters are

δ = α(Tb − Ts), ν =
k0µh

ρ0α(Tb − Ts)
, r =

ρ0cφ

ρscs(1− φ) + ρ0cφ
,

Ra =
kgρ2

0cα(Tb − Ts)h
µκ

. (4)

Ra is the Rayleigh number for the porous medium, and measures the strength of
advection relative to conduction in the heat equation. (In many other settings, this
would be denoted as a Péclet number.)

Exercise 1 Verify the non-dimensionalisation that leads to (3), including the choice
of scales and definition of the dimensionless parameters.

The Boussinesq approximation is what we get if we assume that δ is very small
(which we write as δ � 1): while the fluid expands thermally, it does so quite
weakly. The point here will be that the variations in density do affect the flow of the
fluid through the body force ρ∗k in (3c), but that the fluid density can be treated
as constant when we look at conservation of mass (3a) and of energy (3b). Recall
also that we only introduced the leakage term k0(p− ps) in (1l) only because this is
necessary in principle to allow the fluid to expand in a domain of fixed size; demanding
that that leakage term is insignificant will mean here that we also assume that ν � 1.

With these assumptions in place, we can drop terms multiplied by δ and ν in (3).
This primarily results in the simplification

ρ∗ = 1;

in other words, as previously advertised, we treat the model as having a constant
density everywhere than in the body force term. This leads to the following simplified
model, which we will use from here on:

∇ · q =0 for 0 < z < 1, (5a)

Ra

(
∂T

∂t
+ q · ∇T

)
−∇2T =0 for 0 < z < 1, (5b)

q =Tk−∇p for 0 < z < 1, (5c)

ρ =1 for 0 < z < 1, (5d)

T =0 at z = 0, , (5e)

T =− 1 at z = 1, (5f)

T − ∂p

∂z
=0 at z = 0, 1. (5g)

8



where the effect of variable density is represented purely by the term −Tk in (5c)
and (equivalently, since the left-hand side is the z-component of q) by the term T in
(5g)).

Observe that we have not only set ρ = 1 in (5), we have also quietly dropped
the asterisks on the dimensionless variables. This is in fact very commonly done
in practice, to simplify the notation and avoid carrying ever more ‘decorations’ on
variable symbols. There is rarely any risk of confusing a dimensionless variable with
its dimensional counterpart, since the absence of obvious dimensional variables usually
marks out the scaled model equations from their original counterparts.

The fact that (5) also has the major advantage that it contains only a single di-
mensionless parameter, the Rayleigh number Ra, so model behaviour depends only on
that one parameter, rather than the many original, dimensional parameters like ρ0, α,
Ts, Tb, k, µ, φ, g. Aside from the ability to lead to systematic approximations, this re-
duction in the size of the parameter space is the real power of non-dimensionalisation.

Steady state solution and linearization

The model (5) is nonlinear : equation (5b) includes the term q · ∇T , which does not
have the properties of a linear operator as previously defined. This puts an ‘analytical’
general solution (one you can write down with pencil and paper) of (5) out of reach,
but it does not make further analysis impossible.

The first question we ask is whether the problem (5) has a steady state solution
with no spatial structure in the lateral (x-) direction, meaning that the dependent
variables q, p and T are functions of z only. The answer, quite trivially, is ‘yes’.

For future simplicity of notation, we add an overbar to the variable names q, p
and T to denote the steady state, so q = q̄(z), p = p̄(z) and T = T̄ (z) in steady
state. If p̄ and T̄ are functions of z only, then (5c) becomes

q =

(
T̄ − ∂p̄

∂z

)
k

and (5a) implies that −(T̄ + ∂p̄/∂z) is a constant; from (5g), we conclude that that
constant is zero

T̄ − dp̄

dz
= 0, (6)

so there is no mass movement in steady state, as is to be expected with zero flux
boundary condition at the top and the bottom surface:

q̄ = 0,

The heat equation (5b) becomes

−d2T̄

dz2
= 0
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subject to (5e) and (5f), giving
T̄ (z) = −z. (7a)

Therefore (6) leads to

p̄(z) = −z
2

2
(7b)

plus a constant whose value is immaterial, since the model (5) is unchanged if we add
a constant to p.1

The next step is to asks what happens to small deviations from the steady state:
if I nudge p, T and q slightly away from their steady state forms p̄, T̄ and q̄, will
they evolve away from, or back towards, their original steady state? The procedure
for doing this is to put

p(x, z, t) = p̄(z) + εp′(x, z, t), T (x, z, t) = T̄ (z) + εT ′(x, z, t),

q(x, z, t) = q̄(z) + εq′(x, z, t),

and to solve for the evolution of the perturbations p′, T ′ and q′ in time. A word on
notation: the primes on p′, T ′ and q′ do not denote differentiation, but are just a
customary indication that these are perturbations away from a steady state.2 The
parameter ε is really just there formally to indicate that the perturbation is small in
size: we are almost at the steady state, but not quite. It is not to be confused with
the dimensionless groups derived earlier.

There will be quite a few equations that follow, all restating (5) in progressively
modified form. This will probably seem like an overly complicated and arduous
procedure, because we will lay out all the steps in detail. This may seem intimidating
at first, but actually each individual step is fairly minor. Once you understand the
procedure we are following, some of this detail will be redundant.

If we substitute in (5), we get

∇ · (q̄ + εq′) =0 for 0 < z < 1, (8a)

Ra

(
∂(T̄ + εT ′)

∂t
+ (q̄ + εq′) · ∇(T̄ + εT ′)

)
−∇2(T̄ + εT ′) =0 for 0 < z < 1, (8b)

1A variable that can be changed by adding a constant without affecting the equations it solves
is also known as a gauge variable.

2Note that we have also recycled the prime decoration from a different earlier use, when p′

was a reduced pressure, with the hydrostatic contribution ρ0gz removed, and T ′ was similarly a
reduced temperature, measured relative to a baseline temperature Tb. The meaning of those earlier,
dimensional variables is entirely distinct from the T ′ and p′ we use here. Bad practice, perhaps, but
also an attempt to avoid what is sometimes called ‘excessive notation’.
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q̄ + εq′ =
[
(T̄ + εT ′)k−∇(p̄+ εp′)

]
for 0 < z < 1, (8c)

T̄ + εT ′ =0 at z = 0, , (8d)

T̄ + εT ′ =− 1 at z = 1, (8e)

T̄ + εT ′ − ∂(p̄+ εp′)

∂z
=0 at z = 0, 1. (8f)

The next step is to separate out terms that have factors of 1 (which is ε0) from those
that are multiplied by ε, ε2, etc. This is trivial for linear terms, since we simply have,
for instance,

∂(T̄ + εT ′)

∂t
=
∂T̄

∂t
+ ε

∂T ′

∂t
and we can similarly factorize ε for other linear terms. The only term for which this
is not the case is the nonlinear advection term

(q̄ + εq′) · ∇(T̄ + εT ′)

where we need to expand before we can separate terms with different powers of ε.
Since we have a simple product of two terms, this expansion is straightforward, and
we get

(q̄ + εq′) · ∇(T̄ + εT ′) = q̄ · ∇T̄ + ε
(
q̄ · ∇T ′ + q′ · ∇T̄

)
+ ε2q′ · ∇T ′.

If we were to apply the same procedure to other, more complex problems, we might
have to resort to a Taylor expansion of nonlinear terms instead.

Ploughing ahead and separating out terms in (8), we get

∇ · q̄ + ε∇ · q′ = 0 for 0 < z < 1,

(9a)

Ra

(
∂T̄

∂t
+ q̄ · ∇T̄

)
−∇2T̄+

ε

{
Ra

(
∂T ′

∂t
+ q′ · ∇T̄ + q̄ · ∇T ′)

)
−∇2T ′

}
+ ε2Raq′ · ∇T ′ = 0 for 0 < z < 1,

(9b)

q̄ + εq′ =
(
T̄k−∇p̄

)
+ ε (T ′k−∇p′) for 0 < z < 1, (9c)

T̄ + εT ′ = 0 at z = 0, (9d)

T̄ + εT ′ = −1 at z = 1, (9e)

T̄ − ∂p̄

∂z
+ ε

(
T ′ − ∂p′

∂z

)
= 0 at z = 0, 1. (9f)

Now look at the terms that do not have a coefficient of ε (these are typically called
the ‘zeroth order’ or ‘leading order’ terms). If you look at the solutions for q̄, p̄ and
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T̄ , you will find that, in each equation, the zeroth order terms cancel exactly. That
is, they satisfy

∇ · q̄ = 0 for 0 < z < 1, (10a)

Ra

(
∂T̄

∂t
+ q̄ · ∇T̄

)
−∇2T̄+ = 0 for 0 < z < 1, (10b)

q̄ = T̄k−∇p̄ for 0 < z < 1, (10c)

T̄ = 0 at z = 0, (10d)

T̄ = −1 at z = 1, (10e)

T̄ − ∂p̄

∂z
= 0 at z = 0, 1. (10f)

The fact that they do so is not an accident: the steady state solution q̄, p̄ and T̄ by
construction satisfies the original problem (5), and therefore (10) (which is nothing
more than (5) with q, p and T replaced by q̄, p̄ and T̄ .)

Given that, we lose the zeroth order terms in (9) and retain only those terms that
have a coefficient ε or a higher order power of ε (specifically, because the nonlinear
term ∇·(Tq) in (5) is a simple product, we get a power ε2). If we divide all equations
in (9) by ε, we therefore end up with

∇ · q′ = 0 for 0 < z < 1, (11a)

Ra

(
∂T ′

∂t
+ q̄ · ∇T ′ + q′ · ∇T̄

)
−∇2T ′ + εRaq′ · ∇T ′ = 0 for 0 < z < 1, (11b)

q′ = T ′k−∇p′ for 0 < z < 1, (11c)

T ′ = 0 at z = 0, 1 (11d)

T ′ − ∂p′

∂z
= 0 at z = 0, 1. (11e)

All that we do now is insist that we can ignore higher order terms in ε in (11)
on the basis that ε is small, which allows us to drop the nonlinear term q′ · ∇T ′. If
we also substitute for q̄ = 0 and T̄ = −z, and we arrive at the following linearized
model for the perturbations q′, p′ and T ′:

∇ · q′ = 0 for 0 < z < 1, (12a)

Ra

(
∂T ′

∂t
− q′ · k

)
−∇2T ′ = 0 for 0 < z < 1, (12b)

q′ = T ′k−∇p′ for 0 < z < 1, (12c)

T ′ = 0 at z = 0, 1 (12d)

T ′ − ∂p′

∂z
= 0 at z = 0, 1. (12e)
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where we have made use of the fact that ∇T̄ = ∇(−z) = −k.
Being linear and having constant coefficient,3 this set of equations has a hope

of being solveable by pencil-and-paper methods. That is, in a sense, the power of
looking at small perturbations: we arrive at a model that is linear and solveable,
from which we can therefore determine whether these perturbations grow. As we will
see shortly, if growth occurs, it is unbounded in the linear model: the perturbations
simply get bigger and bigger. This will eventually make the approximation scheme we
have employed here invalid: dropping the nonlinear term was justified by assuming
that T ′ and q′ are comparable in size to unity, and ε is small. Once T ′ and q′ get
large enough that their product is comparable in size to ε−2, neglecting the nonlinear
term is no longer a valid approximation. The last section of these notes deal with
nonlinear effects.

The value of the linearization is therefore in determining whether the small pertur-
bations added to the steady state solution will grow or not, rather than in determining
what size they grow to and whether inital growth eventually stops and gives rise to a
steady convection pattern. That requires the solution of the full problem (5), which
usually requires computational methods (though there are some advanced analytical
methods that can be used under certain circumstances, described at the end of these
notes).

We will focus on solving the linearized problem (12) in the bulk of these notes.
This is called a linear stability analysis. Before we move onto that task, the note and
exercises below give further context to the linearization procedure followed above,
but are not strictly required to follow the main part of these notes.

Note 1 The steps taken to arrive at the linearized convection model (12) probably
obscure the essence of some of what is really going on here, so this note takes a
look at an analogous, more abstract problem. An autonomous dynamical system is
basically a set of coupled, first order linear differential equations, which we can write
in the form

dyi
dt

= Fi(y1, y2, . . . , yn), i = 1, . . . , n (13)

where each Fi is some known function.4

In more classical vector notation

dy

dt
= F(y).

Note that boldface letters here denote a vector like y = (y1, y2, . . . , yn)T of arbitrary
dimension n-by-1, not necessarily a two- or three-dimensional vector that may have

3meaning, there are no coefficients depending on position (x, z) that multiply any of the terms,
since Ra is a constant

4The ‘autonomous’ moniker in the label ‘autonomous dynamical system’ refers to the fact that
none of the functions Fi depend on t.
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an interpretation as physical vector. F denotes a vector-valued function of a vector-
valued argument y, and is just a shorthand for the index notation in (13). The
components of yi of the vector y are often known as degrees of freedom, especially
if the dynamical system represents a mechanical system, in which the yi describe the
motion of some set of objects.

Many problems can be cast as dynamical systems. For instance, Newton’s second
law for an object of mass m with position x(t) in one dimension, subject to a force
f = f(x) that depends only on its position x, satisfies

m
d2x

dt2
= f(x).

This can be written as a system of equations

dx

dt
= v,

dv

dt
= m−1f(x),

which is of the form (13) if we put n = 2, with y1 = x, y2 = v, F1(y1, y2) = y2 = v,
F2(y1, y2) = m−1f(y1) = m−1f(x). We will show later that the convection problem
(5) can be thought of as an dynamical system, although with an infinite number of
dimensions n.

The study of dynamical systems has many uses, but one basic concept is the sta-
bility of steady states. A steady state solution, which we denote again by an overbar,
solves

Fi(ȳ1, ȳ2, . . . , ȳn) = 0 for i = 1, . . . , n. (14)

There being n equations for n unknowns ȳ1, ȳ2, . . . ȳn, the steady state solution is
generally well-defined, if not necessarily unique.

Whether the steady state is stable is determined by whether small perturbations
grow, and the procedure involved is called a linear stability analysis. As in the con-
vection problem, we put

y1 = ȳ1 + εy′1, y2 = ȳ2 + εy′2, . . . , yn = ȳn + εy′n

Substituting into (13) and using the fact that the ȳi are components of a steady-state
solution, we get

ε
dy′i
dt

= Fi(ȳ1 + εy′1, ȳ2 + εy2, . . . , ȳn + εy′n), for i = 1, 2, . . . , n.

The right-hand side can be expanded up to linear order in ε using a multivariable
Taylor expansion,

F (ȳ1 +εy′1, ȳ2 +εy2, . . . , ȳn+εy′n) = Fi(ȳ1, ȳ2, . . . , ȳn)+
n∑
j=1

∂Fi
∂yj

∣∣∣∣
(ȳ1,ȳ2,...,ȳn)

εy′j +O(ε2),

(15)
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where the notation g|(ȳ1,ȳ2,...,ȳn) indicates that the function g is evaluated at (ȳ1, ȳ2, . . . , ȳn)
and the notation O(ε2) denotes that the error in not expanding further as a Taylor
series is comparable to ε2 in size.5

But from (14), the first term on the right-hand side is zero, and therefore

dy′i
dt

=
n∑
j=1

Jijy
′
j for i = 1, 2, . . . , n, (16)

where Jij is the constant matrix

Jij =
∂Fi
∂yj

∣∣∣∣
(ȳ1,ȳ2,...,ȳn)

,

known as the Jacobian of Fi. Note that (16) is a linear equation, with two important
attributes: first it is solveable in a form that we simply write down, and secondly,
owing to linearity, we can simply add different solutions to (16), and obtain a new
solution.

If the dynamical system is one-dimensional (n = 1), then (16) is just

dy′

dt
= Jy′

where, because there is only one index i = 1, we can drop that index altogether. By
separation of variables,

y′ = c exp(Jt).

It is then straightforward to see that that instability occurs (the perturbation y′ grows)
if J > 0, and the solution is stable and perturbations shrink to zero over time if
J < 0.6

For n > 1, a basic understanding of linear algebra is needed to make further
prorgess. Solutions to (16) generally take the analogous form

y′i = ci exp(σt). (17)

where the coefficients sigma and ci satisfy

σci =
n∑
j=1

Jijcj for i = 1, 2, . . . , n.

5Technically, the notation O(ε2) means the following: Denote the omitted term by E. To say
that E = O(ε2) indicates that, as ε→ 0, E/ε2 remains bounded, so E has to go to zero at least as
fast as ε2.

6Stability for the marginal case J = 0 cannot be determined by the linearization procedure used
here.
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This follows from plain substitution of (17) into (16), and is better understood if
written in classical matrix notation as

σc = Jc (18)

where c is a column vector and J is the Jacobian matrix, written in index-free form.
Equation (18) is an eigenvalue problem, and in general an n×n matrix will have

n eigenvalues, though they may not all be distinct.7 These eigenvalues are the roots of
the n-th order characteristic polynomial in σ formed when expanding the determinant

det (σI− J) = 0

where I is the n× n identity matrix.
In fact, in view of linearity, the solution (16) consists of sums of such terms of the

form yi exp(σt). If we give the n eigenvalues of Jij their own label σk, k = 1, . . . ,m,
then the general solution to (16) is

y′i(t) =
n∑
j=1

αjcij exp(σjt) (19)

when the eigenvalues are all distinct (see exercise 5 of the notes on Fourier series for
the case of repeated eigenvalues, which may introduce polynomials in t multiplying the
exponential exp(σt) for a repeated eigenvalue σ). Here, cij is the ith component of
the eigenvector cj associated with eigenvalue σj, and αj is a coefficient that depends
on the initial condition for the y′i.

The steady state solution is stable if all eigenvalues of J have negative real part,
which corresponds to exponential decay. This is straightforward to understand if the
σ’s are negative real numbers, in which case all terms ci exp(−σt) decay away.

If any of the roots of the characteristic polynomial are complex numbers then,
because the coefficients of the polynomial are real, they occur in complex conjugate
pairs. For each complex σ, you can find another that is its complex conjugate. If, as is
reasonable, we insist that solutions y′ must be real, then for each complex eigenvalue σ
and its associated eigenvector c, the conjugate eigenvalue σ̄ corresponds to a conjugate
eigenvector c̄, and the sum of the two is real: take

ci exp(σt) + c̄i exp(σ̄t)

If we write ci in polar form ci = Ci exp(iθi), so c̄i = Ci exp(−iθi), then

ci exp(σt) + c̄i exp(σ̄t) =Ci [exp(Re(σ)t+ iIm(σ)t+ iθi) + exp(Re(σ)t− iIm(σ)t− iθi)]
=Ci exp(Re(σ)t) [exp[i(Im(σ)t+ θi)]− exp[−i(Im(σ)t+ θi)])

=Ci exp(Re(σ)t) cos(Im(σ)t+ θi)

7In the case of repeated eigenvalues, (17) may need to be replaced by a polynomial in t multiplying
the exponential exp(σt), see exercise 5 of the notes on Fourier series.
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and decay of this oscillatory solution will occur if Re(σ) < 0.
For instability to occur, by contrast, it suffices for just one eigenvalue to have

positive real part, since there is then a relevant solution that will grow (either as a
constant times ci exp(σt) if σ is simply real, or Ci exp(Re(σ)T ) cos(Im(σ)t + θi) if
there is a complex conjugate eigenvalue pair.)

Of course, as noted in the main text, unbounded exponential growth of the pertur-
bation y′i implies that the linearization (15) eventually fails, since the quadratic term
in the Taylor series is of the form

n∑
j=1

n∑
k=1

1

2

∂2Fi
∂xj∂xk

∣∣∣∣
(ȳ1,ȳ2,...,ȳn)

ε2y′jy
′
k,

which can be dismissed as small (the O(ε2) omitted term in (15)) when y′j and y′k are
comparable to unity, but becomes similar in size to the terms retained in (15) when
y′i and y′j are comparable to ε−1

Exercise 2 Identify which of the steps from equations (5)–(12) correspond to which
steps in (13)–(16).

Exercise 3 In general, the solution of the eigenvalue problem (18) is not possible in
‘closed form’ (by pencil and paper), because doing so would require the solution of an
nth order polynomial. n = 2 is an exception, because it only requires the solution of
a quadratic. A concrete example is the following problem:

dS

dt
=c1S

α + v0 − c2S(h0 − h), (20a)

dh

dt
=q0 − c3S

α, (20b)

where α, c1, c2, c3, v0, h0 and q0 are parameters (and therefore constant), with α > 1.
(For what it is worth, this is a simple model for the evolution of a glacier-dammed
lake, where h is lake level and S is the cross-sectional area of a sub-ice channel that
drains the lake, with q0 being the rate of inflow of water from upstream into the lake).

Find the steady state solution to (20), and linearize the dynamical system. Find
its eigenvalues and eigenvectors. Where the eigenvalues are complex, show that they
form a complex conjugate pair, and that the corresponding eigenvectors can also be
written as complex conjugates of each other. Show that the steady state is unstable if

q0 >
c3v0

c1(α− 1)

and stable if the inequality is reversed. As a bonus exercise, you can try to solve the
system (20) numerically, with an initial condition near the steady state, to confirm
the stability result: many scientific computing packages such as MATLAB or SciPy
have numerical initial value solvers inbuilt into them that make this task easy:
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ode45

or similar in MATLAB,

scipy.integrate.solve_ivp

in Python. If you do solve the problem numerically, then you can also answer the
following problem: when there is instability, what type of behaviour does the solution
(S, h) evolve towards?

Fourier series solution

We can simplify (12) somewhat further by substituting for q′, and using the boundary
conditions on T ′ to simplify those on flux further:

∂T ′

∂z
−∇2p′ = 0 for 0 < z < 1, (21a)

Ra

(
∂T ′

∂t
− T ′ + ∂p′

∂z

)
−∇2T ′ = 0 for 0 < z < 1, (21b)

T ′ = 0 at z = 0, 1 (21c)

∂p′

∂z
= 0 at z = 0, 1. (21d)

We previously specified periodic boundary conditions in x, with a somewhat ar-
bitrary period a. This suggests that we should represent T ′ and p′ as Fourier series
in x:

T ′(x, z, t) =
∞∑

n=−∞

Tn(z, t)φn(x), p′(x, z, t) =
∞∑

n=−∞

pn(z, t)φn(x), (22)

where

φn(x) = exp(ikxnx), kxn =
2nπ

a
. (23)

Note that we have added an additional subscript ‘x’ to the notation for the wavenum-
ber for reasons that will become obvious shortly.
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Substituting into (21) leads to

∞∑
n=−∞

[
∂Tn
∂z
−
(
∂2pn
∂z2

− k2
xnpn

)]
φn = 0 for 0 < z < 1,

∞∑
n=−∞

[
Ra

(
∂Tn
∂t
− Tn +

∂pn
∂z

)
−
(
∂2Tn
∂z2

− k2
xnTn

)]
φn = 0 for 0 < z < 1,

∞∑
n=−∞

Tnφn = 0 at z = 0, 1,

∞∑
n−∞

∂pn
∂z

φn = 0 at z = 0, 1.

We can project onto individual Fourier modes by multiplying by φm(x) and integrating
over 0 < x < a: in the usual way, this simply amounts to dropping the summation
signs, basis functions φn and (formally, as it does not make a practical difference)
changing the dummy index n to the fixed value m: in other words, we are saying that
in each equation, the coefficient of φm has to be equal to zero:

∂Tm
∂z
−
(
∂2pm
∂z2

− k2
xmpm

)
= 0 for 0 < z < 1, (24a)

Ra

(
∂Tm
∂t
− Tm +

∂pm
∂z

)
−
(
∂2Tm
∂z2

− k2
xmTm

)
= 0 for 0 < z < 1, (24b)

Tm = 0 at z = 0, 1 (24c)

∂pm
∂z

= 0 at z = 0, 1. (24d)

Note 2 Note that, when doing Fourier expansions, we do not use the summation
convention, and sums are stated explicitly. In other words, when writing something
like k2

xmpm, there is no implied summation over m.

The Fourier series representation in x has allowed us to reduce a partial differential
equation with (x, z, t) as independent variables into one with (z, t) as independent
variables. We would like to repeat that feat by also constructing something like
a Fourier series representation in z and reduce the problem to a simple ordinary
differential equation in time. This is not standard Fourier series territory, however,
since the domain in z is not periodic

Key to further progress is to understand that functions Tm and pm that are con-
strained to satisfy the boundary conditions (24c) and (24d) can still be represented
by an infinite sum over all the sine and cosine functions that satisfy these boundary
conditions. Take the representation of Tm first, which has to satisfy Tm = 0 at z = 0
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and z = 1. These boundary conditions are also satisfied by sin(nπz) for n = 1, 2, . . .,
and we can write8

Tm(z, t) =
∞∑
n=1

Tmn(t) sin(nπz). (25)

Similarly, pm has to satisfy ∂pm/∂z = 0 at z = 0 and z = 1. These zero-derivative
boundary conditions are also satisfied by cos(nπz), and we can write

pm(z, t) =
∞∑
n=0

pmn(t) cos(nπz). (26)

Note that both series involve coefficients nπ, and we will denote them as a vertical
wavenumber kzn, defined through

kzn = nπ.

Substituting this into (24) and differentiating the sine and cosine series defined
above as required yields

∞∑
n=1

kznTmn cos(kznz) +
∞∑
n=0

(
k2
zn + k2

xm

)
pmn cos(kznz) = 0 for 0 < z < 1,

(27a)

Ra

[
∞∑
n=1

(
dTmn

dt
− Tmn

)
sin(kznz)−

∞∑
n=0

kznpmn sin(kznz)

]

+
∞∑
n=1

(
k2
zn + k2

xm

)
Tmn sin(kznz) = 0 for 0 < z < 1,

(27b)
∞∑
n=1

Tmn sin(kznz) = 0 at z = 0, 1

(27c)

−
∞∑
n=1

kznpmn sin(kznz) = 0 at z = 0, 1.

(27d)

The boundary conditions (27c) and (27d) are satisfied automatically, since sin(kzn) =
sin(nπz) = 0 for z = 0 and z = 1: that was, in fact, precisely what the sine and
cosine basis functions in (25) and (26) were selected for.

8The fact that any function Tm satisfying these boundary conditions can be written in this form
is actually quite non-trivial to prove, just as it is not trivial to prove that a periodic function can be
written as a standard Fourier series, and similar mathematical tools to standard Fourier series are
needed to be prove this fact.
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Fortuitously, the mass conservation equation for pore fluid (27a) and heat equation
(27b) consist of sums over the same sine and cosine terms. As with an ordinary
Fourier series, we can project onto individual modes by recognizing the following
orthogonality results (see note 4):∫ 1

0

cos(kznz) cos(kzmz) dz =
1

2
δnm (28a)∫ 1

0

sin(kznz) sin(kzmz) dz =
1

2
δnm (28b)

As a result, we can multiply (27a) by cos(kzz) and integrate over 0 < z < 1, and
likewise multply (27b) by sin(klz) integrate over 0 < z < 1 to give

kzlTml +
(
k2
xm + k2

zl

)
pml = 0 (29a)

Ra

[(
dTml

dt
− Tml

)
− kzlpml

]
+
(
k2
zl + k2

xm

)
Tml = 0 (29b)

You can view this as saying that the coefficients of each distinct cosine and sine term
cos(kznz) and sin(kznz) have to add up to zero in (27a) and (27b).

Note 3 Note that equations (29) are what we would have obtained if we had simply
tried a single Fourier mode for T ′ and p′, of the form

T ′ = Tmn exp(ikxmx) sin(kznz), p′ = pmn exp(ikxmx) cos(kznz),

dispensing with the sums over m and n, and therefore with the elaborate projection
procedure. The approach of substituting a single mode is often what you might want
to try first when solving a linear equation like (21): it is what we tried when solving
the original temperature wave problem, and it works here because the individual modes
are eigenfunctions of the linear differential equation problem (21) (see the beginning
of the next section for more detail on this). The approach of trying a single Fourier
mode is however far from guaranteed to work: exercise 4 below examines a case where
such a simple approach fails.

Equations (29) apply for l ≥ 1; for l = 0, we have to take account of the fact that
the sum over Tml ranges from over l = 1, 2, . . ., and that there is therefore no term
Tm0. The result of multiplying by cos(kz0z) = 1 and integrating with respect to z is
that we simply obtain pm0 = 0 (there is no contribution to p′(x, z, t) from a mode
that varies purely in x but not in z). Eliminating pml between equations (29),

dTml
dt

=

[
k2
xm

k2
xm + k2

zl

− 1

Ra

(
k2
zl + k2

xm

)]
Tml. (30)

Therefore (replacing l by n for cosmetic reasons)

Tmn(t) = Tmn(0) exp [σ(kxm, kzn)t] (31)
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where

σ(kxm, kzn) =
k2
xm

k2
xm + k2

zn

− 1

Ra

(
k2
zl + k2

xm

)
. (32)

σ is known as the growth rate of the mode with wavenumbers (kxm, kzn).9 The rela-
tionship between the growth rate and wavenumber is known as the dispersion relation.

The significance of the growth rate is easy to see: the Fourier coefficient Tmn(t)
grows with time if σ(kxm, kzn) is positive (or more generally, has positive real part),
and shrinks if if σ(kxm, kzn) is negative (has negative real part). What is important
here is the dependence of σ on wavenumbers. In order for the steady state solution
(T̄ , p̄) to be stable, the perturbations (T ′, p′) have to shrink over time. Recall that

T ′(x, z, t) =
∞∑

m=−∞

∞∑
n=1

Tmn(t) exp (ikxmx) sin (kznz)

=
∞∑

m=−∞

∞∑
n=1

Tmn(0) exp (ikxmx) sin (kznz) exp [σ(kxm, kzn)t] . (33)

The Tmn(0) are of course determined by projection the initial condition T (x, z, 0)
(which we have to assume to be prescribed) onto the Fourier modes. Specifically

Tmn(0) =
2

a

∫ a

0

∫ 1

0

T (x, z, 0)φm(x) sin(kznz) dz

From (33), we see that stability therefore requires that all modes (m,n) correspond
to negative growth rates. Except in the physically implausible situation that the
corresponding Tmn(0) is exactly zero, a single mode with a positive growth rate will
cause T ′ to grow and the solution T̄ + εT ′ to evolve away from, rather than back
towards, the steady state T̄ . In other words, a single positive growth rate σ(kxm, kzn)
signifies instability.

Note 4 To show that the orthogonality results (28) hold, use the following

cos(A) cos(B) =
1

2
[cos(A+B) + cos(A−B)] (34a)

and

sin(A) sin(B) =
1

2
[cos(A−B)− cos(A+B)] (34b)

9In a more general setting where a linearized model has a solution that is exponential in time
but σ is complex, the real part of the coefficient σ would be known as the growth rate as explored
in note 1.
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Hence, with n and m both positive,∫ 1

0

cos(kznz) cos(kzmz) dz =
1

2

[∫ 1

0

cos[(kzn + kzm)z] dz +

∫ 1

0

cos[(kzn − kzm)z] dz

]
=

1

2

[∫ 1

0

cos[(n+m)πz] dz +

∫ 1

0

cos[(n−m)πz] dz

]
=

{
sin[(n+m)π]−sin(0)

2(n+m)π
+ sin[(n−m)π]−sin(0)

2(n−m)π
if n 6= m

sin[(n+m)π]−sin(0)
2(n+m)π

+ 1
2

if n = m

=

{
0 if n 6= m
1
2

if n = m

and∫ 1

0

sin(kznz) sin(kzmz) dz =
1

2

[∫ 1

0

cos[(kzn − kzm)z] dz −
∫ 1

0

cos[(kzn + kzm)z] dz

]
=

1

2

[∫ 1

0

cos[(n−m)πz] dz −
∫ 1

0

cos[(n+m)πz] dz

]
=

{
sin[(n−m)π]−sin(0)

2(n−m)π
− sin[(n+m)π]−sin(0)

2(n+m)π
+ if n 6= m

1
2
− sin[(n+m)π]−sin(0)

2(n+m)π
if n = m

=

{
0 if n 6= m
1
2

if n = m

Exercise 4 The boundary conditions on our convection problem were chosen delib-
erately to make the linear stability analysis easier: in particular, the evolution of
different modes Tmn decouples from each other: each satisfies a separate version of
(30). In this exercise and the next, we look at two alternative versions that lead to
more complicated stability analyses, in which different modes couple with each other.
Consider first the case in which the upper boundary is in contact with a fluid reservoir
at constant pressure (such as the bottom of the ocean). This corresponds to keeping
most of the model (21), replacing only (21d) by

∂p′

∂z
=0 at z = 0 (35a)

p′ =0 at z = 1. (35b)

In that case, we have to replace the expansion (26) with

p′(x, z, t) =
∞∑

m=−∞

∞∑
n=1

pmn(t)φm(x) cos(kz,n−1/2z) (36)
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where

kz,n−1/2 =

(
n− 1

2

)
π.

Follow the steps leading from (21) (but with the pressure boundary conditions replaced
by (35) up to (30), paying particular attention to the final projection step that led to
(29), using (28). What replaces (28)? You may need to use the approach in note 4.
Show that

∞∑
l=1

(−1)l−nl

l2 − (n− 1//2)2
kzlTml + (k2

z(n−1/2) + k2
xm)pmn = 0

and

Ra

[
dTmn

dt
− Tmn −

∞∑
q=1

(−1)n−q(q − 1/2)

n2 − (q − 1/2)2
kzlpmq

]
+ (k2

zn + k2
xm)Tmn.

Show that for fixed m, we can combine the last two equations to get an evolution
equation for the vector Tmn of Fourier coefficients analogous to (16)

dTmn
dt

=
∞∑
p=1

J(m)npTmp. (37)

and find a formula for the components of the ‘matrix’

J(m)np,

although this matrix has an infinite number of dimensions. If we were to look for an
exponential solution Tmn(t) = Tmn(0) exp(σt), (37) becomes

∞∑
p=1

(σδnp − J(m)np)Tmn(0) = 0,

which is equivalent to the eigenvalue problem (18).
Note that we have written J as a function of m since m does not play the role of an

index in the matrix equation. (37) generalizes (30) to a matrix equation: effectively,
J(m)np is a diagonal matrix in (30), of the form

J(m)np =

[
k2
xm

k2
xm + k2

zn

− 1

Ra
(k2
zn + k2

xm)

]
δnp.

Exercise 5 Next, consider also replacing the lower fixed-temperature boundary con-
dition by a fixed geothermal heat flux. This amounts to replacing (21c) by

∂T ′

∂z
=0 at z = 0 (38a)

p′ =0 at z = 1. (38b)
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Assume we do this in addition to replacing the impermeable upper boundary with an
open boundary (replacing the boundary condition (21d) by (35)), so we keep the new
pressure expansion (36), and additionally replace (25) by

T ′(x, z, t) =
∞∑

m=−∞

∞∑
n=1

Tmn(t)φm(x) sin(kz,n−1/2z). (39)

Again, re-do the steps that lead up to (30).

Convection patterns

Before we delve into further detail about the growth rate, and how and when insta-
bility first occurs, we illustrate the solution we have derived graphically. Note that
we have individual Fourier mode solutions that we can combine as

Tmn(t)φm(x) sin(kznz) + T−mn(t)φ−m(x) sin(kznz) =

2Re(Tmn) cos(kmx) sin(kznz)− 2Im(Tmn) sin(kxmx) sin(kznz)

pmn(t)φm(x) cos(kznz) + p−mn(t)φ−m(x) cos(kznz) =

2Re(pmn) cos(kxm+) cos(kznz)− 2Im(pmn) sin(kmxx) cos(kznz)

where

Re(pmn) = − kzn
k2
xm + k2

zn

Re(Tmn), Im(pmn) = − kzn
k2
xm + k2

zn

Im(Tmn).

Based on this, we can define cosine modes in x

T̂c,mn = cos(kxmx) sin(kznz), p̂c,mn = − kzn
k2
xm + k2

zn

cos(kxmx) cos(kznz)

and similarly corresponding sine modes in x

T̂s,mn = sin(kxmx) sin(kznz), p̂s,mn = − kzn
k2
xm + k2

zn

sin(kxm) cos(kznz)

with corresponding flux modes

q̂c,mn = T̂c,mn(x, z)k−∇p̂c,mn,

and equivalently for q̂s,mn: the sine modes are simply phase shifted versions of the
cosine modes.

Note that we have not included the time dependence exp(σ(kxm, kzn)t) in the
definition of the T̂mn and p̂mn; these functions are purely spatial, and their dynamical
significance is as so-called eigenfunctions of the linearized eigenvalue problem (21)
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Figure 1: The solution T̂c,mn = cos(πx) sin(πz), p̂c,mn = −1/(2π) cos(πx)cos(πz) for
m = n = 1, visualized using the corresponding fluid flux solution q̂c,mn as (a) a vector
shown using discrete vectors and (b) in the form of streamlines (see note 5). The flow
is driven by the temperature perturbation, which are shown as a contour plot in (c),
overlaid onto the streamlines. Warm (reddish) colours indicate high values of T̂c,mn
and cool (blue) colours low values of T̂c,mn. The actual temperature is the sum of
the steady state temperature T̄ (z) = −z and εT ′, which evolves in time. We show
T̄ + εT̂c,mn as a contour plot in (d) with ε = 0.05. Additionally, p̂c,mn is shown using
dashed contour lines for positive p̂c,mn where positive, dotted where negative.
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with associated eigenvalue σmn = σ(kxm, kzn): They satisfy the differential eigenvalue
problem that arises from (21) by replacing the time derivative ∂T/∂t by σT , as

∂T̂mn
∂z
−∇2p̂mn = 0 for 0 < z < 1,

Ra

(
σmnT̂mn − T̂mn +

∂p̂mn
∂z

)
−∇2T̂mn = 0 for 0 < z < 1,

T̂mn = 0 at z = 0, 1,

∂p̂mn
∂z

= 0 at z = 0, 1.

Moreover, the general solution to (21) can be represented as a sum over over these
eigenfunctions multiplied by the corresponding exponential growth factor and a nu-
merical coefficient, for instance

T ′(x, z, t) =
∞∑
m=0

∞∑
n=1

αmnT̂c,mn(x, z) exp(σmnt) +
∞∑
m=0

∞∑
n=1

βmnT̂s,mn(x, z) exp(σmnt),

p′(x, z, t) =
∞∑
m=0

∞∑
n=1

αmnp̂c,mn(x, z) exp(σmnt) +
∞∑
m=0

∞∑
n=1

βmnp̂s,mn(x, z) exp(σmnt),

where any individual functions of the form T̂mn(x, z) exp(σmnt), p̂mn(x, z) exp(σmnt)
by themselves solve (21). This superposition of eigenfunctions with an exponential
time dependence mirrors the sum (19) over eigenvectors of Jij in note 1.10 In terms
of the original coefficients Tmn, we have

αmn = 2Re(Tmn(0)), βmn = −2Im(Tmn(0)).

As a result, we can regard these eigenfunctions as independent solutions to the
convection problem (21), and visualize them individually. In figure 1, we set a = 2,
and plot T̂c,1,1 (corresponding to m = 1, n = 1). Note that to avoid confusion, we
add a comma between ‘m’ and ‘n’ in Tmn when giving numerical values, so T−1,1 is

Tmn with m = −1, n = 1, and ditto for T̂c,1,1 being T̂c,mn with m = 1, n = 1.. The
reason for choosing a = 2 and m = n = 1 for our main plot will become clearer in
the next section.

The solution for fluid flux q̂c,mn with m = n = 1, as a typical vector field plot
with flux shown using arrows, is displayed in panel (a). This is actually harder to

10The distinction between ‘Fourier mode’ and ‘eigenfunction’ is important: as exercise 4, a change
in boundary conditions still allows us to use Fourier modes to solve the problem in principle, but
individual Fourier modes are no longer eigenfunctions of the modified version of (21), and the way
that the Fourier coefficients Tmn with different indices m and n evolve is coupled in that case, and
we can no longer express the solution T ′ as a sum

∑
m

∑
n Tmnφm(x) sin(knzz) exp(σmnt), where

each Fourier component has its own exponential dependence on t; the latter is the hallmark of an
eigenfunction.
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Figure 2: The solution T̂c,mn = cos(πx) sin(2πz), p̂mn = −2/(5π) cos(πx)cos(2πz) for
m = 1, n = 2, visualized using the corresponding fluid flux solution q̂mn in the form
of streamlines, with the T̄ +εT̂mn, shown as a contour plot in (d) with ε = 0.05, using
the same colour scheme as in figure 1.

read than the associated streamline plot, which is shown in panel (b). The circulation
pattern clearly consists of closed convection ‘cells’, which here have a height equal to
the domain itself. These convection cells are driven by temperature variations across
the domain. Panel (c) shows the corresponding contour lines of the corresponding
temperature perturbation eigenfunction T̂c,mn, with warmer colours corresponding to
higher temperatures. Unsurprisingly, the temperatures perturbations are warmest
where the convection cells are upwelling in a vertical direction (the arrows on the
streamlines point up) and the streamlines are most closely bunched (which turns out
to correspond to the fastest velocities, see note 5).

The contours of the T̂c,mn plotted in panel c are somewhat misleading since the ac-
tual temperature consists of a steady state temperature T̄ with a small perturbation
εT ′ = ε

∑
m

∑
n αmn(T̂c,mn(x, z) + T̂s,mn(x, z)) exp(σmnt) superimposed on it. Impor-

tantly T̄ = −z decreases with z, and in general, the warmest temperatures are found
at the bottom of the domain rather than in the centre of the upwelling as suggested
by panel c In panel d, we plot T = T̄ + εT̂c,mn(x, z) exp(σmnt), with a single mode
m = n = 1 and ε = 0.05, as a snapshot of T evaluated at t = 0.

Clearly, upwelling fluid corresponds to elevated temperatures as expected. The
sideways motion of the fluid required to complete the convection cells is not driven
by temperature anomalies, but by pressure gradients: there is high fluid pressure at
the top of each upwelling column of fluid (dashed contour lines in panel d), pushing
that fluid sideways towards regions of downwelling, where pressures are lower (dotted
contour lines in pane d). As the fluid travels horizontally the upper boundary, it loses
heat to that colder boundary, and its temperature decreases. The resulting increase
in density makes the fluid negatively buoyant, and it starts to descend again.

Figure 1 shows convection cells whose height is the height of the domain itself.
It is possible to construct convection cells that are only an integer fraction of the

28



domain height, which results from picking kzn with n > 1, Figure 2 shows an example
using the same parameter values as figure 1, but plotting T̂mn with m = 1, n = 2,
and T1,2 = T−1,2 = 1/2 instead. Figure 2 shows the equivalent of panel d of figure 1

(streamlines of q̂mn and contours of T̄ + εT̂mn(x, z) with ε = 0.05). As we will show
in the next section, the dispersion relation (32) does however not favour such double
cells, with cells spanning the full height of the domain growing fastest.

Note 5 This note explains a little more about how to construct streamline plots for
the fluid flux vector field q′. Note that temperature and pressure eigenfunctions are
related through

T̂c,mn = cos(kxmx) sin(kznz), p̂c,mn = − kzn
k2
xm + k2

zn

cos(kxmx) sin(kznz)

where we have assumed that Tmn is real (complex Tmn simply amounts to a phase
shift, see note 2 of the notes on Fourier series).

The corresponding fluid flux field defined by (12c) takes the form

q̂mn = − kxmkzn
k2
xm + k2

zn

sin(kxnx) cos(kznz)i +
2k2

xm

k2
xm + k2

zn

cos(kxmx) sin(kznz)k.

It is easy to verify that this takes the form

q̂mn = −∂Ψmn

∂z
i +

∂Ψmn

∂x
k (40)

if we define Ψmn as

Ψmn(x, z) =
2kxm

k2
xm + k2

zn

sin(kxmx) sin(kznz). (41)

Ψmn is known as a stream function. The abstract representation (40) in terms of a
stream function does not owe its existence to the particulars of the convection problem,
but simply to the fact that flux q′ = q is divergence free, which implies that q can
be written as the curl of a vector field, in this case of the form Ψ(x, z)j: this is
follows from a general result in advanced vector calculus known as the Helmholtz
representation theorem.

When we write q in the form (40), we can also show that the streamlines of q
are isolines of Ψ. Recall that the streamlines of a vector field are curves r(t) =
X(t)i + Z(t)k defined by treating q as the velocity of a particle at the location where
the vector field q(r(t)) is evaluated, and tracing the motion of that particle:

dr

dt
= q(r(t)).
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Hence, using the chain rule and the definition of q in terms of the stream function

d

dt
Ψ(r(t)) = ∇Ψ · dr

dt
= ∇Ψ · q

=

(
∂Ψ

∂x
i +

∂Ψ

∂z
k

)
·
(
−∂Ψ

∂z
i +

∂Ψ

∂x
k

)
= 0

and Ψ remains constant along streamlines. Consequently, the streamlines in figures 1
and 2 are plotted by plotting contour lines of Ψ defined in (41).

Note also that the bunching of streamlines indicates faster flow: since

q = ∇× (Ψj),

we equivalently have
q = −j×∇Ψ.

so (as ∇Ψ is in the xz-plane and therefore perpendicular to j),

|q| = |∇Ψ|.

If we plot streamlines as contours of Ψ with constant contour interval (which is done
in figure 1, then proximity of contour lines to each other indicates the magnitude
of gradient ∇Ψ, and therefore of the magnitude of q′, whose direction is obviously
parallel to the streamlines.

Critical Rayleigh number and wavelength selection

We can try to establish when positive growth rates will occur. Looking at the disper-
sion relation (32), it is clear that there are two competing terms: the first, positive
one, and the second, negative one that is multiplied by a factor of Ra−1. If we trace
where these terms come from back to (29) and beyond to (21), it becomes clear that
the first term on the right-hand side of (32) is associated with advection in the heat
equation, while the second is associated with diffusion (that is to say, conduction) of
heat.

This makes some sense: advection will cause rising, hot fluid to remain warm and
therefore buoyant, increasing the tendency for it to continue rising. Advection should
therefore promote instability. Diffusion, on the other hand, will tend to cool the
rising fluid by transferring its heat content to surrounding, cooler fluid. This should
suppress buoyancy and instability.

It is also immediately clear that the first (positive, and therefore destabilizing)
term in (32) is bounded: it can never be larger than 1. By contrast, the second
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Figure 3: The growth rate σ as a function of kx for Ra = 8π2 for kz = π (black curve
/ markers), kz = 2π (blue), kz = 3π ) (red), kz = 4π (green), kz = 5π (cyan), kz = 6π
(magenta) and kz = 7π (yellow). The cross-shaped markers represent discrete values
of kxn = 2nπ/a that we obtain with a = 20, n = 1,2,. . . , while the solid curves treat
kx as a continuous variable, representing the limit of large a. The dashed black line
is σ = 0, with any values of σ above that line indicating nodes (and corresponding
wavenumbers (kx, ky) that grow unstably.

(negative, stabilizing) term becomes progressively larger as the wavenumbers kxm
and kzn are increased, so σ is guaranteed to be negative for large wavenumbers.
Recall that wavelengths are 2π divided by wavenumber. The second, stabilizing term
therefore becomes dominant at short wavelengths: diffusion is particularly effective
at smoothing out temperature variations, and therefore buoyancy, over short length
scales. If growth occurs, it has to be at longer wavelengths.

In detail, we have to treat horizontal and vertical wavenumbers kxm and kzn some-
what differently. Recall that

kzn = nπ,

and we strictly have to look at kzn as a discrete variable. It is immediately clear
that σ is a decreasing function of kzn (see figure 3, where curves corresponding to
larger kzn are lower down in the plot). The first, destabilizing term in (32) decreases
as kzn increases, while the magnitude of the second, stabilizing term increases with
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increasing kzn. The biggest growth rates are therefore obtained for

n = 1, kzn = π.

In practice, this means that the corresponding convection cell span the height of the
domain as in figure 1. Convection patterns with two ore more cells in the vertical as
in figure 2 are in theory possible, but are not favoured by the instability mechanism:
the associated growth rates are invariably slower than those for patterns with a single
cell in the vertical.

The horizontal wavenumber kxm can be treated much more plausibly as continuous
(see figure 3, where the discrete crosses are wavenumbers kxm that we obtain for
a = 20, for larger a they would be even closer together). We have kxm = 2mπ/a, and
therefore increments in kxm come in units of kx(m+1)−kxm = 2π/a. We can make this
as small as we like be picking a very wide domain width a.11 The fact that increments
in kxm can be made very small means we can effectively treat kxm as a continuous
variable.

If we put kzn = kz1 = π because that maximizes σ with respect to kzn, we find

σ(kx, π) =
k2
x

π2 + k2
x

− 1

Ra
(k2
x + π2).

Treating kx as continuous, we can differentiate with respect to kx in order to find the
maximum of σ

∂σ

∂kx

∣∣∣∣
kzn=π

=2kx

(
1

π2 + k2
x

− k2
x

(π2 + k2
x)

2
− 1

Ra

)
=

2kx [Raπ2 − (π2 + k2
x)

2]

Ra(π2 + k2
x)

2
.

Setting this to zero implies that the maximum of σ is attained either when

kx = 0, (42)

or when
Raπ2 = (π2 + k2

x)
2, k2

x = Ra1/2π − π2. (43)

Since we know that σ becomes negative for large kx, one of these two must correspond
to the global maximum of σ(kx, π).

Note that the value of σ at kx = 0 is always negative,

σ(0, π) = − π
2

Ra
, (44)

11For infinitely wide domains that are not periodic in x, the relevant alternative to Fourier series
is the Fourier transform, which works in a very similar manner but replaces the sum of the Fourier
series with an integral over continuous kx.

32



and never corresponds to instability. The second possible value of kx at which σ can
attain a maximum is given by (43), but only corresponds to a real kx if

Ra ≥ π2. (45)

In that case the value of σ at that point is

σmax = 1− 2π

Ra1/2
. (46)

When (45) is satisfied, note that σmax is greater than the value than the value of σ
at kx given by (44). In other words, σmax genuinely is the maximum of σ then. σmax
is positive (signifying growth) if and only if

Ra > 4π2. (47)

What we have is a critical value of the Rayleigh number Rac = 4π2 at which
instability starts: lower values of Ra correspond to the steady state solution p = p̄(z),
= T̄ (z) being stable, higher values correspond to it being unstable. This makes sense:
remember that Ra controls the size of the second, stabilizing term in (32) relative to
the first, stabilizing one. The more that term is suppressed, the less likely convection
is to occur. If we look at the definition of Ra in (4),

Ra =
kgρ2

0cα(Tb − Ts)h
µκ

,

it becomes obvious that convection can be triggered in number of ways: by increasing
the dimensional height h of the domain, by increasing the temperature difference
Tb − Ts between bottom and top, or by using a fluid that is denser (larger ρ0, has
a greater thermal expansion coefficient α, larger heat capacity c or smaller viscosity
µ. Convection is also favoured by a more permeable porous medium, or a smaller
thermal conductivity κ.

When instability occurs, σ is maximized by a particular combination of wavenum-
bers

kz,max = π, kx,max =
(
Ra1/2π − π2

)1/2
, (48)

meaning, by a particular combination of wavelengths 2π/kz,max and 2π/kx,max. In
other words, the pattern of upwelling of warm fluid and downwelling of cold fluid
that results from the instability occurs preferentially at specific spatial scales. This is
called wavelength selection, and we can potentially learn by looking at these fastest
growing wavelengths how the pattern that emerges from the instability depends on
the physical parameters of the model.

As observed above, the value of vertical wavelength corresponding to maximum
growth rate is always 2π/kz,max = 2. This corresponds to convection cells spanning
the height of the domain as shown in figure 1. The value of the horizontal wavelength
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Figure 4: The growth rate σ as a function of kx for kz = π at different values of
Ra = 32π2 (black curve / markers), Ra = 16π2 (blue), Ra = 8π2 )(red, shown as
a black curve in figure 3), Ra = 4π2 (green), Ra = 2π2 (cyan), Ra = π2 (magenta)
and Ra = π2/2 (yellow). Note that the maximum value of σ attained for the critical
Ra = 4π2 is zero as described in the text, and is attained at kx = π. Larger values of
Ra lead to a range of kx for which σ is positive, with a maximum attained at a value
of kx that increases with Ra.

Figure 5: The fastest growing convection cell when Ra = 16Rac, using the same
plotting scheme as in figure 1(d). Note that this convection pattern is much narrower
then that shown in figure 1, reflecting the higher Rayleigh number.
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2π/kx at corresponding to the fastest growth rate meanwhile decreases with Rayleigh
number Ra (see also figure 4, where the peak in σ occurs further to the right in the
plot for larger Ra): as the Rayleigh number is increased past its critical value Rac
(for instance, by increasing the temperature difference Tb − Ts between bottom and
top of the tank), the convection pattern will consist of narrower cells (cells with larger
wavenumbers).

Note that at Ra = Rac, and σmax = 0 corresponds to kx = π, or a wavelength
of 2. This is the case illustrated in figure 1, which shows the ‘first’ Fourier mode
to become unstable. Here each ‘cell’ is exactly as wide as it is tall, the cell being
half a wavelength wide. Compare this with the fastest growing mode predicted when
Ra = 16Rac, shown using the same plotting scheme in figure 5: the narrowing of the
fastest-growing convection cells as Ra increases is obvious.

Boussinesq convection as a dynamical system

This section is about viewing the Boussinesq convection problem (8) as a dynamical
system as defined in note 1, and is mostly intended to make the connection with such
dynamical systems clearer, and also to provide something of an insight into possible
means of numerical solution. Importantly we get to understand what happens when
exponential growth starts to be curtailed by the nonlinear terms in (8). The material
that follows is necessarily somewhat more advanced, though necessary if you want to
get a fuller understanding of convection: what happens to the initially exponential
growth of convection cells?

If you are still reading at this point, let me say the following: in this course, we
have not made computational approaches anything more than peripheral, focusing
on the development of theory. Purely theoretical development reaches the boundaries
of what it can achieve sooner or later, unless you deliberately restrict yourself only
to carefully selected problems that have an ‘analytical’ solution. You should aim to
learn something about numerical methods to complement the theoretical content of
this course; the description below barely scratches the surface, and also leads to a
computational method known as a spectral method that, while powerful when appli-
cable, can only be used in very simple domain geometries. You should aim to learn
about other, more easily generalized methods such as finite difference, finite volume
and finite element methods in a course on numerical partial differential equations.

Remember that ε was an arbitrary parameter, assumed to be small in order to
look at small perturbations to the steady state. If we want to look at sizeable per-
turbations, we can therefore set ε = 1, although we can no longer ignore higher order
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terms in ε. Simplifying (11) while retaining the nonlinear term leads to

∂T

∂z
−∇2p′ = 0 for 0 < z < 1, (49a)

Ra

(
∂T ′

∂t
− T ′ + ∂p′

∂z
+ T ′

∂T ′

∂z
−∇p′ · ∇T ′

)
−∇2T ′ = 0 for 0 < z < 1, (49b)

T ′ = 0 at z = 0, 1, (49c)

∂p′

∂z
= 0 at z = 0, 1. (49d)

The approach we follow below is this: in the analysis of the linearized problem (21),
we represented T ′ and p′ by Fourier series, and we were able to reduce the problem to
separate ordinary differential equations of the form (30) for each Fourier coefficient
Tmn(t). The simplicity of that equation is actually surprising, given the apparently
complicated nature of the initial partial differential equation problem. What happens
if we retain the nonlinear terms in (49), which are omitted in (21)? What type of
model do we obtain for the Fourier coefficients then?

To find out, substitute the double sums

T ′(x, z, t) =
∞∑

m=−∞

∞∑
n=1

Tmn(t)φm(x) sin(kznz), (50a)

p′(x, z, t) =
∞∑

m=−∞

∞∑
n=1

pmn(t)φm(x) cos(kznz), (50b)
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into (49a) and (49b).12 We get the two rather complicated-looking equations

∞∑
m=−∞

∞∑
n=1

[
knzTmnφm(x) cos(kznz) +

(
k2
xm + k2

zn

)
pmnφm(x) cos(kznz)

]
= 0, (51a)

Ra

∞∑
m=−∞

∞∑
n=1

(
dTmn

dt
− Tmn − kznpmn

)
φm(x) sin(kznz)

+Ra
∞∑

m=−∞

∞∑
n=1

∞∑
q=−∞

∞∑
r=1

TmnTqrkzrφm(x)φq(x) sin(kznz) cos(kzrz)

+Ra
∞∑

m=−∞

∞∑
n=1

∞∑
q=−∞

∞∑
r=1

Tmnpqrkxmkxqφm(x)φq(x) sin(kznz) cos(kzrz)

+Ra
∞∑

m=−∞

∞∑
n=1

∞∑
q=−∞

∞∑
r=1

Tmnpqrkznkzrφm(x)φq(x) cos(kznz) sin(kzrz)

+
∞∑

m=∞

∞∑
n=1

(
k2
xm + k2

zn

)
Tmnφm(x) sin(kznz) = 0. (51b)

while the boundary conditions (49c) and (49d) are satisfied automatically. The equa-
tions above are the result of simple algebra, differentiation, and careful book-keeping
in the sums.

Next, we take the usual projection steps again: we multiply both equations by
φl(x) and integrate over 0 < x < a, using the orthogonality of the basis functions φm
defined in (23),

1

a

∫ a

0

φm(x)φn(x) dx = δmn,

In addition, we multiply (51a) by cos(kzjz) and integrate with respect to z from 0 to
1. Using (28), we obtain (29a) once more

kzlTlj +
(
k2
xl + k2

zj

)
plj = 0

so that (replacing l by m and j by n for cosmetic reasons)

pmn = − kzn
k2
xm + k2

zn

Tmn. (52)

12As in the linearized problem,it is easy to see that that no term pm0(t)φm(x) is required, and if
we changed the expression for p′ to read

p′(x, z, t) =

∞∑
m=−∞

∞∑
n=0

pmn(t)φm(x) cos(kznz),

we would obtain pm0 = 0 from (52), see also the comment immediately below (29).
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In addition to projection onto the mode φl (multiplying by φl(x) and integrating with
respect to x), we multiply (51b) by sin(kzjz) and multiply with respect to z from 0
to 1. To deal with the nonlinear terms, we need the additional observation

φm(x)φq(x) = φm+q(x).

and one further orthogonality result∫ 1

0

sin(kznz) sin(kzmz) cos(kzlz) dz =
1

4
δn,(m−l) +

1

4
δm,(n−l) −

1

4
δl,(n+m). (53)

where, for clarity, we have separated the index arguments of the Kronecker delta by
a comma (and we will do the same to other double indices where necessary below.)

Exercise 6 Show that (53) holds, given kzq = qπ for a generic index q, and that n,
m and l in (53) are all positive. Use (34).

When we use these results in (51b), we construct something similar to the con-
volution theorem of the notes on Fourier series for the nonlinear terms. Overall,
the procedure results in (replacing l by m and j by n again in the final answer, for
cosmetic reasons)

dTmn
dt
− Tmn − kznpmn

+convmn(kzrTqr, Tqr) + convmn(kxqpqr, kxqTqr) + convmn(kzrTqr, kzrpqr)

+Ra−1
(
k2
xm + k2

zn

)
Tmn = 0. (54a)

where we define a convolution function convmn of two sets of Fourier coefficients Cpq
and Dpq through

convmn(Cqr, Dqr) =
1

2

∞∑
q=−∞

(
n−1∑
r=1

CqrDm−q,n−r +
∞∑
r=1

CqrDm−q,n+r −
∞∑

r=n+1

CqrDm−q,r−n

)
.

(55)
Again, it is worth emphasizing that in (54a), there is no summation over repeated
indices implied, so for instance kzrTqr is simply the rth wavenumber kzr multiplied
by the Fourier component Tqr, with no summation over r.

Exercise 7 Carefully go through the projection steps to derive (54a) from (51).

Since each of the pkl in (54a) is related to the corresponding Tkl through (52),
equation (54a) can be re-written in the form

dTmn
dt

= Fmn(T1,1, T1,2, . . .).
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It therefore fits into the framework of dynamical systems in note 1.13 What is more,
the linearization procedure of note 1 about the steady state Tmn ≡ 0 leads precisely
to (30).

The only caveat is that the dynamical system here does not have a finite number
of degrees of freedom: in equation (13), each component yi of the vector y is a degree
of freedom of the dynamical system, which has a finite number (denoted by n in note
1) of such degrees of freedom (or of dimensions). The counterpart of y here, the
collection of Fourier coefficients Tmn, is not finite-dimensional: that is because we
have tried to represent a partial differential equation system (49) as a set of ordinary
differential equations, and the price to be paid is that we have, in principle, an infinite
number of them.

The formulation in equation (54a) does however lead to a plausible way of solving
the nonlinear convection problem (49) computationally: we can truncate the Fourier
series (50) for T ′ and p′ as

T ′(x, z, t) =

N1∑
m=−N1

N2∑
n=1

Tmn(t)φm(x) sin(kznz), (56a)

p′(x, z, t) =

N1∑
m=−N1

N2∑
n=1

pmn(t)φm(x) cos(kznz). (56b)

We then solve (54a) combined with (52) only for Tmn and pmn with indices |m| ≤ N1

and n ≤ N2, treating Tkl and pkl with indices k and l outside these ranges in (54a) as
zero. This reduces the problem to a finite number of ordinary differential equations.
This method of solving (49) computationally is known as a spectral method (or more
specifically, as a Galerkin method).

Using that approach, viewing (54a) as a finite collection of ordinary differential
equations, allows us to solve for the temperature and pressure fields to the point
where the perturbations are no longer small and unstable growth stops. One example
is shown in figure 6, where we can see that a convection cell very similar to those
shown in figures 1 and 5 is the final result of the instability.

The difference here is that the cell is effectively no longer growing. This is difficult
to see in the plots in figure 6, but we can see the approach to steady state illustrated
in the figure by plotting the magnitude of the temperature perturbation (denoted
here by ||T ||) plotted against time; we define magnitude in a root mean square way:

||T ′|| =

√∫ a

0

∫ 1

0

|T ′(x, z, t)|2 dz dx

13Obviously you need to relabel the indices from a double to a single index to do this. There are
many ways of doing this: it is analogous to identifying each entry in a matrix by a single integer
label, rather than by two integers. The function sub2ind in MATLAB for instance does this for a
finite dimensional, N1 × N2 matrix. In that case, we can easily define a one-to-one mapping from
(m,n) to a single index p(m,n) = (n − 1)N1 + m. m and n can be recovered as m = ((p − 1)
mod N1) + 1 and n = (p−m)/N1 + 1.
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As a result of the integral (which is the way to average over space), ||T ′|| does not
depend on position, but it does depend on time t. By an extension of Parseval’s
theorem (see the notes on Fourier series), this is easy to compute for our truncated
Fourier series as

||T ′|| =

√√√√a

2

N1∑
n=1

N2∑
m=1

|Tmn(t)|2. (57)

For the same solution that is plotted as snapshots in figure 6, the evolution of ||T ′||
is plotted against time in figure 7

The important thing to be clear on here is that the steady state the system reaches
is not the simple (or trivial), laterally uniform steady state solution (T̄ , p̄) that we
computed in (7) (which corresponds to T ′ ≡ 0), but one with spatial structure in the
form of a convection cell of finite amplitude.

Note 6 Computationally, (54a) is solved here using a so-called backward Euler step.
Given a solution yi(t) at time t and a dynamical system dyi/ dt = Fi(yj), we approx-
imate yi(t+ δt) by solving

yi(t+ δt)− yi(t) = δtFi(y1(t+ δt), . . . , yN(t+ δt))

for i = 1, . . . , N , which becomes more and more accurate the smaller we make the
discrete time step δt. This is a nonlinear rootfinding problem for the updated solution
yi(t + δt), solved here using a method know as Newton’s method. Basically, we are
solving an equation of the form

Gi(x1, x2, . . . , xN) = 0,

for a set of functions G1, G2, . . .GN , if we treat the unknowns xi as representing
yi(t+ δt), and define Gi(xi) = xi − yi(t)− δtFi(x1, . . . , xN). Newton’s method solves

such rootfinding problems by iterating. It starts with an initial guess x
(0)
i , and uses a

set formula for finding an updated guess x
(1)
i , x

(2)
i etc, where the superscript in round

brackets indicates the number of updates (or iterations) that have been computed,

rather than representing exponentiation. The formula that connects an update x
(n)
i to

the previous values x
(n−1)
1 , x

(n−1)
2 , . . .x

(n−1)
N is

x
(n)
i = x

(n−1)
i −

n∑
j=1

J−1
ij Gj

(
x

(n−1)
1 , . . . x

(n−1)
N

)
,

where Jij is the Jacobian matrix defined in the same sense as in note 1,

Jij =
∂Gi

∂xj

∣∣∣∣
(x

(n−1)
i ,x

n−1)
2 ,...,x

(n−1)
N )

.
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Figure 6: The evolvution of a convection pattern from random initial conditions,
with a = 4 and Ra = 9Rac/8 = 9π2/5, shown as streamlines (black) and temperature
contours (colour) at times t = 25 (panel a), t = 50 (b), t = 75 (c) and t = 100 (d)
and t = 125 (e). Contour interval for the streamfunction Ψ is 2.5× 10−3, and 0.1 for
T in all panels
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Figure 7: The evolution of ||T ′|| against t for the same solution as shown in figure
6. Early on, you will see a rapid decrease in ||T ′||: this is due to the decay in the
modes predicted to be stable by the linear stability analysis, which is much faster
than the growth of the unstable mode for the value of the Rayleigh number used
here, which only exceeds the critical value Rac by a small amount. You can then see
the exponential growth of that unstable mode, which eventually saturates in a way
that might be reminiscent of solutions of the logistic equation dy/ dt = λy(1− y/y0).
That similarity is not accidental: exercise 13 shows that ||T ′||2 approximately satisfies
the logistic equation in time.
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and J−1
ij denotes the elements of the matrix inverse of Jij (meaning, it emphatically

does not denote the element-wise division 1/Jij, but is the (i, j)th component of the
inverse J−1 of the matrix J defined by the components Jij). In less fussy vector
notation, we can also write

x(n+1) = x(n) − J
(
x(n)

)−1
F
(
x(n)

)
,

where we have also made explicitly clear that the Jacobian J is evaluated at the pre-
vious iterate x(n)

This scheme converges if the initial guess x
(0)
i is close enough to a true solution

for all indices i, in the sense that in the limit n → ∞, the iterates x
(n)
i become the

true solution. The iteration scheme relies on approximating the function G by a linear
approximation scheme based on a Taylor expansion,

Gi

(
x

(n)
1 , . . . , x

(n)
N

)
≈ Gi

(
x

(n−1)
1 , . . . , x

(n−1)
N

)
+

N∑
j=1

∂Gi

∂xj

∣∣∣∣
(x

(n−1)
i ,x

n−1)
2 ,...,x

(n−1)
N )

(
x

(n)
j − x

(n−1)
j

)
,

setting the right-hand side to zero. Newton’s method will feature in any basic course
on numerical analysis or scientific computing, and you should aim to take such a
course.

Exercise 8 Write a code to solve

dy1

dt
= λ1y1(1− y2),

dy2

dt
= λ2y2(1− y2)

using backward Euler steps and Newton’s method. Experiment with the step size δt.
Adapt the code to solve the dynamical system in exercise 3 by backward Euler steps.
Compare the results you obtain with those computed using a MATLAB or Python
ordinary differential equation solver. Next, adapt it to solve

dy1

dt
= F1(y1, y2;µ) =µy1 − y3

1 + y1y2

dy2

dt
= F2(y1, y2;µ) =µ− y2 + cy2

1.

Note 7 The reason for not using a regular ordinary differential equation solver to
solve the dynamical system (54a) is that some time stepping routines used for ordinary
differential equations may not be stable for dynamical systems obtained by discretizing
partial differential equations (for instance, by truncating the double sum in (56)).
The notion of stability involved is subtly different from that explored in note 1 in the
sense that it refers to growth of perturbations associated purely with the transition
from a continuous to a discrete system of equations, rather than an instability in
the underlying dynamical system. You will need a course on numerical differential
equations, scientific computing or numerical analysis to delve into this more deeply.
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Figure 8: The magnitude ||T ′|| of steady state solutions against Ra. The solid black
line corresponds to stable steady state solutions computed numerically, the dashed
line to unstable steady state solutions. Note how the unstable and stable solutions
meet at Ra = Rac. The red line shows f(Ra) = π−2(Ra−Rac)1/2; this is formula (92)
for the behaviour of ||T ′|| near the bifurcation at Ra = Rac, which can be deduced
analytically (see exercise 13

When solving partial differential equations numerically, it is nice to be able to
illustrate the behaviour of a single realization as in figure 6, meaning, for a particular
set of initial conditions and parameters.

That is often not the primary purpose, however. Yes, we may want to know what
a convection pattern looks like. But what you might really want to know is how some
aspect of the the convection pattern changes as we change the forcing of the system:
in our case, that forcing can be taken for instance as the difference Tb − Ts between
bottom and top temperatures. In other words, we may ask how some aspect of the
convection patterns depend on Ra, the only parameter in the system. The study of
dynamical systems is really about exactly that: it addresses questions such as ‘how
do steady states change as we change a parameter value in the system’.14

Figure 8 shows how the amplitude of the temperature perturbation T ′ in steady

14The study of dynamical systems does much more besides, such as identifying recurring non-
steady solutions, for instance periodic oscillations, or more complex, ‘chaotic’ solutions, and how
they arise as a parameter value is changed.
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state depends on Rayleigh number Ra. In other words, we compute lots of steady
state solutions for different values of Ra and plot their magnitude against Ra. Naively,
you might imagine this is done by solving the evolution problem (54a) against time
for different values of Ra and waiting till a steady state is reached. That is actually
a highly inefficient way of doing so, and computational approaches to dynamical
systems offer much faster ways of achieving the same thing.15

What the figure makes clear is that, as Ra passes the critical value Rac, the
onset of convection is gradual. The magnitude of steady state convection cells grows
continuously from zero as Rac is passed (note that ‘grow’ is not meant in the sense of
growing over time here: it refers to how the steady state depends on the parameter
value Ra). In addition, these cells themselves are stable for Ra > Rac, while the
‘trivial’ steady state solution T ′ ≡ 0 flips from being stable for Ra < Rac to unstable
at Ra > Rac; the critical parameter value Rac at which this flip happens (and where
the stable and unstable solution ‘meet’ in figure 8) is known as a bifurcation.

In many instances, looking at how a solution changes as a result of parameter
changes is understood as a ‘sensitivity analysis’. The latter phrase means the fol-
lowing: I suppose (or pretend) that I know the parameter values for a system I am
interested in but admit that I do not know them exactly, so I ask how sensitive the
solution is to changing those parameter values. Which is generally done in a linearized
way, looking only at how much the solution changes if I change parameter values ‘a
little bit’. That is, I change the parameter values only by an amount that still allows
a first order Taylor expansion in the parameter to determine how much the solution
changes by. That is effectively what equation (60) in exercise 9 below does. What a
sensitivity analysis misses, because it is linear, is the qualitative change in behaviour
that occurs at a bifurcation. The next exercise explores this in more detail.

Exercise 9 Bifurcations occur where the Jacobian of a dynamical system is singular
(where the Jacobian matrix does not have an inverse), which is precisely where the
growth rate σ goes to zero (since σ is an eigenvalue of the Jacobian matrix, and
matrices with a zero eigenvalue are singular).16 This occurs because of something
called the implicit function theorem, which basically works as follows: consider a

15Specifically, you can find steady states using so-called continuation methods, employing Newton’s
method to solve steady state versions of the dynamical system

Fi(ȳ1, . . . , ȳN ;Ra) = 0

for i = 1, . . . , N while also changing the parameter Ra. In the notation here, we have explicitly
written the parameter Ra as an argument of Fi to make clear that the dynamical system depends
on that parameter.

16To be more precise, you will see in this exercise what is meant by one particular kind of bifurca-
tion; there are others that are a little bit more complicated: for instance, a so-called Hopf bifurcation
occurs when the Jacobian has a pair of purely imaginary eigenvalues rather than a zero eigenvalue,
and corresponds to the appearance of an oscillatory solution; a course on dynamical systems theory
will clarify this.
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dynamical system in steady state in the form

Fi(y1, . . . yN ;µ) = 0, i = 1, . . . , N, (58)

where µ is a parameter that the dynamical system depends on (like Ra in our convec-
tion problem). When including a parameter explicitly as an argument of the function
F defining a dynamical system, it is customary to separate the symbol for the param-
eter from the dynamical degrees of freedom yi by a semicolon rather than a comma.
Suppose that yi = ȳi(µ) is the steady state solution corresponding to parameter value
µ. If the Jacobian matrix

Jij =
∂Fi
∂yj

∣∣∣∣
(ȳ1(µ),ȳ2(µ),...,ȳN (µ);µ)

.

is non-singular and the parameter µ is changed by a sufficiently small amount from
µ0, then there is a ‘locally unique’ solution to (58) whose dependence on µ we can
compute by using chain rule, differenting(58) with respect to µ to give

0 =
d

dµ
F (ȳ1(µ), . . . ȳN(µ);µ) =

N∑
j=1

Jij
dȳj
dµ

+
∂Fi
∂µ

(59)

for i = 1, . . . , N , where ∂Fi

∂µ
is also evaluated at (ȳ1(µ), . . . , ȳN(µ);µ0). Note that

(59) is a system of linear equations in the unknowns dȳj/ dµ, and because Jij is not
singular, the system can be solved as

dȳj
dµ

= −
N∑
j=1

J−1
ij

∂Fj
∂µ

.

A first order Taylor expansion therefore gives

ȳi(µ+ δµ) ≈ ȳi(µ)−
N∑
j=1

J−1
ij

∂Fj
∂µ

δµ. (60)

This scheme breaks down when Jij is singular, and we have a bifurcation: there
can be multiple solutions to the problem (58) in the vicinity17 of a point where Jij
is singular. The study of bifurcations focuses on identifying how many such steady
state solutions there are, how they depend on changes in the paramter µ away from
the critical value at which Jij is singular, and which of these multiple solutions are
stable and unstable.

To make headway, you need to go to higher order in the Taylor expansion of Fi,
which note 8 sketches out and exercise 13 applies to the convection problem. To get

17Or ‘neighbourhood’, if you are familiar with the basic concepts of topology.
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a full understanding of how this works, you should also take a specialized course in
dynamical systems.

Here we simply illustrate how bifurcations work by looking at a very simple problem
with a single dynamical degree of freedom:

dy

dt
= µy − y3 (61)

Equation (61) fits into the dynamical systems framework by taking N = 1 and drop-
ping the subscript i on dyi/ dt = Fi(y1, . . . ;µ) since there is only one yi with i = 1;
also F (y, µ) = µy−y3. Identify where there is a bifurcation (i.e., at what critical value
of µ does the ‘Jacobian’ become singular18). Find all real steady state solutions for y
below and above the bifurcation, and determine if they are stable or not. Plot all the
stable steady state magnitude y against the parameter µ. Also solve (61) analytically.
Hint: this is easiest if you multiply both sides by y and solve for y2 as the dynamical
degree of freedom instead. You should get a version of the logistic equation for y2

when you do so; bear in mind however that y2 must be positive.
Now repeat the exercise with

dy

dt
= µy + y3 (62)

What changes?
The bifurcation you find here is known as a pitchfork bifurcation (plotting y

against µ should make clear why that name is chosen!), and this is actually a generi-
cally the same as the bifurcation that the convection problem undergoes at Ra = Rac
(see exercise 11 below. Which of the two cases you have worked through is analogous
to the convection results we show in diagram 8?

The most common quantity that we are likely to be interested in is not so much
the amplitude ||T ′||, but the heat flux. The conductive heat flux across the system
in the absence of convection is simply

k(Tb − Ts)/h.

Once convection commences, we expect to add to that rate of heat transfer: convection
carries hot fluid upwards and brings it into closer contact with the cold upper surface.
But how much does it add? Can we write heat flux — or more specifically, the heat
flux averaged across the lower or upper surface, since the actual, local heat flux is no
longer uniform — as a function of the temperature difference Tb−Ts between bottom
and top of the porous medium?

That obviously makes most sense if we do the computation when the system is
in steady state, rather than during the transient evolution shown in figure 6. In

18The Jacobian of a one-by-one matrix Aij = a is simply a, if you wish.
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dimensional terms, the spatially averaged heat flux out of the bottom of the domain
(which we denote by Q0) is

Q0 =
k(Tb − Ts)

h
× a−1

∫ a

0

− ∂T

∂z

∣∣∣∣
z=0

dx =
k(Tb − Ts)

h

[
1− a−1

∫ a

0

∂T ′

∂z

∣∣∣∣
z=0

dx

]
where T , z and x continue to be dimensionless. Using the definition of T ′ in terms of
the Fourier modes Tmn, this becomes

Q0 =
k(Tb − Ts)

h

[
1−

N2∑
m=1

kzmT0m

]
,

The term in square brackets is determined the steady state solution of the dimension-
less problem (54a), and therefore depends on Ra, so we can write

Q0 =
k(Tb − Ts)

h
Nu(Ra).

where

Nu(Ra) =

[
1−

N2∑
m=1

kzmT0m

]
(63)

determines, as a function of Ra, how much heat flux is enhanced by convection: it
is the ratio of Q0 to the purely conductive flux. Nu is, rather confusingly, referred
to as the Nusselt number. Unlike the dimensionless groups you have met so far,
also often named after long-dead male European or American scientists, Nu is not a
dimensionless group that can be computed just by non-dimensionalizing an underlying
system of equations, but a dimensionless ratio of heat fluxes that need to be computed
by solving those equations.

Figure 9 shows the Nusselt number as a function of Ra for the steady state so-
lutions also shown in figure 8. Below Rac, the Nusselt number is one, which is to
be expected since heat transport is purely by conduction. Beyond Rac, the Nusselt
number increases fairly linearly with Ra. The Rayleigh number Ra is of course itself
linearly dependent on Tb−Ts (see its definition in (4)), so Nu increasing with Ra im-
plies a mean heat flux Q0 increasing faster than linearly with temperature difference
Tb − Ts. (There is a general lesson for thermal engineering here: typically, you want
to suppress convection as well as reduce thermal conductivity k in insulation layers.)

Note that figures 8 and 9 show approximate forms for ||T ′|| as red lines. These
approximate forms are highly accurate near the bifurcation at Ra = Rac, and that
is no accident. The remaining exercises and note expand more on what happens at
the bifurcation at Ra = Rac, expanding on exercise 9 above. In particular, we show
that the local form of the dependence of ||T ′|| and of Nu on Ra near Ra = Rac
can be predicted without numerical computation — but as the work involved is also
likely to make clear, the price for doing so is a great deal of algebra that may not be
worthwhile if you can solve the problem efficiently on a computer.
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Figure 9: The Nusselt number Nu of steady state solutions against Ra. The solid
black line corresponds to stable steady state solutions computed numerically, the
dashed line to unstable steady state solutions. The red curve shows f(Ra) = 1 +
π−2(Ra − Rac)/2; this is formula (93), which can be computed analytically as the
approximate form of the actual Nusselt number near the bifurcation
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Exercise 10 Consider the system

dy1

dt
= F1(y1, y2;µ) =µy1 − y3

1 + y1y2

dy2

dt
= F2(y1, y2;µ) =µ− y2 + cy2

1.

Show that there is a bifurcation at µ = 0, where the eigenvalues of the Jacobian are 0
and −1, with eigenvectors (1, 0)T and (0, 1)T, respectively.

Show that the steady state solution can be written in the form y1 = |µ|1/2A1,
y2 = |µ|A2, with A1 satisfying an equation of the form

SaA1 − bA3
2 = 0 (64)

with S = µ/|µ| and a, b independent of µ. Determine when there is one and when
there are three roots of this equation. Also determine whether these solutions are
stable or unstable.

Now modify the dynamical system to

dy1

dt
= F1(y1, y2;µ) =µy1 − y3

1 + y1y2 + d1y
4
1 + d2y1y

2
2 (65a)

dy2

dt
= F2(y1, y2;µ) =µ− y2 + cy2

1 + e1y1y
2
2 + e2y

2
2. (65b)

Suppose that µ is close to the critical value of 0, i.e., that |µ| is small. Scale y1 and
y2 as before, y1 = |µ|1/2A1, y2 = |µ|A2, and substitute for y1 and y2 in terms of A1

and A2 in (65). Show that, neglecting higher powers of |µ|, you get the same equation
for A1 as before, (64).

Note 8 Here we expand on exercises 9 and 10 to describe a more general theory of
pitchfork bifurcations. This lays the theoretical ground work for showing that the onset
of convection is indeed a pitchfork bifurcation ultimately described by a simple model
analogous to (61): a single first-order ordinary differential equation whose right-hand
side is the sum of a linear and cubic term. The actual demonstration of this fact
follows in exercise 13 below. There are two ways in which you can tackle this note
and the subsequent exercises: if you are on a more abstract bent, read the note first
and do the exercise afterwards. Otherwise, try the exercise first, which is sufficiently
self-contained (though therefore lacking in generality) to do that.

Consider a dynamical system

dy

dt
= F(y;µ),

(or, in index notation,

dyi
dt

= F (y1, . . . , yN ;µ), i = 1, . . . , N),
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and let ȳ(µ) (or interchangeably, ȳi(µ) for i = 1, . . . , N) denote the steady state
solution for parameter value µ. Suppose that there is a critical parameter value µ = µ0

at which the Jacobian J defined through

Jij =
∂Fi
∂xj

∣∣∣∣
(ȳ1(µ0),...,ȳN (µ0),µ0)

is singular with a single vanishing eigenvalue.19 Remember that this generally signifies
a bifurcation, where multiple steady state solutions can ‘meet’ as in exercise 9. Also
assume that all the other eigenvalues of Jij have negative real parts (if that was not
satisfied, the steady state solution would automatically be unstable, and the behaviour
of the dynamical system near that steady state solution would nor be of significant
interest since the solution would definitely evolve away.)

This note will describe how to find the behaviour of the solution y near the bifur-
cation by using the local behaviour of F , as defined by the first few terms of its Taylor
expansion around the steady state ȳ(µ0) at the critical value µ = µ0.

Our first step is somewhat technical, transforming from the (y1(t), . . . , yN(t)) to a
new set of dynamical degrees of freedom (α1(t), . . . , αN(t)). The degrees of freedom αi
we choose make the linearized problem much simpler by diagonalizing the Jacobian.
Diagonalizing a matrix by using its eigenvectors is hopefully something you learnt
about in a linear algebra course. The procedure below is one of many reasons why
that procedure is an important tool, which we get to use in context here.

To see how it works, let the eigenvectors of the matrix J be ei, i = 1, . . . , N
(since there are N eigenvectors), with corresponding eigenvalues σi, and order the
eigenvector labels i such that σ1 = 0 is the zero eigenvalue. For simplicity, assume
that all the other eigenvalues are distinct, so the characteristic polynomial has no
repeated roots. The eigenvectors are then linearly independent of each other, and can
be arranged in an invertible matrix E defined through

Eij = ei,j

where ei,j is the ith component of ej; in other words, E is formed by lining the eigen-
vectors ei up next to each other:

E = (e1, . . . , eN).

Crucially, E has an inverse E−1, because the eigenvectors ei (the columns of E) are
linearly independent. The matrix E also has the property that

JE = (Je1,Je2, . . .JeN) = (σ1e1, σ2e2, . . . , σNeN) ,

and it is straightforward to show that this equals

JE = EΛ (66)

19Meaning, the eigenvalue σ = 0 is not a repeated root of the characteristic polynomial.
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where

Λ = diag(σ1, σ2, . . . , σN) =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σN


is the diagonal matrix created by the eigenvalues; suspending the summation convec-
tion, we could also write Λij = σiδij (where there is no summation over i implied).

A general solution vector y can be expressed in terms of the eigenvectors ei as a
so-called basis. What we mean by that is that we can always write y(t) in the form

y(t) = ȳ +
N∑
i=1

αi(t)ei.

which is the same as (19) in note 1. Written this way, the steady state at µ = µ0 is
simply αi ≡ 0. In terms of the matrix E, the relationship between y and the αi can
be expressed alternatively in the form

y − ȳ = Eα,

where α = (α1, . . . , αN)T, the superscript T denoting the usual transpose operation.
To show that the coefficients αi exist and are unique for a given y, it suffices to

solve this equation for α as
α = E−1(y − ȳ).

In the same vein, we can re-write the dynamical system in the form

dα

dt
=

d(E−1(y − ȳ))

dt
= E−1 dy

dt
= E−1F(y;µ) = E−1F(ȳ + Eα;µ). (67)

With this, solving for α is equivalent to solving for y since we can now transform
back and forth between the two formulations.

In order to tidy up notation going forward, we give the difference between the
parameter µ and its critical value µ0 a new name

ν = µ− µ0,

and define a new function G(α; ν) to be equal to the right-hand side of (67):

dα

dt
= G(α; ν) (68)

where
G(α; ν) = E−1F(ȳ + Eα;µ). (69)
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Why go to all that trouble, you say? The reason is that the Jacobian of G is much
simpler than the Jacobian of F. Define

J̃ij =
∂Gi

∂αj

∣∣∣∣
(α1,...,αN ;ν)=(0,...,0;0)

.

By the chain rule

J̃ij =
N∑
k=1

N∑
l=1

E−1
ik

∂Fk
∂yl

∂yl
∂αj

=
N∑
k=1

N∑
l=1

E−1
ik JklEli

or
J̃ = E−1JE = E−1EΛ = Λ

since JE = Λ from (66). In other words, the Jacobian after transforming to the
(α1, . . . , αN) as the dynamical degrees of freedom is a diagonal matrix; if we linearize
the problem, the different degrees of freedom decouple from each other. Note that this
is automatically the case in the linearized convection problem, where the evolution
of the Fourier coefficient Tmn only depends on Tmn with the same indices m and n,
but not any other Tpq with p 6= m or q 6= n; this is equation (30)). Similarly, the
dynamical system in exercise 10 is already diagonalized in the same way.

Explicitly, if we linearize around the steady state αi = 0 for all i as in note 1, we
get

dαi
dt
≈

N∑
j=1

J̃ijαj = σiαi

and therefore
αi(t) ≈ αi(0) exp(σit).

Taking stock, we have not done a lot yet beyond making the dynamical system be
simpler when linearized, but we can see more clearly some of the things that happen
at a bifurcation. A special role here falls to α1: recall that this is the coefficient that
corresponds to the zero eigenvalue σ1 = 0, while all the other coefficients αi with i > 0
corresponds to eigenvalues with negative real parts Re(σi) < 0. The linearized model
therefore predicts that all αi with i > 1 decay over time, while α1 remains unchanged.

That is of course not accurate, and most importantly we cannot actually say from
the linearized model how α1 changes over time: the best we can say is that it does not
grow or shrink exponentially, but it might still evolve due to nonlinear terms that the
linearization of the problem throws away.

What we will do next is show how to construct an approximate solution for the
dynamical system when µ is close to µ0, which is to say, when ν is small, paying
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special attention to the fact that we need non-linear terms to understand the evolution
of α1. We do so by Taylor expanding the right-hand side of (67) around the steady
state (α1, . . . , αN ; ν) = (0, . . . , 0; 0). Remember this is what we did in note 1 to justify
linearization. We still expect to look only at cases where the αi are small (as we did
when we linearized in note 1) but recognizing that a linear model is insufficient, we
go further in the expansion here, initially up to third order

dαi
dt

=Gi(α1, . . . , αN , ν) (70)

=Gi(0, . . . , 0; 0) +
N∑
j=1

J̃ijαj +
N∑
j=1

N∑
k=1

Hijkαjαk +
N∑
j=1

N∑
k=1

N∑
l=1

Kijklαjαkαl

+
∂Gi

∂ν
ν +

N∑
j=1

∂Gi

∂αj∂ν
αjν +

1

2!

∂2Gi

∂ν2
ν2 +

N∑
j=1

N∑
k=1

∂Gi

∂αj∂αk∂ν
αjαkν

+
N∑
j=1

1

2

∂3Gi

∂αj∂ν2
αjν

2 +
1

3!

∂3Gi

∂ν3
ν3 +O(ν4) (71)

where

Hijk =
1

2!

∂2Gi

∂αjαk

∣∣∣∣
(α1,...,αN ;ν)=(0,...,0;0)

,

Kijkl =
1

3!

∂3Gi

∂αjαkαl

∣∣∣∣
(α1,...,αN ;ν)=(0,...,0;0)

.

and the derivatives of Gi with respect to ν are also evaluated at (α1, . . . , αN ; ν) =
(0, . . . , 0; 0)

Next, we consider only the situation in which the following holds:

H111 = 0,
∂G1

∂µ
= 0. (72)

To understand the probably rather obscure-looking conditions (72), consider the ex-
pansion above for i = 1: this again refers to the equation for how α1 evolves in time.
Since the Gi(0, . . . , 0; 0) = 0 at the steady state and using the fact that J̃ij is diagonal
with α1 = 0, we get from (71)

dα1

dt
=

N∑
j=2

(H11j +H1j1)α1αj +
N∑
j=2

N∑
k=2

H1jkαjαk +
N∑
j=1

N∑
k=1

N∑
l=1

K1jklαjαkαl

+
N∑
j=1

∂G1

∂αj∂ν
ναj +

1

2!

∂2G1

∂ν2
ν2 +

N∑
j=1

N∑
k=1

∂G1

∂αj∂αk∂ν
ναjαk

+
N∑
j=1

1

2

∂3G1

∂αj∂ν2
ν2αj +

1

3!

∂3G1

∂ν3
ν3, (73)
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making use of the assumptions in (72) (note that we have deliberately excluded H111α1α1

from the sum over Hijk by the restricting the limits of that sum, on account of H111

being zero from (72)). Convince yourself that (73) holds by substituting the known
values of J̃1j and K1jk into (71).

It will turn out that, if H111 = 0, then α1 does not couple back into the evolution
of α1 until we get to the third order term K1jklαjαkαl. The conditions in (72) are
ultimately what is required to create a pitchfork bifurcation as exemplified by exercise
9; when (72) is not satisfied, other types of bifurcation will result (for instance, there
are so-called transcritical and saddle-node bifurcations that can appear).

Now we need to pay attention to how big the different components of the vector
α are likely to become. In the absence of a zero eigenvalue of the Jacobian, the
implicit function theorem construction in exercise 9 suggests that we should then have
all the components αi be comparable in size to µ − µ0 = ν from (60). With the zero
eigenvalue, the coefficient α1 is likely to be much larger than ν, however. In fact, as
mentioned in the previous paragraph, the condition (72) ensures that the right-hand
side of the equation for dα1/ dt contains α1 only as a third power, and this should
be comparable in size to the biggest of the other terms on the right-hand side. That
turns out to mean that α1 should scale as |ν|1/2.

In addition, because of the zero eigenvalue at ν = 0, α1 actually grows very slowly,
in fact at a rate comparable to ν: effectively, if we were to linearize in α1 in (73), the
leading linear term on the right-hand side would be

∂G1

∂αj∂ν
ν αj,

suggesting an eigenvalue of of ∂G1/∂αj∂νν that is zero at the bifurcation ν = 0 as
required, and proportional to ν in its vicinity. It turns out that this is not quite accu-
rate, as you will see below, but gives the right scaling: the eigenvalue is proportional
to ν, though with a more complicated coefficient of proportionality than ∂G1/∂αj∂ν,
and changes in α1 over time happen on a slow time scale comparable with ν−1.

All of the above leads us to scale time and the coefficients αi as follows:

t = |ν|−1T, α1 = |ν|1/2A1, Ai = |ν|Ai for i > 1.

If this does not make any sense to you yet, worry not: you should see below that
we get a problem with a sensible solution by using these scalings (but note that the
scalings here are the same as those you deduced in exercise 10, if you have worked
through that exercise.) To deal with the pesky modulus signs above (necessary because
we want to take a square root in one place, and we want to make sure that increasing
T corresponds to increasing t, that is, to moving forward in time, we also define

S = sgn(ν) =
ν

|ν|
.
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First, we can now set to work on (73). We retain only the lowest power in |ν| on
both sides of the equation, which turns out the |ν|3/2 on substituting T , A1, A2, . . . , AN :

dA1

dT
=

N∑
j=2

(H11j +H1j1)A1Aj +K1111A
3
1 + S

∂2G1

∂α1∂ν
A1. (74)

Convince yourself that this is correct by doing the substitution and identifying the
power of ν multiplying each term.

Next, we have to tackle the remaining equations in (71), with i > 1. Again
retaining only the lowest power in |ν|, which is in this case |ν| itself,

0 = σiAi +Hi11A
2
1 + S

∂Gi

∂ν

We have made use of the fact that J̃ij = σiδij to write the first term as stated; again
you can see the value of having diagonalized the Jacobian here, because it allows you
to solve easily for Ai:

Ai = −σ−1
i Hi11A

2
1 − σ−1

i S
∂Gi

∂ν
.

The time derivative disappears here because the approach to this quasi-steady solution
is very rapid compared with the slow evolution of Ai (this is the basis of something
called a centre manifold reduction in dynamical systems theory. That is really how
the analysis of bifurcations proceeds systematically, but is something you would have
to learn about in a specialized course on dynamical systems).

Substituting for Ai in (74) leads to

dA1

dT
= SaA1 − bA3

1 (75)

where

a =
∂2G1

∂α1∂ν
−

N∑
j=2

σ−1
j (H11j +H1j1)

∂Gj

∂ν
(76)

b =−K1111 +
N∑
j=2

σ−1
j (H11j +H1j1)Hj11 (77)

Equation (75) is called the Landau equation. It contains all the information you
need about the behaviour of the system near the bifurcation. The behaviour of A1 now
comes down exclusively to the signs of Sa and b.

If you did exercise 9, you will already know how this works: if Sa and b have the
same sign, then there are three steady state solutions, A1 = 0 and A1 = ±

√
Sa/b,

while Sa and b of the opposite sign permit only the ‘trivial’ steady state solution
A1 = 0. In addition, it is easy to say that the sign of Sa determines whether A1

56



grows in magnitude when A1 is small (which requires Sa > 0), while b determines
whether A1 will stop growing when A1 is large (this requires b > 0). In other words, the
sign of Sa determines whether the trivial solution is stable or not, while b determines
whether, when the trivial solution is unstable, there is corresponding non-trivial but
stable solution.

If that is too brief of an explanation, read on in the next note.

Note 9 Consider again the Landau equation (75) in note 8,

dA1

dT
= SaA1 − bA3

1.

In detail, recall that S is simply the sign of ν, S = ν/|ν|, so by flipping the sign
in the parameter perturbation (making µ great or less than the critical value µ0), we
can create either one or three steady state solutions. That is the reason for the name
‘pitchfork bifurcation’, in which a single solution (the handle of the pitchfork) turns
into three solutions (the points of the pitchfork).

In addition, we can look at the stability of these three solutions in the standard way
(linearize around the steady state!)20 For the trivial steady state A1 = 0, linearization
of the Landau equation (61) gives

dA1

dT
≈ SaA1

and the trivial steady state solution is stable if Sa is negative, and unstable if Sa is
positive. Also, changing the sign of ν changes the stability of the trivial steady state:
if the trivial steady state is stable for ν < 0, then it becomes unstable for ν > 0 and
vice versa. That is what we saw already for the convection problem, where the trivial
steady state with no convection is stable below Rac and unstable above Rac

Conversely, if we linearize around the non-trivial steady state A1 = ±
√
Sa/b as

A1 = ±
√
Sa/b+ A′1, we get

dA′1
dT

= Sa− 2b
(
±
√
Sa/b

)2

A′1 = −SaA′1.

The opposite conclusion applies now: the steady state is unstable if Sa is negative, and
stable if Sa is positive. In other words, where there are three steady state solutions,
the trivial solution A1 = 0 and the nontrivial solution A1 = ±

√
Sa/b have opposite

stability properties.

20This may seem a little strange, but it does work, and it is not that hard to convince yourself
that it should work, purely mathematically; the key is that perturbations in A1 need to be made
small. This contrasts with the linearizing the original dynamical system (68), for which we would
merely have required that the αi’s should be small. If you recall that A1 = |nu|1/2alpha1, you will
see that to linearize (75) implies that you have to make the perturbation in α1 extremely small,
much smaller than |ν|1/2 where ν = µ− µ0 measures how far you are from the bifurcation point.
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The distinction here is this: when the trivial soltution is unstable (Sa > 0), do
the other two steady state solutions exist (Sa/b > 0, so b > 0) or not (Sa/b < 0, so
b < 0).

In the first case, when b > 0, as the trivial steady state becomes unstable at the
bifurcation, two non-trivial steady state solutions with small amplitudes

α1 = |ν|1/2A1 = ±
√
S|ν|a
b

=

√
νa

b

appear nearby (recall that S = ν/|ν|), both of them growing in amplitude as the
square root of the difference between the parameter µ and its critical value µ0, |ν|1/2 =
|µ−µ0|1/2; the three solutions ‘meet’ at α1 = 0 when ν goes to zero. This case is called
a supercritical pitchfork bifurcation, and is what occurs in the convection problem (see
exercise 13 below). This is why in figure 8, we can see a gradual onset in the strength
of convection.

The opposite case b < 0 is that in which a trivial stable steady state solution
coexists with a pair of non-trivial but unstable steady state solutions, both of which
disappear as the parameter µ passes the critical value µ0; in that case, the type of
analysis we have developed in this note has little to say about what happens to the
evolution of the solution away from the trivial steady state solution once it becomes
unstable.

Exercise 11 Consider again the system (65) in exercise 10. Go through the steps in
example 8 to show that ν = µ, E = I, the 2 − by − 2 identity matrix, J is diagonal,
and hence α = y, G = F, J̃ = J. Compute the components of Hijk and Kijkl, most of
which will be zero (so list only the non-zero ones). Show that the recipe for computing
the Landau equation in note 8 leads to the same coefficients a and b as you found in
equation 64.

Exercise 12 Consider the dynamical system

dy1

dt
= F1(y1, y2;µ) =µy1 − y3

1 + y1(y2 − y1)

dy2

dt
= F2(y1, y2;µ) =µ− y2 + y1 + cy2

1,

which differs somewhat from that in exercise 10. Show that you still get a pitchfork
bifurcation at µ, and the same Landau equation as in exercise 10.

Exercise 13 Take (54a) combined with (52), and recall that kxm = 2mπ/a, kzn =
nπ. Let a = 2, the wavelength of the fastest growing mode at Ra = Rac = 4π2. Now
change Ra slightly past Rac, defining

ν = Ra−Rac.

58



For sufficiently small positive ν, the dispersion relation (32) should make it clear that
only the modes T1,1 and T−1,1 grow in a linearized version of the model. As per the
standard symmetry of Fourier coefficients of real-valued functions, recall also that T1,1

and T−1,1 are not independent, but must be related through

T1,1 = T−1,1,

and in fact
Tmn = T−mn

for all m.
We can construct an approximate version of the model for such small ν by rescaling

the Tmn coefficients as follows

T1,1 = |ν|1/2Θ1,1, T−1,1 = |ν|1/2Θ−1,1, Tmn = |ν|Θmn if |m| 6= 1 or n 6= 1,

t = |ν|−1τ (78)

If you have already read note 8, the choice of scaling here may already make sense
to you; if not, simply take it at face value and persevere: you will find it leads to a
sensible approximate model below.

Because T1,1 and T−1,1 are much larger than the remaining Tmn, it is important to
distinguish terms containing T1,1 and T−1,1 in (54a) from terms containing only other
Fourier coefficients Tmn. The only difficulty in doing so is to deal with the nonlinear
terms convmn(kzrTqr, Tqr), convmn(kzqpqr, kzqTqr) and convmn(kzrTqr, kzrpqr). Take
the formula (55) and transform to a new set of coefficients cmn and dmn defined
through

C1,1 = |ν|1/2c1,1, C−1,1 = |ν|1/2c−1,1,

Cmn = |ν|cmn if either |m| 6= 1 or n 6= 1.

Ditto for components of Dmn, so D1,1 = |ν|1/2d1,1, D−1,1 = |ν|1/2d−1,1, Dmn = |ν|dmn
if |m| 6= 1 or n 6= 1. The scaling here reflects the scaling for the analogously-indexed
coefficients Tmn in (78): for instance, if Cmn is kznpmn and pmn is linked to Tmn
through (52), then cmn = −k2

zn(k2
xm + k2

zn)−1Θmn, and analogously for the other argu-
ments of the convmn function in (54a).

Show that if m = 1, n = 1,

conv1,1(Cqr, Dqr) =
1

2

∞∑
q=−∞

(
∞∑
r=1

CqrD1−q,1+r −
∞∑
r=2

CqrD1−q,r−1

)

=
|ν|3/2

2
(c−1,1d2,2 + c1,1d0,2 − c2,2d−1,1 − c0,2d1,1)

+
|ν|2

2

 ∞∑
(q,r)∈I1

cqrd1−q,1+r −
∞∑

(q,r)∈I2

cqrd1−q,r−1

 (79)
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where it is easier to write the sums in the last expression in terms of index sets I1

and I2. For I1, this is the set of (q, r) for which q is an integer (positive, negative, or
zero) and r is a natural number (a positive integer), but we miss out the combinations
(−1, 1) and (1, 1). Likewise, I2 is the set of (q, r) for which q is an integer, r is an
integer greater than 1, and we miss out the combinations (0, 2) and (2, 2).21 The point
here is that we are trying to keep track of the powers of |ν|, eventually retaining only
the lowest powers in a simplified model: what the formula (80) shows is that a special
role falls to the combination of terms (c−1,1d2,2 + c1,1d0,2 − c2,2d−1,1 − c0,2d1,1), since
they are much larger than the others. In fact, we can simply write

conv1,1(Cqr, Dqr) =
|ν|3/2

2
(c−1,1d2,2 + c1,1d0,2 − c2,2d−1,1 − c0,2d1,1) +O(|ν|2). (80)

Similarly for m = −1, n = 1, show that

conv−1,1(Cqr, Dqr) =
|ν|3/2

2
(c1,1d−2,2 + c−1,1d0,2 − c−2,2d1,1 − c0,2d−1,1) +O(|ν|2),

(81)

while for other values of m and n, show that we have one special case m = 0, n = 2,
for which

conv0,2(Cqr, Dqr) =
|ν|
2

(c1,1d−1,1 + c−1,1d1,1) +O(|ν|3/2). (82)

For other combinations of m and n, show that

convmn(Cqr, Dqr) = O(|ν|3/2). (83)

With this knowledge, you can re-write (54a), substituting for pmn using (52) and
subsequently transforming to the new variables Θmn and τ using their definition in
(78). Again only retain the lowest powers of ν that multiply terms not identically
equal to zero, and expand 1/Ra as

Ra−1 = (Rac + ν)−1 = Ra−1
c − νRa−2

c +O(ν2).

Show the following:

21Formally, we can write I1 = (Z×N)\({(−1, 1)}∪{(1, 1)}), I2 = (Z×(N\{1}))\({(0, 2)}∪{(2, 2)}).
To demistify this a bit, what summing over (q, r) ∈ I1 means is that the sum is over all distinct
combinations of (q, r) in which q is an integer (positive or negative, meaning q ∈ Z where Z is the
set of all integers) and r is a natural number (a positive integer, meaning q ∈ N, where N is the
set of natural numbers), but missing out (that is the meaning of the set exclusion symbol ‘\’) both
(−1, 1) and (1, 1).
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1. For m = n = 1,

|ν|1/2
(
−

k2
x,1

k2
x,1 + k2

z,1

Θ1,1 +Ra−1
c (k2

x,1 + k2
z,1)Θ1,1

)
+|ν|3/2

[
dΘ1,1

dτ
+

1

2
(kz,1Θ−1,1Θ2,2 + kz,1Θ1,1Θ0,2 − kz,2Θ2,2Θ−1,1 − kz,2Θ0,2Θ1,1)

−1

2

(
kx,−1kz,1kx,2
k2
x,−1 + k2

z,1

Θ−1,1Θ2,2 +
kx,1kz,1kx,0
k2
x,1 + k2

z,1

Θ1,1Θ0,2

−kz,2kx,2kx,−1

k2
x,2 + k2

z,2

Θ2,2Θ−1,1 −
kx,0kz,2kx,1
k2
x,0 + k2

z,2

Θ0,2Θ1,1

)

−1

2

(
kz,1k

2
z,2

k2
x,2 + k2

z,2

Θ−1,1Θ2,2 +
kz,1k

2
z,2

k2
x,0 + k2

z,2

Θ1,1Θ0,2

−
kz,2k

2
z,1

k2
x,−1 + k2

z,1

Θ2,2Θ−1,1 −
kz,2k

2
z,1

k2
x,1 + k2

z,1

Θ0,2Θ1,1

)
− SRa−2

c

(
k2
x,1 + k2

z,1

)
Θ1,1

]
+O(ν2) = 0.

(84)

where S = sgn(ν) = ν/|ν|.

2. For m = −1, n = 1, show that we get the analogous

|ν|1/2
(
−

k2
x,−1

k2
x,−1 + k2

z1

Θ−1,1 +Ra−1
c (k2

x1 + k2
z1)Θ−1,1

)
+|ν|3/2

[
dΘ−1,1

dτ
+

1

2
(kz,1Θ1,1Θ2,2 + kz,1Θ−1,1Θ0,2 − kz,2Θ2,2Θ1,1 − kz,2Θ0,2Θ−1,1)

−1

2

(
kx,1kz,1kx,−2

k2
x,1 + k2

z,1

Θ1,1Θ−2,2 +
kx,−1kz,1kx,0
k2
x,−1 + k2

z,1

Θ−1,1Θ0,2

−kz,−2kx,2kx,1
k2
x,2 + k2

z,2

Θ−2,2Θ1,1 −
kx,0kz,2kx,−1

k2
x,0 + k2

z,2

Θ0,2Θ−1,1

)

−1

2

(
kz,1k

2
z,2

k2
x,−2 + k2

z,2

Θ1,1Θ−2,2 +
kz,1k

2
z,2

k2
x,0 + k2

z,2

Θ−1,1Θ0,2

−
kz,2k

2
z,1

k2
x,1 + k2

z,1

Θ−2,2Θ1,1 −
kz,2k

2
z,1

k2
x,−1 + k2

z,1

Θ0,2Θ−1,1

)
− SRa−2

c

(
k2
x,−1 + k2

z,1

)
Θ−1,1

]
+O(ν2) = 0.

(85)
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3. For m = 0, n = 2, show that

|ν|

[
k2
x,0

k2
x,0 + k2

z,2

Θ0,2 +Ra−1
c

(
k2
x,0 + k2

z,2

)
Θ0,2

+kz1Θ1,1Θ−1,1 −
1

2

(
kx,−1kz,1kx,1
k2
x,−1 + k2

z,1

+
kx,1kz,1kx,−1

k2
x,1 + k2

z,1

)
Θ1,1Θ−1,1

−1

2

(
k3
z,1

k2
x,−1 + k2

z,1

+
k3
z,1

k2
x,1 + k2

z,1

)
Θ1,1Θ−1,1

]
+O(|ν|3/2) = 0 (86)

4. For every other combination of m and n, show that

|ν|
[

k2
xm

k2
xm + k2

zn

Θmn +Ra−1
c

(
k2
xm + k2

zn

)
Θmn

]
+O(|ν|3/2) = 0. (87)

Again, time to take stock — we now have somewhat simplified nonlinear equations
for the different Fourier components Θmn. “Simplified” primarily means having con-
verted the convolution sums (which are in principle infinite sums) to sums over only
a handful of terms involving products of other Fourier coefficients. In particular, we
see that the evolution of Θ1,1 and Θ−1,1 depends only on Θ1,1, Θ−1,1, Θ0,2, and on
Θ2,2 and Θ−2,2 respectively, at ‘leading order’. Likewise, the evolution of Θ0,2 depends
only on Θ0,2, Θ1,1 and Θ−1,1, while we have eliminated dependence on anything but
Θmn itself in (87).

In fact, we can tidy this up further. The first thing to notice is that we automati-
cally have

−
k2
x,1

k2
x,1 + k2

z,1

Θ1,1 +Ra−1
c (k2

x,1 + k2
z,1)Θ1,1 = 0, (88)

and likewise

−
k2
x,−1

k2
x,−1 + k2

z1

Θ−1,1 +Ra−1
c (k2

x1 + k2
z1)Θ−1,1 = 0. (89)

These equations hold identically (regardless of the choice of Θ1,1 and Θ−1,1 because

−
k2
x,1

k2
x,1 + k2

z,1

+Ra−1
c (k2

x,1 + k2
z,1) = −

k2
x,−1

k2
x,−1 + k2

z,1

+Ra−1
c (k2

x,−1 + k2
z,1) = 0.

That is effectively the definition of Rac: recall that the dispersion relation (32) is

σ(kxm, kzn) =
k2
xm

k2
xm + k2

zn

− 1

Ra

(
k2
xm + k2

zn

)
and the critical Rayleigh number is that for which the largest σ(kxm, kzn) (which here
occurs at |m| = n = 1) is zero. With (88) and (89), the first, O(|ν|1/2) expressions in
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round brackets in (84) and (85) vanish, and we are left with the next O(|ν|3/2) term
as the leading term in the approximation in small |ν|. This is no accident, but the
very basis of the construction of the solution near the critical parameter value Rac:
the linear approximation in Θ1,1 and Θ−1,1 vanishes at the bifurcation and we have to
go to higher order.

The second insight we can immediately glean from (87) (which holds for (m,n) 6=
(−1, 1), (1, 1), (0, 2)), is that Θmn = 0 if we exclude the O(|ν|3/2) correction term
in (87); what this really means is that these Θmn are small, of O(|ν|1/2), and the
corresponding scaling in (78) should have been chosen accordingly. That is of no
further consequence to us, however, as the knowledge that these Θmn are small allows
us to drop the coupling with Θ2,2 in (84) and (85). Combined with (88) and (89),
show that this leads to

dΘ1,1

dτ
− SRa−2

c

(
k2
x,1 + k2

z,1

)
Θ1,1 −

1

2

(
k2
x,1kz,2

k2
x,1 + k2

z,1

)
Θ0,2Θ1,1 +O(ν1/2) = 0. (90)

where you need to make use of the fact that kx,0 = 0. Recognizing that kx,−1 = −kx,1
show that the same equation holds for m = −1, n = 1 if we replace Θ1,1 by Θ−1,1 in
(90).

This leaves us Θ0,2 to deal with. Again using kx,0 = 0 and kx,−1 = −kx,1 again in
(86), show that

Ra−1
c k2

z,2Θ0,2 +
2k2

x,1kz,1

k2
x,1 + k2

z,1

Θ1,1Θ−1,1 +O(|ν|1/2) = 0,

or

Θ0,2 = −Rac
2k2

x,1kz,1

k2
z,2(k2

x,1 + k2
z,1)

Θ1,1Θ−1,1 +O(|ν|1/2).

Recall that Θ−1,1 = Θ1,1 and therefore

Θ1,1Θ−1,1 = |Θ1,1|2 = |Θ−1,1|2

Substituting in (90) and omitting the ‘O(|ν|1/2) reminder of the size of the terms we
have omitted, show that

dΘ1,1

dτ
= SRa−2

c

(
k2
x,1 + k2

z,1

)
Θ1,1 −Rac

k4
x,1kz,1

kz,2(k2
x,1 + k2

z,1)2
|Θ1,1|2Θ1,1 (91)

This is the analogue of the Landau equation (75), in slightly more complicated form
here because Θ1,1 can in general be complex:

dΘ1,1

dτ
= SaΘ1,1 − b|Θ1,1|2Θ1,1
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with positive a and b. Show that for Θ−1,1 = Θ1,1, we obtain the same equation

dΘ1,1

dτ
= SaΘ1,1 − b|Θ1,1|2Θ1,1.

Show therefore that
d|Θ1,1|2

dτ
= 2Sa|Θ1,1|2 − 2b|Θ1,1|4,

and that there is unique, stable steady state |Θ1,1|2 = 0 if S < 0. For S > 0, show that
there are two steady states |Θ1,1|2 = 0 and |Θ1,1|2 = a/b, the former being unstable
and the latter stable.

Using these results, show using (57) that for Ra > Rac

||T ′|| ≈

√
a(k2

x,1 + k2
z,1)3kz,2

Ra3
ck

4
x,1kz,1

(Ra−Rac), (92)

where we have reverted to “a” as denoting the periodicity of the domain.22 Hence ||T ′||
grows as the square root of Ra − Rac. Similarly, show using (63) that the Nusselt
number grows linearly in Ra−Rac, as

Nu(Ra) ≈ 1 +
2(k2

x,1 + k2
z,1)2

Ra2
ck

2
x,1

(93)

22As before, given the limited number of letters available, it is not uncommon for variable names
to be context-dependent; we used a to denote a coefficient in the Landau equation when this was
unambiguous, but now revert to it denoting periodicity.
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