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Overview

These notes cover the following

• Constitutive relations for fluids

• inviscid fluids

• viscous fluids

• incompressible flow: the Navier-Stokes equations

• flow in a pipe

A constitutive relation for stress

Conservation of mass takes the form

∂ρ

∂t
+
∂(ρui)

∂xi
= 0. (1a)

Conservation of momentum can be written as

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

=
∂σij
∂xj

+ fi (1b)

while conservation of angular momentum demands that

σij = σji (1c)
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The third of these equalities implies that there are six components of the stress tensor
to specify (σ11, σ22, σ33 as well as σ12, σ13 and σ23), from which the remaining ones
can then be determined (σ21 = σ12, σ13 = σ31, σ32 = σ23).

However, in (1a) and (1b) we still have only four equations (one in (1a) and one for
each index i = 1, 2, 3 in (1b)), but ten unknowns (the six independent components
of σij as well as three velocity components ui and density ρ). So more information
is required. In fact, (1) must hold for any continuum, and therefore contains no
information about the material in question, be it solid, liquid or gas. The missing
information must therefore encapsulate the physics of how the material in question
deforms. This information usually cannot be derived purely from first principles
except in special circumstances (for instance, in an ideal gas), but must be constrained
empirically. A simple example of a constitutive relation would be Fourier’s law linking
heat flux qi to temperature gradient,

qi = −k ∂T
∂xi

(2)

where the thermal conductivity k depends on the material and possibly other factors
(such as temperature itself). In general k, cannot be derived from first principles (at
least not in any straightforward way) but must be determined empirically. In fact,
the validity of (2) must be tested empirically: is there a coefficient −k that does not
depend on the temperature gradient, such that heat flux equals that coefficient times
the temperature gradient?1

The choice of constitutive relations becomes considerably more complicated when
we have to figure out a model for how σij depends on the state of deformation of a
material. Along with σij, we also in general have to figure out a constitutive relation
for density ρ. While Fourier’s law applies widely and, by changing k, can be used to
describe the behaviour of many materials, even the functional form of constitutive
relations for stress and density (rather than just the choice of numerical value for
a coefficient like k) depends on the type of material. Here, we will focus on the
behaviour of fluids (liquids and gases, but mostly liquids, and even some solids when
subjected to forces for long enough).

1There are some additional constraints on possible constitutive relations that we will not consider
in detail in this course. Some of these come out of considerations of invariance — the resulting
equations must not be specific to a particular coordinate frame but must ‘look’ the same in all
possible Cartesian coordinate systems. This is described briefly in the notes on invariance. Other
constraints come out of thermodynamics, and relate to the fact that entropy cannot be destroyed.
For instance, one can show (using something called the Clausius-Duhem inequality, which is a
continuum version of the second law of thermodynamics) that k in Fourier’s law must be positive,
so heat cannot flow from cold to hot.
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Figure 1: The force exerted by a fluid (in grey) above the x1x2-plane on a part δS
of the plane is pδS in the negative x3-direction, or (0, 0,−pδS) = pδSn as a vector.
The force exerted on the fluid by δS is therefore in the positive x3-direction, given by
(0, 0, pδS) = −pδSn in vector notation. In subscript notation, δFi = −pniδS for the
force exerted on the fluid, and, from the definition of the stress tensor, this should be
σijnjδS

Inviscid fluids

Recall that stresses σij define surface forces. The most common understanding of
how a fluid generates surface forces is that there is a pressure p in the fluid, defined
as force per unit area. But pressure is a scalar, while forces are vectors and stresses
are tensors. So how can we build a stress tensor from the idea of a pressure p?

The key is that the magnitude of the surface force generated by a pressure p in
the fluid on a small surface element δS is always the same at pδS regardless of the
orientation of δS, and that the orientation of this force is perpendicular to the surface
element δS, pointing out of the fluid. Forces being equal and opposite, this implies
that the surface element generates a force on the fluid of magnitude pδS pointing
perpendicularly into the fluid. If ni is an outward-pointing unit normal, this implies
that the force on the fluid is (see figure 1)

δFi = −pniδS.

Recall that the surface force exerted on an element of surface δS by a stress field
σij is

δFi = σijnjδS

where ni points out of the material that the force is being exerted on. Equating this
with δFi above gives

−pniδS = σijnjδS

or
−pni = σijnj.
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This must hold regardless of the orientation of the surface element δS, so must
hold for any choice of unit vector (n1, n2, n3). Picking the combinations (1, 0, 0),
(0, 1, 0) and (0, 0, 1) in turn leaves us with

σ11 = −p σ12 = 0 σ13 = 0

σ21 = 0 σ22 = −p σ23 = 0

σ31 = 0 σ32 = 0 σ33 = −p

or
σij = −pδij (3)

for short. Note that this stress tensor immediately satisfies (1c). But (3) implies

∂σij
∂xj

= −∂(pδij)

∂xj
= − ∂p

∂xi
,

which we can recognize as the negative gradient of pressure p. Conservation of mo-
mentum (1b) then becomes

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+ fi. (4)

Together with (1a), this is known as the Euler equations.
A fluid that only exerts forces normal to a surface as described by (3) is known as

an inviscid fluid. We can close the set of equations (1) (meaning, we can end up with
as many variables as we have equations) if we also specify a constitutive relation for
density ρ. The simplest is an incompressible fluid, for which ρ = constant, so (1a)
becomes

∂ui
∂xi

= 0 (5)

and in (4) and (5) we have four equations for the unknowns p, u1, u2 and u3.
Alternatively, we may have a compressible gas, and ρ will typically depend on

pressure as well as on temperature T . For instance, for a so-called ideal gas, we have

ρ =
mp

RT
,

where m is the mass of one mole of gas and R = 8.314 J K−1 mol−1 is the ideal
gas constant. A constitutive law (or ‘equation of state’) of this form would force us
to consider conservation of energy (the heat equation) in addition to (4) and (1a).
We defer this until later, where we consider the heat equation in the presence of
mechanical work being done.
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Figure 2: The force exerted by a fluid (in grey) above the x1x2-plane on a part δS of
the plane is pδS; here the fluid has a velocity u1 parallel to the x1-axis that increases
with height x3 above the plane.

Viscous fluids

The point about an inviscid fluid is that the forces generated by the stress tensor σij
are always perpendicular to the surface they act on, so there are never any tangential
forces, which we might associate with friction or drag on the surface. For this reason,
(3) is often not an appropriate constitutive relation, as many fluids do exert tangential
forces. Take honey as an example of a ‘sticky’ fluid that clearly adheres to surfaces
and exerts a tangential force. (If it didn’t it would flow off a spoon as easily as water,
which it clearly doesn’t).

To get an idea of how to build a plausible model for a fluid that does generate
tangential forces, consider the fluid flowing over a flat surface. Assume that the
flat surface is the x1x2-plane, and that the flow is purely in the x1-direction, so
that u = (u1, 0, 0). Assume also that the flow is uniform. This means the velocity
cannot depend on x1 because the fluid would otherwise pile up somewhere or thin out
somewhere else (the divergence∇·u = ∂u1/∂x1 would be non-zero). By symmetry, we
also expect the velocity not to depend on the transverse direction x2. We do however,
expect that the velocity might depend on distance above the plane: in particular,
common experience would suggest that the flow velocity is faster the further the fluid
is from the plate. Hence we suppose that u1 = u1(x3) (see also figure 2)

Now consider the forces exerted by the underlying plane on the fluid. From δFi =
σijnjδS, we have, for a surface element δS in the x1x2-plane with normal pointing
out of the fluid (i.e., down, with n1 = n2 = 0, n3 = −1),

δF1 = −σ13δS, δF2 = −σ23δS, δF3 = −σ33δS.

Now we expect a tangential force that opposes the motion of the fluid, so δF1 < 0 if
u1 > 0 and δF2 = 0 by symmetry.

If δF1 < 0, we expect σ13 to be positive. But what should it relate to? We may
expect that the force gets larger the faster the fluid flows, so somehow σ13 should
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increase with velocity u1. However, if the fluid sticks to the surface (the x1x2-plane
at x3 = 0), the velocity at the surface is probably zero. In any case, we do note really
expect the force to depend on velocity as such: if the surface itself were moving,
we would expect the force to depend on some measure of the difference between
velocity in the fluid and the velocity of the surface. But what measure of this velocity
difference should we use? If the fluid velocity depends on x3, then there is presumably
a velocity gradient, with the fluid flowing faster the further away from the surface we
go, and the size of the stress σ13 should relate to this. Just as Fourier’s law models
heat flux as depending on temperature gradients as a measure of how close hot and
cold material are to each other, an obvious model would relate the stress σ13 to the
velocity gradient, which is a measure of how close fast- and slow-moving fluid are to
each other and how strongly they might therefore interact. A plausible model would
therefore take the form

σ13 = µ
∂u1
∂x3

, (6)

where µ is a constant of proportionality analogous to thermal conductivity k in
Fourier’s law. This constant of proportionality is known as viscosity.

Exercise 1 What are the units of σ13 and ∂u1/∂x3? What are the units of viscosity?

Assuming that (6) holds for the simple geometry we have used above, we still need
to generalize this equation to give us the whole stress tensor σij for a more general
flow, in which all the velocity components ui can potentially be non-zero, and where
they can depend on all the xi’s. The most tempting generalization would appear to
be

σij = µ
∂ui
∂xj

(7)

as this is obviously consistent with (6).
There are however two problems with (7). The first is that there is no reason

why it should satisfy (1c), as there is no reason why ∂ui/∂xj = ∂uj/∂xi. The second
is that it predicts non-zero forces only when there is movement with finite velocity
gradients in the fluid — but from our discussion of inviscid fluids, we expect that
there can be normal surface forces due to pressure in the fluid even when the fluid is
at rest.

In order to satisfy (1c), we can make the stress tensor symmetric by writing

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(8)

This still satisfies (6) for the simple geometry for which we derived (6), as we have in
that case

σ13 = µ

(
∂u1
∂x3

+
∂u3
∂x1

)
= µ

∂u1
∂x3

,
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u3 being zero for the geometry under consideration. In addition, we also have σ23 =
µ(∂u2/∂x3 + ∂u3/∂x2) = 0 as u2 = u3 = 0 for the geometry we considered above.

Equation (8) does satisfy the angular momentum conservation law σij = σji, but
it will still only generate stresses if there is flow. To get around this, we somehow need
to introduce a pressure variable that can account for normal forces (perpendicular to
the surface) when the fluid is at rest (i.e., when ∂ui/∂xj = 0). The usual way to
introduce this in continuum mechanics is to define pressure as

p = −σii/3, (9)

which is consistent with an inviscid fluid, where σij = −pδij, so that σii = −pδii =
−p(δ11 + δ22 + δ33) = −3p.

Note 1 Note that equation (9) is p = ((−σ11) + (−σ22) + (−σ33))/3 when written
out. It should therefore be understood as a mean over the stress components σ11, σ22
and σ33. Each of these corresponds to a normal force: imagine a small surface δS,
and orient it parallel to the x1x2-plane. The component of force normal to it being
exerted by the material below on the material above is then −σ33δS (recall that the
force generated by a stress tensor is generally δFi = σijnj, where ni is the normal
pointing away from the material the force is being exerted on). We can similarly
compute −σ22δS as the normal force generated if the surface δS is rotated into the
x1x3-plane, and −σ11δS as the normal force generated if the surface δS is rotated into
the x2x3-plane. Pressure is simply the mean over these normal forces divided by the
area they act on.

What we would now like is something that looks like (8) and produces (6) for the
simple flow geometry considered above, but reduces to σij = −pδij when the fluid is at
rest, when we expect the discussion in the preceding section on inviscid fluids to hold.
Note that with (8), we would have σkk = µ(∂uk/∂xk + ∂uk/∂xk) = 2µ∂uk/∂xk. To
obtain something that satisfies (9), we should therefore subtract [2µ(∂uk/∂xk)/3+p]δij
from the right-hand side of (8),

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− pδij. (10)

This is the general form of a viscous constitutive relation for σij. We can easily
check that, with this prescription of σij, we have

σii = µ

(
∂ui
∂xi

+
∂ui
∂xi
− 2

3

∂uk
∂xk

δii

)
− pδii

= µ

(
∂ui
∂xi

+
∂ui
∂xi
− 2

3

∂uk
∂xk
× 3

)
− 3p

= −3p
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as required by (9). In addition, when there are no velocity gradients, we recover the
inviscid stress (3). For the simple flow geometry we considered leading up to (6), we
also still obtain σ13 = µ∂u1/∂x3, σ23 = 0.

Whether (10) is correct for a particular material can generally only be established
by experiment. A wide variety of fluids can be described using this constitutive
relation. For instance, (10) holds for water with µ = 1.8× 10−3 Pa s−1 at its melting
point.2 A fluid for which µ is a constant is called a Newtonian fluid. An inviscid fluid
can be obtained simply by putting µ = 0.

Exercise 2 Let (u1, u2, u3) = (−ωx2, ωx1, 0) and p = ρg(h− x3), where ω, ρ, g and
h are constants. Compute σij as a function of (x1, x2, x3) from (10). Also compute
the components of the vector ∂σij/∂xj.

Exercise 3 Let (u1, u2, u3) = (u0(1 − x23/h2), 0, 0) and p = −Cx1, where u0, h and
C are constants. Compute σij as a function of (x1, x2, x3) from (10). Also compute
the components of the vector ∂σij/∂xj. If there are no body forces and µ is constant,
what does C have to be in order for the fluid to be in steady state? Hint: If the fluid
is in steady state, then ∂ui/∂t = 0 in (1b). Sketch the velocity field in the x1x3-plane.

Note 2 The combination of velocity gradients

∂ui
∂xj

+
∂uj
∂xi

occurs frequently enough to be given its own symbol. Specifically, the strain rate tensor
Dij is defined through

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(10) can then be written as

σij = 2µ

(
Dij −

2

3
Dkkδij

)
− pδij.

Often, the first term on the right-hand side is referred to as the deviatoric stress τij
defined through

τij = σij + pδij (11)

with p given by (9), so that

τij = 2µ

(
Dij −

1

3
Dkkδij

)
.

2As with many other fluids, the viscosity of water is temperature-dependent, and decreases some-
what with increasing temperature. This is even more pronounced with supersaturated sugar solu-
tions like honey or corn syrup: these are very sticky at low temperatures, with high viscosity, and
become runnier, with lower µ, at higher temperatures.
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Note 3 The mean normal force generated by the deviatoric stress is zero. From (11),
it follows that by setting i = j and summing,

τii = σii + pδii

But δ11 = δ22 = δ33 = 1, so δii = 3 and

τii = σii + 3p

But p = −σii/3 by definition, so

τii = τ11 + τ22 + τ33 = 0.

(10) is the general form of stress for a viscous fluid. The definition of pressure is
however not unique: it was originally intended to ensure that there is a stress field of
the form σij = −pδij when there are no velocity gradients. We could easily define a
new pressure variable

p̄ = p+ µb
∂uk
∂xk

(12)

for some coefficient µb, and obtain from (10) that

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
+ µb

∂uk
∂xk

δij − p̄δij (13)

The stress tensor then still reduces to σij = −p̄δij when the fluid is at rest (in which
case p = p̄), and also predicts (6) for the geometry considered there. However, p̄ does
not satisfy the usual continuum mechanical definition of pressure in (9).

There are situations in which a pressure p̄ is more useful than p defined in (9). In
compressible gases, for instance, density is usually taken to be a function of pressure.
However, the pressure that appears in the constitutive relation for ρ is not the con-
tinuum mechanical pressure defined by (9) but the thermodynamic pressure. This is
generally related to the continuum mechanical pressure p through a relation of the
form (12), with p̄ denoting the thermodynamic pressure and µb known as the bulk
viscosity. To offset the original viscosity µ from µb, µ is sometimes referred to as the
dynamic viscosity.

When p̄ is thermodynamic pressure, the term

τ eij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
+ µb

∂uk
∂xk

δij

in (13) is usually referred to as the extra stress. This is similar to deviatoric stress,
but unlike the latter, we generally have τ eii 6= 0. In terms of τ eij and p̄ we have

σij = τ eij − p̄δij.
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Incompressible Fluids and the Navier-Stokes equa-

tions

A frequently encountered type of viscous fluid is an incompressible fluid: most liquids,
for instance, are nearly incompressible. This implies that

ρ = ρ0 = constant.

Conservation of mass (1a) can then be reduced to

∂ui
∂xi

= 0 (14)

With this in hand, the viscous stress prescription (10) can be written as σij =
µ(∂ui/∂xj + ∂uj/∂xi)− pδij, and (1b) becomes

ρ0

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
− ∂p

∂xi
+ fi (15)

Further simplification of (15) is possible if µ is a constant (i.e., if the fluid is
Newtonian). µ can then be taken outside the derivative:

ρ0

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= µ

(
∂2ui
∂xj∂xj

+
∂2uj
∂xj∂xi

)
− ∂p

∂xi
+ fi. (16)

But
∂2uj
∂xj∂xi

=
∂2uj
∂xi∂xj

=
∂

∂xi

(
∂uj
∂xj

)
= 0

as ∂uj/∂xj = 0. This allows us to simplify (16) to

ρ0

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= µ

∂2ui
∂xj∂xj

− ∂p

∂xi
+ fi. (17)

(14) and (17) together are usually referred to as the Navier-Stokes equations, and
are widely used to describe the behaviour of simple incompressible liquids like water.

It turns out that the Navier-Stokes equations as stated above can be written in
standard vector notation, as the divergence of the stress tensor on the right-hand side
of (17) involves only the Laplacian of velocity ui and the gradient of pressure p. In
standard vector notation, we obtain

∇ · u =0,

ρ0

(
∂u

∂t
+ (u · ∇)u

)
=µ∇2u−∇p+ f .

We persist with the index notation version below, but it is important that you can
recognize this form of the Navier-Stokes equations as being the same as (14) and (17),
since you may encounter the vector notation version in other pieces of writing about
fluid dynamics. Note that the brackets around u · ∇ are also often omitted in the
second vector-notation equation above.
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Figure 3: Geometry for a unidirectional flow in a pipe along the x1-axis.

Unidirectional flow

Having elaborately constructed a theory for viscous flow, this is a good time to actu-
ally calculate a solution. Consider an incompressible, Newtonian fluid whose flow is
purely in the x1-direction, for instance through a pipe of uniform cross-section that
is parallel to the x1-axis (see figure 3). To make things easier, suppose that the body
force fi is a constant, and assume a steady state so the flow does not depend on time.
Then

u1 = u1(x1, x2, x3), u2 = u3 = 0.

The mass conservation equation (14) now becomes

∂u1
∂x1

= 0

so u1 = u1(x2, x3) does not depend on the along-flow direction x1.

Exercise 4 Suppose that the pipe is inclined at an angle θ to the horizontal, pointing
downwards in the positive x1-direction, and let x2 be transverse to the slope (so the
x2-axis is horizontal). If ρ0 is fluid density and g is acceleration due to gravity, and
body forces are purely gravitational, what are f1, f2 and f3?

Next, we consider the momentum conservation equation (17). Pick i = 2 first.
With u2 = 0, this simply becomes

∂p

∂x2
= f2,

where f2 is, by assumption, constant. Similarly, with i = 3, we have

∂p

∂x3
= f3.

11



If we define a slightly altered pressure variable P = p− f2x2 − f3x3, we have

∂P

∂x2
=
∂P

∂x3
= 0,

and P = P (x1) depends only on the along-flow direction.
Next, take i = 1 in (17), and substitute p = P + f2x2 + f3x3. We get, with

u2 = u3 = 0 and ∂u1/∂x1 = 0,

0 = µ
∂2u1
∂x22

+
∂2u1
∂x23

− ∂P

∂x1
+ f1 (18)

Exercise 5 Show explicitly that (18) holds, by demonstrating that the terms on the
left-hand side of (17) vanish here for i = 1.

We can now also show that P must depend linearly on position x1. Differentiate
(18) with respect to x1:

0 = µ
∂3u1
∂x1∂x22

+
∂2u1
∂x1∂x23

− ∂2P

∂x21

as f1 is assumed to be constant. But

∂3u1
∂x1∂x22

=
∂3u1
∂x22∂x1

=
∂2

∂x22

(
∂u1
∂x1

)
= 0

on account of (14). Similarly,
∂3u1
∂x1∂x23

= 0,

leaving
∂2P

∂x21
= 0.

But we already known that P = P (x1), so the only possibility now is that P =
P0 − Cx1 with P0 and C constant. We put a minus sign because we expect fluid
to flow from high to low pressure, so pressure decreasing along the x1-axis should
facilitate fluid flowing in the positive x1-direction; the opposite case is of course also
covered if we simply make C negative.

Exercise 6 With the same setting as (4), what form does pressure p(x1, x2, x3) take?
Can you interpret any part of this as a ‘hydrostatic pressure’?

Note that

C = − ∂P
∂x1

= − ∂p

∂x1
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Figure 4: Geometry for flow between parallel plates x1-axis.

is the negative pressure gradient. Substituting this back in (18) gives

0 = µ

(
∂2u1
∂x22

+
∂2u1
∂x23

)
+ C + f1

or, if we combine the component of body force in the x1-direction and the pressure
gradient into one symbol

f = C + f1,

we get

−µ
(
∂2u1
∂x22

+
∂2u1
∂x23

)
= f (19)

with f constant.
The term on the left is the two-dimensional Laplacian of u1(x2, x3); in more tra-

ditional (x, y, z)-coordinates and with u = u1, we would have written

−µ
(
∂2u

∂y2
+
∂2u

∂z2

)
= f. (20)

This problem is relatively easy to solve in simple geometries, provided we also
provide appropriate boundary conditions on u1. Take for instance flow between par-
allel plates (figure 4). If the plates are at x3 = 0 and x3 = h, then by symmetry we
expect u1 = u1(x3). If we also assume that the fluid cannot slip over the plates, then
we have u1(0) = u1(h) = 0, and therefore

−µd2u1
dx23

= f, u1(0) = u1(h) = 0 (21)

with f constant. Simple integration and appliation of the boundary conditions gives

u1(x) = − f

2µ
x2 + ax+ b, u1(0) = b = 0, u1(h) = − f

2µ
h2 + ah = 0 (22)
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so a = fh/(2µ) and

u1(x) = − f

2µ
x2 +

fh

2µ
x =

fx(h− x)

2µ
(23)

The flow velocity half-way between the pipes is therefore u1(h/2) = fh2/(8µ),
which increases quadratically with the spacing between the plates, and decreases
with the viscosity (or stickiness) of the fluid.

Exercise 7 We can also compute the flow in a circular pipe. Suppose that the pipe
is centered on the x1 axis, and the velocity depends only on distance r from the centre
of the pipe. It is then appropriate to switch to cylindrical polar coordinates with
x2 = r cos(θ) and x3 = r sin(θ). We have u1 = u1(r) and the Laplacian of u1 can be
written in the form

∂2u1
∂x22

+
∂2u1
∂x23

=
1

r

d

dr

(
r

du1
dr

)
(24)

As above, suppose that the fluid is stuck at the walls of the pipe, so u1 = 0 there, If
the radius of the pipe is R, solve (18) to derive

u1(r) =
f(R2 − r2)

4µ

The rate Q at which water comes out of the pipe, measured in mass per unit time,
can be computed from the surface integral

Q

∫
S

ρuini dS

over a cross-section across the pipe. Find Q in terms of R, f and µ. If you double the
width of a fire hose and keep its length and the water pressure in the water mains the
same, how much will the rate at which water comes out of the hose be increased by if
the calculation above is correct? If 10−3 Pa s, R = 5 cm and the flow is driven purely
by a pressure gradient along a 100 m long hose, with a mains pressure of 350 kPa,
what water flow rate in kilograms per second and cubic metres per second would you
calculate?

Note that with typical water flow, the assumption of a unidirectional flow in which
u2 = u3 = 0 actually breaks down; the flow will spontaneously develop so-called eddies.

Boundary conditions

The Navier-Stokes equations (14) and (15) require as many scalar boundary conditions
at each boundary as there are velocity components — so three if we are in three
dimensions.
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There are some boundary conditions that occur frequently, For instance, when a
fluid is in contact with a rigid wall, one often assumes that the fluid is stuck to the
wall, in which case

ui = 0.

Where a fluid is in contact with a vacuum (or an inviscid fluid at negligible pressure),
there is then no force at that interface, so δFi = σijnjδS = 0 and hence3

σijnj = 0. (25)

There are some cases in which there may be contact with a rigid wall, but slip
between the wall and the fluid is possible. In that case, we have no fluid penetrating
into the wall, so

uini = 0. (26)

But this is only one scalar boundary condition, and we cannot say that the tangential
component of velocity is zero if there is slip. Instead, we may assume that the
tangential component of velocity is related in some way to the tangential component
of stress at the boundary.

We need to make more precise what we mean by this. The force on a small
element of boundary is δFi = σijnjδS. The tangential component of a vector can
be computed by subtracting the normal component from the vector. The length of
the normal component of a vector is ajnj, and its direction is ni, so the written
as a vector, the normal component is ajnjni. The tangential component of a is
therefore ai − ajnjni = aj(δij − ninj).

4 The tangential component of δFi is therefore
δFj(δij−ninj). Taking care not to repeat indices more than is permitted, this becomes

δFj(δij − ninj) = σjknk(δij − ninj)δS.

We can then define the shear stress at the surface as being the tangential component
of force divided by the small element of surface δS it acts on, so

τs,i = σjknk(δij − ninj).

This is the shear stress that acts on the fluid, with the usual outward-pointing sign
convention for ni.

For a boundary where there is slip, we may expect that this shear stress opposes
the motion, and so is directed in the direction of −u. The unit vector in that direction
is ui/|u|. The magnitude of the shear stress depends on the physics of the contact
between fluid and rigid wall. A typical assumption is that it depends on the magnitude
of velocity, and is an increasing function f(|u|) of |u|. In that case, we would have

σjknk(δij − ninj) = f(|u|)ui/|u|. (27)

3There are reasons why this may not hold; for instance, if surface tension is significant, the
right-hand side of (25) is not zero but given by the curvature of the fluid surface.

4The tensor δij−ninj can therefore be thought of as a tensor that projects vectors onto a surface.

15



This provides the remaining two scalar boundary condition. It may look like this is
a vector equation, and so should have three components. However, we can show that
(by construction) the vectors on both sides have zero component parallel to n, and
so effectively only have two independent components. Specifically, we have for the
left-hand side

σjknk(δij − ninj)ni = σjknk(nj − nininj) = σjknk(nj − nj) = 0

as nini = 1, and so the tangential component of σijnj really does have zero component
parallel to ni. For the right-hand side of (27)

f(|u|)ui/|u|ni = [f(|u|)/|u|]uini = 0

as uini = 0 from (26).

Note 4 Note that the shear stress σjknk(δij − ninj) can actually be computed from
the deviatoric part τij of the stress tensor σij alone: we have σij = τij−pδij and hence

σjknk(δij − ninj) = (τjk − pδjk)nk(δij − ninj)

= τjknk(δij − ninj)− pnj(δij − ninj)

= τjknk(δij − ninj)− p(ni − ninjnj)

= τjknk(δij − ninj)

since njnj = 1.

Note 5 The nature of the boundary conditions imposed actually turns out to be just
as important as the Navier-Stokes equations themselves in determining a solution. As
usual, these boundary conditions contain information about physics at the boundary
that is not contained in the partial differential equations (14) and (15) themselves. For
instance, if we had tried to insist on zero tangential force at the wall in the parallel-
plate example above, we would have found the boundary conditions du1/ dx3 = 0 on
x3 = 0, h. But we would not have been able to solve the problem in that case. Can you
show this, and think of a reason why? What assumption that we made previously must
fail? Hint: Think of this as a mechanics problem: in steady state, all components
of force must balance. Which ones can we not balance with zero tangential stress
boundary conditions?

When the fluid is contact with a vacuum and (25) applies, it is generally the case
that the surface of the fluid also evolves in time. This is a common occurrence, with
obvious examples being waves on the ocean, or the surface of a mountain stream.
A free surface that can evolve requires an equation that describes that evolution,
known as a kinematic boundary condition. We can derive such a condition simply.
A surface is generally parameterized by F (x1, x2, x3) = 0 for some function F (the
surface is then the 0 isosurface or zero contour of F ). If the surface can evolve in
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time, this should be written as F (x1, x2, x3, t) = 0. A simple example for a surface
that can be written as a height above the x1x2-plane through x3 = h(x1, x2, t) would
be F (x1, x2, x3, t) = h(x, y, t)− z.

The surface of the fluid is also a material surface, meaning that it moves at the
velocity u of the material there. Take a material point (x(t), y(t), z(t)) on the surface.
For this point, we have

F (x1(t), x2(t), x3(t), t) = 0

for all times t, and therefore

d

dt
F (x1(t), x2(t), x3(t), t) = 0.

Applying the chain rule, we get

∂F

∂t
+∇F ·

(
dx1
dt

,
dx2
dt

,
∂x3
∂t

)
= 0.

But the time derivative of (x1(t), x2(t), x3(t)) is simply the velocity u, so

∂F

∂t
+∇F · u = 0.

For the surface given by F (x1, x2, x3, t) = h(x1, x2, t)− x3, this becomes

∂h

∂t
+ u1

∂h

∂x1
+ u2

∂h

∂x2
= u3.
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