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Overview

These notes cover the following

• An extended version of the heat equation: conservation of kinetic and thermal
energy

An improved heat equation

We previously derived the heat equation on the basis that heat is supplied to a
Lagrangian volume V (t) at a rate ∫

V (t)

a dV,

and hence that conservation of internal energy (‘heat’ — but note that we will come
back to the interpretation as heat later) can be written as

d

dt

∫
e dV = −

∫
S(t)

qini dS +

∫
V (t)

a dV

where qi = −k∂T/∂xi is heat flux, e is internal energy density, and the rate of
heat production per unit volume a has to account for conversion of various forms of
potential energy. We can now be a little more differentiated about the different forms
of heat supply, by considering explicitly the effect of mechanical work. To do this,
we separate the effect of converting what we may term mechanical potential energy
(gravitational, electrostatic) associated with work done by body forces and the effect
of converting other forms of potential energy (e.g. chemical). Specifically, let a0 be the
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rate of heat production per unit volume due to conversion of non-mechanical potential
energy, so that a−a0 represents the rate of conversion of mechanical potential energy
per unit volume.

Recall that the kinetic energy of a point particle of mass m and velocity u
is m|u|2/2, so the kinetic energy in a Lagrangian volume V (t) in a continuum is∫
V (t)

ρuiui/2 dV . Consider the sum of thermal and kinetic energy in the volume V (t),∫
V (t)

(
e+

1

2
ρuiui

)
dV.

This changes over time due to four effects: conduction of heat through the boundary
S(t), mechanical work done on the boundary by surface forces, mechanical work done
in the interior of the volume by body forces, and the conversion of chemical and other
non-mechanical potential energies.

Consider the rates at which work is done on the surface and the volume. The
surface force on a small surface element δS is δFi = σijnjδS, and the rate at which
work is done by a force δFi is given by δFiui = uiσijnjδS. Hence the rate at which
work is done by surface forces is ∫

S(t)

uiσijnj dS.

Similarly, we can show that the rate of work done by body forces is∫
V (t)

uifi dV.

Hence

d

dt

∫
V (t)

e+
1

2
ρuiui dV = −

∫
S(t)

qini dS+

∫
S(t)

uiσijnj dS+

∫
V (t)

uifi dV +

∫
V (t)

a0 dV.

Application of Reynolds’ transport theorem gives∫
V (t)

∂e

∂t
+
∂

∂t

(
1

2
ρuiui

)
dV +

∫
S(t)

huini +
1

2
ρuiuiujnj dS =

−
∫
S(t)

qini dS +

∫
S(t)

uiσijnj dS +

∫
V (t)

uifi dV +

∫
V (t)

a0 dV.

and, using the divergence theorem,∫
V (t)

∂e

∂t
+
∂

∂t

(
1

2
ρuiui

)
+
∂(eui)

∂xi
+

∂

∂xj

(
1

2
ρuiuiuj

)
+
∂qi
∂xi
−∂(uiσij)

∂xj
−uifi−a0 dV = 0.
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As the volume V (t) is arbitrary, this leaves us with

∂e

∂t
+
∂

∂t

(
1

2
ρuiui

)
+
∂(eui)

∂xi
+

∂

∂xj

(
1

2
ρuiuiuj

)
+
∂qi
∂xi
− ∂(uiσij)

∂xj
−uifi−a0 = 0. (1)

We now have a rather lengthy and complicated-looking equation. But we can use the
product rule and some of the other conservation laws to simplify this. For instance,
we have

∂

∂t

(
1

2
ρuiui

)
=

1

2
uiui

∂ρ

∂t
+ ρ

∂ui
∂t
ui

∂

∂xj

(
1

2
ρuiuiuj

)
=

1

2
uiui

∂(ρuj)

∂xj
+ ρuj

∂ui
∂xj

ui

∂(uiσij)

∂xj
=
∂σij
∂xj

ui + σij
∂ui
∂xj

Substituting in (1),

0 =
∂e

∂t
+

1

2
uiui

∂ρ

∂t
+ ρ

∂ui
∂t
ui +

∂(eui)

∂xi
+

1

2
uiui

∂(ρuj)

∂xj
+ ρuj

∂ui
∂xj

ui

+
∂qi
∂xi
− ∂σij
∂xj

ui − σij
∂ui
∂xj
− uifi − a0

=
1

2
uiui

(
∂ρ

∂t
+
∂(ρuj)

∂xj

)
+

(
ρ
∂ui
∂t

+ ρuj
∂ui
∂xj
− ∂σij
∂xj
− fi

)
ui

+
∂e

∂t
+
∂(eui)

∂xi
+
∂qi
∂xi
− σij

∂ui
∂xj
− a0

But the first two bracketed expressions after the last equality sign are zero by conser-
vation of mass and momentum, respectively. In particular, the second bracketed term
being zero accounts for the portion of work done that simply goes towards changing
kinetic energy.

This leaves us only with

∂e

∂t
+
∂(eui)

∂xi
+
∂qi
∂xi
− σij

∂ui
∂xj
− a0 = 0

or
∂e

∂t
+
∂(eui)

∂xi
+
∂qi
∂xi

= a0 + σij
∂ui
∂xj

. (2)

The terms on the left-hand side are the usual terms we expect in a conservation law:
rate of change of density, advection and conduction. The terms on the right-hand
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side represent the production rate density, which is now split between a term a0

representing the conversion of chemical and other non-mechanical potential energies,
and a second term representing the effect of forces. Essentially σij

∂ui

∂xj
is mechanical

work done that is not accounted for by changing kinetic energy.
This term is often re-written in slightly different form. Note that σij = σji

σij
∂ui
∂xj

=
1

2
(σij + σij)

∂ui
∂xj

=
1

2
(σij + σji)

∂ui
∂xj

=
1

2
σij

∂ui
∂xj

+
1

2
σji

∂ui
∂xj

=
1

2
σij

∂ui
∂xj

+
1

2
σij
∂uj
∂xi

,

where the last line holds because i and j are dummy indices that are summed over
and can therefore be changed into different indices, and hence be swapped. It follows
that

σij
∂ui
∂xj

= σij
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The combination of velocity derivatives on the right-hand side is simply the strain
rate tensor Dij:

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

so the mechanical work term can be written as

σij
∂ui
∂xj

= σijDij.

With the usual definition of pressure p = −σii/3 and deviatoric stress τij =
σij + pδij, we can also write this in the form

σij
∂ui
∂xj

= τijDij − p
∂ui
∂xi

. (3)

These terms can be understood as follows: the second involves the divergence of the
velocity field ∇ · u = ∂ui/∂xi and is associated with the compression or expansion of
the material. From conservation of mass,

∂ρ

∂t
+
∂(ρui)

∂xi
= 0. (4)

it is easy to see that for an incompressible material (with constant ρ), we have zero
divergence ∂ui/∂xi, and the divergence of the velocity field is in fact the rate expansion
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of material. −p∂ui/∂xi is therefore work done in expanding the material, which leads
to a loss of internal energy.1 The second term τijDij is work done that is not associated
with expansion or compression of the material, but instead with sideways deformation
or shearing of the material.

To turn (2) into a more recognizable heat equation requires additional information
about how the internal energy density e depends on the state of the material, and this
depends on the material in question. For instance, for an elastic material, internal
energy e includes potential energy stored in the recoverable deformation of the mate-
rial — so work done in compressing or shearing the material does not make it hotter,
as should be obvious from stretching a piece of rubber. This is different from fluids,
where compression or expansion may be partly or fully recoverable but shearing is
not. More specifically, if you hold the valve on a bicycle pump shut and push the
plunger down slowly, the work done does heat up the gas inside, but if you slowly
let go of the plunger again before the gas has cooled down, the gas will do work in
pushing the plunger out and in the process will return to its original temperature, so
the work done in pushing the plunger in slowly is recoverable. By contrast, vigorous
stirring of the air inside the pump simply heats the gas up, and this cannot be fully
reversed.

Incompressible fluids

There is therefore no universal heat equation that is more specific than (2), and
constitutive assumptions are required to make further headway. For an incompressible
fluid like water, internal energy often depends only on temperature T , e = e(T ). In
fact, this is often written as e = ρh(T ), where h is then specific internal energy,
meaning internal energy per unit mass of material. Heat capacity is then defined as

c =
dh

dT
(5)

1This is basically the −pδV term in the first law of thermodynamics, here merely stated in
continuum form in both space and time. For an everyday example of loss of internal energy due to
work done in expanding a material, open the valve on a gas cylinder (maybe don’t try this at home,
especially if the gas is flammable!). The cylinder will get cold.
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With this and using conservation of mass (4), we get

∂e

∂t
+
∂(eui)

∂xi
=
∂ρ

∂t
h+ ρ

∂h

∂t
+
∂(ρui)

∂xi
h+ ρui

∂h

∂xi

= ρ

(
∂h

∂t
+ ui

∂h

∂xi

)
= ρ

(
dh

dT

∂T

∂t
+ ui

dh

dT

∂T

∂xi

)
= ρc

∂T

∂t
+ ρcui

∂T

∂xi
.

Substituting this into (2), and using Fourier’s law qi = −k∂T/∂xi, we get

ρc
∂T

∂t
+ ρcui

∂T

∂xi
− ∂

∂xi

(
k
∂T

∂xi

)
= a0 + τijDij. (6)

where we have used the fact that ∂ui/∂xi = 0 for an incompressible material to get rid
of the compression term in (3). The term τijDij is then usually called the dissipation
rate. For a viscous incompressible fluid, we have

τij = 2µDij

and so
τijDij = 2µDijDij.

Compressible gases and adiabatic processes

For a compressible gas, e will typically depend on thermodynamic pressure p̄ as well
as temperature. For instance, for an ideal gas, we have

e =
ρaRT

m
, ρ =

mp̄

RT
(7)

where R = 8.314 J kg−1 mol−1 is the ideal gas constant, m is the molar mass of the
gas and a is a constant that depends on the number motions (linear motion, rotations,
vibrations) that can a molecule of the gas can undergo. T is absolute temperature.

If we write more generally e = ρh(p̄, T ) and ρ = ρ(p̄, T ) for a gas, then by analogy
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with the incompressible material case above, we have

∂e

∂t
+
∂(eui)

∂xi
=
∂ρ

∂t
h+ ρ

∂h

∂t
+
∂(ρui)

∂xi
h+ ρui

∂h

∂xi

= ρ

(
∂h

∂t
+ ui

∂h

∂xi

)
= ρ

[(
∂h

∂T

)
p

∂T

∂t
+ ui

(
∂h

∂T

)
p̄

∂T

∂xi
+

(
∂h

∂p̄

)
T

∂p̄

∂t
+ ui

(
∂h

∂p̄

)
T

∂p̄

∂xi

]

= ρc

(
∂T

∂t
+ ui

∂T

∂xi

)
+ ρ

(
∂h

∂p̄

)
T

(
∂p̄

∂t
+ ui

∂p̄

∂xi

)
= − ∂qi

∂xi
+ a0 + σijDij

where we use the notation (∂h/∂T )p̄ (which is commonly used in thermodynamics)
to mean the partial derivative of h taken while p̄ is held constant. Now the stress
tensor σij can typically be split into a pressure term −p̄δij and an ‘extra stress’ τ eij.
For instance, for a viscous compressible gas, we would typically have

τ eij = 2µ

(
Dij −

1

3
Dkkδij

)
+ µbDkkδij

with µ the dynamic viscosity and µb the bulk viscosity. For an inviscid gas, both
viscosities are simply zero and τ eij = 0. The mechanical work term can then be
written as

σij = (τ eij − pδij)Dij = τ eijDij − p̄
∂ui
∂xi

But the last term on the right-hand side can be re-written using the mass conservation
equation (4) as

∂ui
∂xi

= −1

ρ

(
∂ρ

∂t
+ ui

∂ρ

∂xi

)
,

= −1

ρ

(
∂ρ

∂T

)
p̄

(
∂T

∂t
+ ui

∂T

∂xi

)
− 1

ρ

(
∂ρ

∂p̄

)
T

(
∂p̄

∂t
+ ui

∂p̄

∂xi

)
so

ρc

(
∂T

∂t
+ ui

∂T

∂xi

)
+ ρ

(
∂h

∂p̄

)
T

(
∂p̄

∂t
+ ui

∂p̄

∂xi

)
= − ∂qi

∂xi
+ τijDij

+
p̄

ρ

(
∂ρ

∂T

)
p̄

(
∂T

∂t
+ ui

∂T

∂xi

)
+
p̄

ρ

(
∂ρ

∂p̄

)
T

(
∂p̄

∂t
+ ui

∂p̄

∂xi

)
or[
ρc− p̄

ρ

(
∂ρ

∂T

)
p̄

](
∂T

∂t
+ ui

∂T

∂xi

)
+

[
ρ

(
∂h

∂p̄

)
T

− p̄

ρ

(
∂ρ

∂p̄

)
T

](
∂p̄

∂t
+ ui

∂p̄

∂xi

)
=
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− ∂qi
∂xi

+ a0 + τ eijDij (8)

Often, so called adiabatic processes in inviscid gases are of major interest. An
inviscid gas is one in which dynamic viscosity µ and bulk viscosity µb are zero, so
p = p̄ and τ eij = 0. An adiabatic process is one in which there is no heat conduction (for
instance, thermal conductivity is negligibly small) and no supply of energy from non-
mechanical sources. In that case, the right-hand side of (8) is zero. Usually, some of
the derivatives of h and ρ above are also re-written in more standard thermodynamic
form. For instance, the thermal expansion coefficient α and compressibility β are
defined through

α = ρ

(
∂(1/ρ)

∂T

)
p̄

= −1

ρ

(
∂ρ

∂T

)
p̄

, β = −ρ
(
∂(1/ρ)

∂p̄

)
T

=
1

ρ

(
∂ρ

∂p̄

)
T

In addition, we write as a shorthand

ν =

(
∂h

∂p̄

)
T

.

This allows us to write the adiabatic version of (8) in the form

[ρc+ αp̄]

(
∂T

∂t
+ ui

∂T

∂xi

)
+ [ρν − βp̄]

(
∂p̄

∂t
+ ui

∂p̄

∂xi

)
= 0.

Recall that
Dφ

Dt
=
∂φ

∂t
+ ui

∂φ

∂xi
=

dφ(x(t), t)

dt

is the material derivative of a quantity φ— that is, the derivative taken when following
a material particle at position x(t) moving at the local velocity field u(t). Then we
have

[ρc+ αp̄]
dT (x(t), t)

dt
= [βp̄− ρν]

dp̄(x(t), t)

dt
.

This can sometimes be integrated to give a relationship between T and p̄ along the
particle path. In particular, for an ideal gas satisfying (7), we have

h =
aRT

m
,

and hence
ρc = ap̄/T, ρν = 0, α = 1/T, β = 1/p̄

so

(a+ 1)
p̄

T

dT (x(t), t)

dt
=

dp̄(x(t), t)

dt
.

Separating variables and integrating with respect to t,

(a+ 1) log[T (x(t), t)] = log(p̄) + C0
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where C0 is a constant for any given particle trajectory. Rearranging,

T = Cp̄1/(a+1)

where C is again constant for any given particle trajectory. Frequently, it is appro-
priate to assume that C is simply a constant independent of position or time.

Similarly, density is now a function of pressure only, as we have

ρ =
mp̄

RT
=
m

C
p̄a/(a+1),

where a/(a + 1) is often denoted by γ, and is often characterized as the ratio of the
heat capacity cv = c ‘at constant volume’ to the heat capacity cp = c(1 + 1/a) ‘at
constant pressure’.
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