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Overview

These notes cover the following

• The concept of invariance

• Transforming vectors between coordinate systems

• Invariance in vector equations

• Scalars

• Tensors, contractions and derivatives

Physics and the choice of coordinate system

Having encountered vectors and tensors, it is worth at this point going a little deeper
into what they are. The basic idea we will investigate below is that a set of equation
describing a physical process should not depend on the choice of coordinate system.
This is the concept of invariance, and is fundamental to physics. What we mean by
‘not depending on the choice of coordinate system’ is that we can define operations
like taking a gradient or a divergence with respect to any given coordinate system. So
we can write down, say, the heat equation in a Cartesian coordinate system Ox1x2x3
as

ρc
∂T

∂t
+ ρcui

∂T

∂xi
− ∂

∂xi

(
k
∂T

∂xi

)
= a. (1a)
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Now, we expect that if we had chosen a different set of axes Ox′1x
′
2x

′
3, we would have

written

ρc
∂T

∂t
+ ρcu′i

∂T

∂x′i
− ∂

∂x′i

(
k
∂T

∂x′i

)
= a. (1b)

However, once we have written (1a), we specified a problem that will determine
the function T (x1, x2, x3, t). If we now transform this function to (x′1, x

′
2, x

′
3, t) as

independent variables, it is not immediately clear that it will also satisfy (1b). If it
doesn’t, then this would imply that there was something special about the choice of
coordinate axes — counter to our physical expectations.

To make further headway with this, we have to understand first how transforma-
tions between Cartesian coordinate systems work.

Transformations between different Cartesian coor-

dinate systems

In really basic terms, if we go from one set of Cartesian coordinate axes1 to another,
the form of a vector as expressed in terms of its components parallel to the coordinate
axes must also change, and this change has to take a certain predictable form. We
illustrate this using the example of a rotation of the coordinate axes.

Take a vector a with components (a1, a2, a3) expressed relative to a set of coor-
dinate axes Ox1x2x3. In the original, non-subscript vector notation, we might have
written this as a = a1i + a2j + a3k. More consistent with our idea that there is no
intrinsic difference between the coordinate axes and with labelling with numerical in-
dices (i.e.using (x1, x2, x3) rather than (x, y, z)) is also to change the notation we use
for unit vectors. This is usually done by writing the unit vector in the ith direction
as ei, so e1 = i, e2 = j, e3 = k. Then we can write a = a1e1 + a2e2 + a3e3.

Now suppose we have a second coordinate system Ox′1x
′
2x

′
3 that is rotated relative

to Ox1x2x3, and we’d like to know how to express the components (a′1, a
′
2, a

′
3) of a

relative to this second set of coordinate axes in terms of the original components
(a1, a2, a3). The answer is that we find the component of a vector relative to a
particular coordinate axes by taking the dot product of the vector with the unit
vector parallel to that axis. In other words, where we could previously have written
a1 = a · e1, we can now write

a′1 = a · e′
1

where e′
1 is the unit vector in the x′1-direction. But we have an expression for a in

terms of the original components (a1, a2, a3). Substituting this, we get

a′1 = (a1e1 + a2e2 + a3e3) · e′
1

= (e1 · e′
1)a1 + (e2 · e′

1)a2 + (e3 · e′
1)a3,

1The idea of invariance can also be developed for non-Cartesian coordinate systems, but this is
considerably harder. A course in general relativity is often a useful starting point for this.

2



so a1 is a linear combination of the original components (a1, a2, a3). By the definition
of the scalar product and the fact that all the unit vectors have magnitude one, the
coefficients e1 · e′

1, e2 · e′
1 and e3 · e′

1 are simply the cosines of the angles between the
original x1-, x2- and x3-axes and the new x′1-axis.

Similarly, we can write the remaining two components a′2 and a′3 relative to the
new coordinate system in the form

a′2 = (e1 · e′
2)a1 + (e2 · e′

2)a2 + (e3 · e′
2)a3

a′3 = (e1 · e′
3)a1 + (e2 · e′

3)a2 + (e3 · e′
3)a3

The above can be written more succinctly as

a′i =
3∑

j=1

(e′
i · ej)aj

Defining a transformation matrix Rij through

Rij = e′
i · ej,

this becomes

a′i =
3∑

j=1

Rijaj (2)

Employing the summation convention, to which we will return shortly, this would be
written as a′i = Rijaj.

2

Suppose we now have the components (a′1, a
′
2, a

′
3) in the new coordinate system

and want to go back to the old (a1, a2, a3). By the same process as above, we would
write using a = a′1e1 + a′2e2 + a′3e3 that

a1 = a · e1 = (e′
1 · e1)a

′
1 + (e′

2 · e1)a
′
2 + (e3 · e1)a

′
3

and similarly for a2 and a3. In short form, these would be

ai =
3∑

j=1

(ei · e′
j)a

′
j =

3∑
j=1

R′
ija

′
j

with R′
ij = ei · e′

j. But reference to the definition of Rij above shows that

R′
ij = Rji

2In perhaps more familiar matrix notation a′1
a′2
a′3

 =

 R11 R12 R13

R21 R22 R32

R31 R32 R33

 a1
a2
a3

 .
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so that3

ai =
3∑

j=1

Rjia
′
j. (3)

We also know that if we first transform from the Ox1x2x3 coordinate system to the
Ox′1x

′
2x

′
3 coordinate system and then back again, we must get the original components

back. In other words, we must always have

ai =
3∑

j=1

Rjia
′
j =

3∑
j=1

Rji

(
3∑

k=1

Rjkak

)
=

3∑
j=1

3∑
k=1

RjiRjkak (4)

as a′j =
∑3

k=1Rjkak. This must hold for any vector a. Hence we can demand that it
should hold for the vector with a1 = 1, a2 = a3 = 0. But then (4) becomes

3∑
j=1

Rj1Rj1 = 1,
3∑

j=1

Rj2Rj1 =
3∑

j=1

Rj3Rj1 = 0.

Similarly picking a1 = a3 = 0, a2 = 1 gives

3∑
j=1

Rj1Rj2 =
3∑

j=1

Rj3Rj2 = 0,
3∑

j=1

Rj2Rj2 = 0,

while a1 = a2 = 0, a3 = 1 leads to

3∑
j=1

Rj1Rj3 =
3∑

j=1

Rj2Rj3 = 0,
3∑

j=1

Rj3Rj3 = 0,

In short, this can be written as4

3∑
j=1

RjiRjk = δik

Similarly, it is possible to show by demanding that a′i =
∑3

j=1Rijaj =
∑3

j=1

∑3
k=1RijRkja

′
k

for all vectors (a′1, a
′
2, a

′
3) that5

3∑
j=1

RijRkj = δik

3In standard matrix a language, the transformation matrix for going from a′i to ai is the transpose
of the transformation matrix used to go from ai to a′i.

4In standard matrix notation, with R being used to denote the matrix with entries Rij and I
being the identity matrix, this would become RTR = I, and the matrix R would be described as
being an orthonormal matrix, or a rotation matrix.

5Better still, if you know something about matrices, you will know that pre- and post-
multiplicative inverses are the same, so that if RTR = I, then we also have RRT = I
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Reverting to standard summation notation from now on (i.e., dropping the explicit
summation signs above), we can now say that a vector a is not just an object with 3
components (a1, a2, a3), but also that these components transform to the new frame
as

a′i = Rijaj (5)

where the transformation matrix Rij satisfies

RjiRjk = RijRkj = δik (6)

Exercise 1 Consider a counterclockwise rotation through an angle θ about the x3
axis. Show that  R11 R12 R13

R21 R22 R32

R31 R32 R33

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1


and that RijRik = RjiRki = δjk.

Invariance in vector equations: gradients as vectors

If we have an equation describing some physics involving vectors, we have to be sure
that both sides of such an equation transform in the same way from one coordinate
system to another. Take for instance Fourier’s law, which states that q = −k∇T , or

qi = −k ∂T
∂xi

.

Now, if heat flux q is a vector, then we should have

q′i = Rijqj.

But we would also like Fourier’s law to hold in the rotated coordinate frame, meaning
that the flux q′i should be given by the gradient with respect to the rotated coordinates,

q′i = −k ∂T
∂x′i

.

This would require that
∂T

∂x′i
= Rij

∂T

∂xj
.

In other words, the question is whether the gradient of a scalar function transforms
as a vector. This is not immediately obvious. What we need to do is to apply the
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chain rule, which states that6

∂T

∂x′i
=
∂T

∂xj

∂xj
∂x′i

.

But xj = Rkjx
′
k from (3), so

∂xj
∂x′i

= Rkj
∂x′k
∂x′i

= Rkjδki = Rij

and hence
∂T

∂x′i
= Rij

∂T

∂xj
, (7)

and the gradient of a scalar really does transform as a vector.

Scalars: dot products and divergences

Having characterized a vector as something that has three components that transform
in a particular way, we can also refine our understanding of a scalar. A scalar is a
quantity that has a single value and that does not change under a change in coordinate
systems. For instance, the component q1 of the vector q is not a scalar, because
q′1 6= q, but temperature T at a given point is a scalar because it does not matter
which coordinate system we use to express position.

Where this gets interesting is when we have a scalar quantity derived from a
vector. For instance, we might say that the kinetic energy of a point particle of mass
m and velocity u is m|u|2/2. We would like this to be a scalar, so that kinetic energy
does not change when we rotate our coordinate system. But is it a scalar?

Take a vector a = (a1, a2, a3). Then the square of the length of the vector is

|a|2 = aiai

In a rotated coordinate system, we would compute a′ia
′
i. From (5) and (6), we can

show that this gives the same value for |a|2 as aiai. We have

a′ia
′
i = (Rijaj)(Rikak)

6Recall that we are using the summation convention, so

∂T

∂x′
i

=
∂T

∂xj

∂xj

∂x′
i

=

3∑
j=1

∂T

∂xj

∂xj

∂x′
i

.

In more classical notation, this would have been for instance

∂T

∂x′ =
∂T

∂x

∂x

∂x′ +
∂T

∂y

∂y

∂x′ +
∂T

∂z

∂z

∂x′ ,

and similarly for ∂T/∂y′ and ∂T/∂z′.
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making sure not to repeat an index more than once. But

(Rijaj)(Rikak) = RijRikajak = δjkajak = akak

from (6). Hence a′ia
′
i = akak = aiai, and the length of a vector really is a scalar.

More generally, we can show that a dot product is a scalar. As |a|2 = a · a, the
result above is then simply a special case. We have

a · b = aibi.

In a rotated frame, we would have calculated

a′ib
′
i = (Rijaj)(Rikbk) = RijRikajbk = δjkajbk = ajbj = aibi,

and we obtain the same answer for a·b in the rotated frame. Knowing that a gradient
is a vector, it follows that ρcu · ∇T = ρcui∂T/∂xi is a scalar.7

Many of the equations in continuum mechanics contain divergences. For instance,
we now know that q = −k∇T is a vector. But the heat equation (1a) really reads

ρc
∂T

∂t
+ ρcu · ∇T +∇ · q = a,

and we know from the above that ρcu ·∇T is a scalar (just as ρc∂T/∂t and a are). In
order for this equation not to depend on the choice of coordinate system — in other
words, for (1b) to hold if (1a) holds — we have to be sure that ∇ · q is a scalar, i.e.,
that

∂qi
∂xi

=
∂q′i
∂x′i

.

But if q is a vector, then q′i = Rijqj. By the same steps as those leading up to
(7), we also know

∂

∂x′i
= Rik

∂

∂xk
(8)

where we have used a different dummy variable for convenience. But then

∂q′i
∂x′i

= Rik
∂(Rijqj)

∂xk
= RikRij

∂qj
∂xk

= δkj
∂qj
∂xk

=
∂qk
∂xk

=
∂qi
∂xi

as required, and the divergence ∇ · q is a scalar. It follows that, if we transform (1a)
to (x′1, x

′
2, x

′
3) and t is independent variables, we obtain (1b).

7You might wonder about velocity u being a vector but this is easy to show: if (x1(t), x2(t), x3(t))
denotes the position of a particular bit of matter, then the velocity field at that point is
(u1, u2, u3) = d(x1(t), x2(t), x3(t))/ dt or ui = dxi(t)/ dt. But then, in the Ox′

1x
′
2x

′
3 frame, we

have u′
i = dx′

i(t)/dt = dRijxj(t)/dt from (5), so that u′
i = Rij dxj(t)/ dt = Rijuj .
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Tensors

While we had a straightforward geometrical guide to how scalars and vector should
transform, this is not as simple for tensors. The rule here is that a tensor Aij should
transform as

A′
ij = RikRjlAkl.

Higher order tensors with more than two indices (such as ρ(σjkxi− σikxj), which can
be identified as the conductive flux of angular momentum Lij in the k-direection)
should transform correspondingly as

A′
ijk... = RipRjqRkr . . . Apqr....

Note that this is consistent with how a vector transforms, if we treat a vector as a
tensor with only on index.

This definition of how a tensor should transform has several essential properties.
First of all, so-called direct products (or outer products) of vectors are naturally ten-
sors. For instance, if Aij = aibj with a and b tensors, then

A′
ij = RikRjlAkl = (Rikak)(Rjlbl) = a′ib

′
j

as expected. Hence angular momentum m(xiuj − xjui) transforms as a tensor as
required.

Also, we frequently multiply a tensor by a vector and sum over an index to form
a new vector or tensor, for instance as in ai = Aijbj. This is called an inner product
or a contraction over the repeated index. The result is then indeed a vector:

a′i = A′
ijb

′
j = (RikRjlAkl)(Rjmbm) = Rik(RjlRjm)Aklbm = RikRlmAklbm = RikAklbl = Rikak

as required. This ensures for instance that an element of surface force fi = σijnj∆S
is indeed a vector of σij is a tensor. Alternatively, we can take a tensor and sum over
a repeated index within it to form a new tensor, vector or scalar.8 This is also called
a contraction. For instance, if Aijk is a tensor, then ai = Aijj is a vector:

a′i = A′
ijj = RikRjlRjmAklm = RikδlmAklm = RikAkll = Rikak.

Lastly, derivatives of vectors or tensors are tensors. Take for instance Aij =
∂ai/∂xj. From (8) above, we have

∂

∂x′j
= Rjl

∂

∂xl

and hence

A′
ij =

∂a′i
∂x′j

= Rjl
∂(Rikak)

∂xl
= RikRjl

∂ak
∂xl

= RikRjlAkl

8This distinction actually becomes unnecessary: a vector is simply a tensor with only one index,
and a scalar is a tensor with no indices at all.
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as required. Together with the results on contracting over repeated indices above,
this ensures for instance that

uj
∂ui
∂xj

and
∂σij
∂xj

are vectors, while the so-called strain rate

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
behaves as a tensor.

Exercise 2 Demonstrate explicitly that, if

ai = uj
∂ui
∂xj

then a′i = Rijaj. Repeat for ai = ∂σij/∂xj.
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