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Overview

These notes cover the following

• Conserving vector-valued quantities by conserving each component

• Fluxes for vector-valued quantities: tensors

• Momentum conservation: local form of Newton’s second law

• Surface forces and stresses

• Body forces

Conservation laws for scalar quantities in subscript

notation

Recall that, in order to write down conservation laws for scalar quantities, we used
the following steps: If Φ is a conserved quantity and φ the associated density, then
we have

d

dt

∫
V (t)

φ dV = −
∫
S(t)

q · n dS +

∫
V (t)

a dV,

where V (t) is a Lagrangian volume with surface S(t) and outward-pointing surface
normal n, while q is a conductive flux, and a is a supply rate density. Using Reynolds’
transport theorem, the left-hand side becomes∫

V (t)

∂φ

∂t
dV +

∫
S(t)

φu · n dS = −
∫
S(t)

q · n dS +

∫
V (t)

a dV,
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and with the divergence theorem and some rearrangement, we get∫
V (t)

[
∂φ

∂t
+∇ · (φu) +∇ · q− a

]
dV = 0,

and a slightly subtle argument about V being arbitrary finally leads to the conclusion
that this last integrand must be identically equal to zero (i.e., zero everywhere and
at all times), and hence to the differential equation

∂φ

∂t
+∇ · (φu) +∇ · q = a

Now, it may not be obvious immediately how to translate this to the case where Φ
is itself vector-valued. As a first step, we can translate the derivation above into sub-
script notation, however. This is straightforward, simply replacing dot products and
divergences with sums over repeated indices. The basic conservation law statement
in integral form is then

d

dt

∫
V (t)

φ dV = −
∫
S(t)

qjnj dS +

∫
V (t)

a dV. (1)

Note that we could equally have written qini instead of qjnj on the right because j is
a dummy index; the choice of j is made because it will make our notation later a bit
simpler. Here and in everything that follows, we apply the summation convention, so
qjnj really stands for

∑3
j=1 qjnj. Reynolds’ transport theorem then renders (1) as∫

V (t)

∂φ

∂t
dV +

∫
S(t)

φujnj dS = −
∫
S(t)

qjnj dS +

∫
V (t)

a dV, (2)

and the divergence theorem as∫
V (t)

[
∂φ

∂t
+
∂(φuj)

∂xj
+
∂qj
∂xj
− a
]

dV = 0 (3)

with the same argument about the arbitrariness of V (t) leading to

∂φ

∂t
+
∂(φuj)

∂xj
+
∂qj
∂xj

= a (4)

For conservation of mass, we have φ = ρ as the ordinary mass density, while
conductive flux and supply are zero, qi = 0 and a = 0. Hence

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0. (5)

Exercise 1 Write (5) out explicitly, i.e., expand the sums over j so that all indices
explicitly are 1, 2 and 3 and no j’s are left (this is analogous to writing out aibi =
a1b1 + a2b2 + a3b3).
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Conservation of vector-valued quantities: fluxes as

tensors

Next, we would like to write down a similar set of steps to describe conservation of
momentum. But how do we conserve a vector-valued quantity? The answer naturally
is that we conserve each component of that quantity separately. In other words, we
conserve x-, y- and z-components of momentum, except that we should now call them
x1-, x2- and x3-components of momentum. We can treat each of those just like we
would treat a scalar quantity. That is, we can take Φ to be each of those components
in turn.

A bit of care is required as we do this. Take Φ to be the x1-component of momen-
tum first. We need to begin by figuring out the associated density φ1.

Note 1 If you have made it to this point, you should hopefully have enough physics
background to know that the momentum of a point particle (i.e., an object of finite
mass but zero spatial extent) with mass m and velocity u is the vector-valued quantity
p = mu, where p is the usual symbol for denoting momentum. In subscript notation,
therefore, pi = mui.

If the momentum of a small mass δm travelling at velocity u is (δm)u, then its
x1-component of momentum (or ‘x1-momentum’ for short) is (δm)u1. The density
associated with x1-momentum is therefore

φ1(x1, x2, x3, t) =
x1-momentum contained in a small volume δV around (x1, x2, x3) at time t

δV

More specifically,

φ1 =
δmu1
δV

= ρu1

if we recognize that δm must be the mass contained in δV and therefore ρ = δm/δV
is the ordinary mass density.

Following the procedure for a generic conserved scalar quantity Φ above, we can
therefore write that conservation of x1-momentum should take the form

d

dt

∫
V (t)

φ1 dV =
d

dt

∫
V (t)

ρu1 dV = −
∫
S(t)

q1 · n dS +

∫
V (t)

a1 dV

where we have put an extra label ‘1’ on the conductive flux q1 and the supply rate
density a1 to indicate that we are looking specifically x1-momentum. But in subscript
notation, this is simply

d

dt

∫
V (t)

ρu1 dV = −
∫
S(t)

q1jnj dS +

∫
V (t)

a1 dV (6)
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where the labels 1 still indicate that we are concerned in each case with the x1-
component of momentum, whereas the index j on q1j and nj indicate the jth com-
ponent of the conductive flux q1 and of the normal vector n, respectively. In other
words, q1 = (q11, q12, q13). Note that (6) is simply (1) with φ = φ1 = ρu1 and extra
labels ‘1’ affixed to qj and a.

Following the same program as above and applying the Reynolds’ transport the-
orem again, we have∫

V (t)

∂(ρu1)

∂t
dV +

∫
S(t)

(ρu1)ujnj dS = −
∫
S(t)

q1jnj dS +

∫
V (t)

a1 dV, (7)

which is simply (2) with φ = φ1 = ρu1 and labels ‘1’ again attached to qj and a.
Note that the second term on the left-hand side,

∫
S(t)

(ρu1)ujnj dS, really does have

two occurences of the velocity field ui: once as part of the momentum density ρu1,
and once from the normal velocity component ujnj that is involved in the evolution
of the Lagrangian volume V (t) over time. We will discuss this in more detail later.

Subsequently using the divergence theorem, we get∫
V (t)

[
∂(ρu1)

∂t
+
∂(ρu1uj)

∂xj
+
∂q1j
∂xj
− a1

]
dV = 0 (8)

and finally, because V is arbitrary, we must have

∂(ρu1)

∂t
+
∂(ρu1uj)

∂xj
+
∂q1j
∂xj

= a1. (9a)

Exercise 2 Write (9a) out explicitly, i.e., expand the sums over j so that all indices
explicitly are 1, 2 and 3 and no j’s are left (this is analogous to writing out aibi =
a1b1 + a2b2 + a3b3).

We will consider this physically in more detail in a moment. First, we should
recognize that we can follow exactly the same procedure for the other two compo-
nents of momentum. For instance, the density associated with the x2-component
of momentum is ρu2, and we can denote the conductive flux of x2 momentum by
q2 = (q21, q22, q23) and to produce

∂(ρu2)

∂t
+
∂(ρu2uj)

∂xj
+
∂q2j
∂xj

= a2, (9b)

where it is important to recognize that there is no reason why the conductive flux
of x1-momentum should be the same as the conductive flux of x2-momentum, so in
general q1 6≡ q2, or q1i 6≡ q2i in subscript notation. The same goes for the supply
rate density, where we generally expect a1 6≡ a2. We can proceed similarly for x3-
momentum, finding

∂(ρu3)

∂t
+
∂(ρu3uj)

∂xj
+
∂q3j
∂xj

= a3, (9c)
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But looking at the three equations (9), they can generically be written as

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+
∂qij
∂xj

= ai (10)

with i = 1, i = 2 and i = 3. Here we finally meet a new type of object, qij, which has
two subscript indices. For a fixed i, qij is a vector whose components are labelled by
j, and this vector physically is the conductive flux of i-momentum. In other words,
qij is the conductive flux that carries xi-momentum along the xj-direction.1 As there
are three components of momentum, there are three such vectors, which in classical
vector notation we called q1, q2 and q3, and qij combines these fluxes into a single
object that you can think of as a flux of a vector-valued quantity. For a scalar-valued
conserved quantity, flux is a single vector with three components. For a vector-valued
conserved quantity like momentum, we now have nine flux components, and the
notation with two subscripts already suggests (at least if you have some background
in matrix algebra) that an object like qij can best be represented as a matrix rather
than a vector,  q11 q12 q13

q21 q22 q23
q31 q32 q33


In this matrix, each row corresponds to one of the conductive flux vectors q1, q2 and
q3. An object like this, with more than one subscript index, is generally called a
tensor.

Conductive momentum flux: Newton’s second law

and surface forces

The statement that qij is the conductive flux of xi-momentum in the xj-direction is
probably quite hard to grasp. All of the discussion above is very abstract, as we have
not really developed a good understanding of what a ‘conductive flux of momentum’
and a ‘supply of momentum’ should mean. We will deal with this next, and show
how different terms in (6) and (10) can be interpreted.

Note 2 Recall that, in classical point particle dynamics, Newton’s second law says
that the net force on a particle equals its mass times its acceleration,

F = ma = m
du

dt

1The idea that xi-momentum can be conducted in the xj-direction tends to be hard to grasp at
first. We will return to this very shortly, in the next section.
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if we recognize that acceleration is defined as the rate at which the particle velocity
changes over time. A better way to write Newton’s second law (as the above assumes
a fixed particle mass m) is that

d

dt
(mu) = F (11)

where mu = p is the momentum of the particle. In subscript notation, this would be

d

dt
(mui) = Fi.

or
dpi
dt

= Fi.

If we have multiple particles of, say, mass mA, mB etc. and with velocities uA,
uB etc, then for each we have

d

dt
(mPuP ) = FP

where P is a generic label for the particle (so P can be A, B etc — which we use
here to label particles instead of numbers so that we do net get confused over what
labels particles and what labels vector components). The total momentum of all the
particles is then ptot =

∑
P mPuP and the total force is Ftot =

∑
P FP . But summing

the last equation above then gives

dptot

dt
= Ftot.

Recall equation (6), which we can generalize for conservation of momentum in the
i-direction as

d

dt

∫
V (t)

ρui dV = −
∫
S(t)

qijnj dS +

∫
V (t)

ai dV (12)

But the left-hand side is simply the rate of change of momentum contained in the
volume V (t), written in component notation notation. As V (t) is a Lagrangian vol-
ume, it always contains the same bits of matter, or, in the language of note 2, the
same ‘particles’. It therefore follows that the right-hand side of (6) is simply the total
force acting on the volume V (t) at time t, and (12) is a statement of Newton’s second
law for a continuum (where we do not actually have point particles, but mass and
therefore momentum are spread out in space).

This total force has two parts, −
∫
S(t)

qijnj dS and
∫
V (t)

ai dV . Remember that

−
∫
S(t)

qijnj dS is the effect of conduction of momentum through the boundary S(t)

of V (t). If we were talking about heat rather than momentum, this would represent
the transfer of heat into V (t) due to conduction through the contact with surround-
ing material. In the case of momentum, this force must therefore be the result of
momentum transfer due to contact with surrounding material across the surface S.
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The simplest way to understand the term −
∫
S(t)

qijnj dS is therefore as a contact

force exerted on a surface: this could for instance be the force exerted by a table on a
stationary cup of coffee on top of it, or the force exerted by the cup on the stationary
coffee inside it. It could also be the force between a road and a car tire as the car is
braking.

Recall that the integral −
∫
S(t)

qijnj dS really comes from a sum −
∑

δS qijnjδS

over small surface elements. In other words, if −
∑

δS qijnjδS is a total surface force,
then each element of surface δS experiences a force

δFi = −qijnjδS, (13)

exerted on the volume V .

Exercise 3 Show that the components of the tensor qij have dimensions of force over
area, and therefore units of Pascals.

In equation (13), δFi is the force exerted on the volume V , whereas the usual
definition of a conductive flux q and of n as an outward-pointing unit normal makes
q ·nδS equal to the rate of conduction out of V . This explains why the force exerted
on V , or equally, the the rate of conduction of momentum into V , is −qijnjδS. In
continuum mechanics, it is often useful not to have to deal with the negative sign
involved. By convention, we therefore define a new quantity through

σij = −qij

The symbol σ on the left is the Greek letter sigma, and σij is called the stress tensor.
In terms of the stress tensor, the surface force exerted on V through the a surface
element δS is then

δFi = σijnjδS (14)

and the total surface force on the volume V is

Fi =

∫
S

σijnj dS.

Exercise 4 Calculate σijnj if σij can be represented by the matrix σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =

 0 1 2
1 1 0
2 0 1


and ni is normal to the triangle S with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), with ni
pointing out of the volume V lying below that triangle. To do this, you can write out
(14) explicitly for each i = 1, 2, 3. You will need to know the components ni, which
you will have to compute from knowing the shape of the triangle S.

Then compute the force (F1, F2, F3) acting on the volume V through the triangle
with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).
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x1

x2

x
3

n=(0,0,-1)

Figure 1: A surface element in the x1x2-plane with downward-pointing unit normal.

Note 3 If you are familiar with matrix algebra, you will recognize that the vector σijnj
(which is equal to

∑3
j=1 σijnj by the summation convention) is simply the product σn,

where σ is the matrix with entries σij, and n is the column vector (n1, n2, n3)
T.

Often one of the most difficult things to grasp when first looking at conservation
of momentum is how xi-momentum can be conducted in the xj-direction: that is,
why do we need to have qij components with i 6= j. Having translated conduction of
momentum into surface forces, we can easily illustrate why this has to be the case.
Take the difference between the force exerted by a coffee cup on the coffee within it
(which we will assume to be at rest), and the force a road exerts on a braking car
tire.

We may expect that the surface force δFi exerted by the coffee cup on the liquid
coffee at rest within it across a surface element δS should be perpendicular to the
surface — there is no reason why there should be a tangential force. Consider an
element of surface δS that lies in the x1x2-plane (i.e., the xy plane in non-subscript
notation), with the coffee above the x1x2-plane. Then n1 = n2 = 0, n3 = −1, as the
normal ni has to be outward-pointing to the coffee in order to calculate the force on
the coffee. Then

δF1 =
3∑
j=1

σ1jnjδS = −σ13δS, (15a)

and similarly
δF2 = −σ23δS, δF3 = −σ33δS (15b)

But we have just said that we expect the force to be purely normal. The normal is
parallel to the x3-axis, and the force δFi should be too. In other words, the tangential
components δF1 and δF2 should be zero, so σ13 = σ23 = 0. In terms of the original
conductive flux, this also means q13 = q23 = 0. To use the original language of fluxes,
there is now no conductive flux of x1- or x2-momentum in the x3-direction. Meanwhile
σ33 must be negative if the cup exerts a positive force on the coffee above it.
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Figure 2: The small volume in exercise 5.

The reason why σ13 and σ23 were zero above was that there were no tangential
forces. For a counterexample in which such forces occur, take the case of the car tire.
Suppose the road lies in the x1x2-plane with the car above the plane moving in the
x1-direction. If the car is braking, the force on the tire therefore has a component
in the negative x1-direction. In addition, there may be a normal force on the tire
in the positive x3-direction, presumably supporting the weight of the car. But the
calculations in (15) still hold, so we now have σ13 > 0, σ23 = 0 and σ33 < 0. The
component σ13, signifying a flux of x1-momentum in the x3-direction, is of course
associated with the tangential force component −σ13δS, which arises because there
is friction between the tire and the road. We see that components σij with i 6= j are
associated with tangential surface forces: σijδS is the xi-component of force generated
on a surface δS that is perpendicular to the xj-axis.

It is important to understand that surface forces can be computed not only at
surfaces S separating different materials like coffee and cup, or tire and road. They
can be computed on any surface S, even if the surface lies within a larger body made
of a single material. For instance, if we know the stress tensor σij everywhere in a
tire, we compute the force exerted by one part of the tire on another, even though
both parts are made of the same material.

Exercise 5 Consider a small cuboid of size δx1 × δx2 × δx3 with one corner at
(x1, x2, x3) and the others at (x1 + δx1, x2, x3), (x1, x2 + δx2, x3), (x1, x2, x3 + δx3)
etc. in a general stress field σij that can depend on position. The cuboid has six faces.

9



Show that there is a face — all it face 1 —experiencing a net force δF 1
i given by

δF 1
1 = −

∫ x2+δx2

x2

∫ x3+δx3

x3

σ11(x1, x
′
2, x

′
3) dx′3 dx′2 ≈ −σ11(x1, x2, x3)δx2δx2

δF 1
2 = −

∫ x2+δx2

x2

∫ x3+δx3

x3

σ21(x1, x
′
2, x

′
3) dx′3 dx′2 ≈ −σ21(x1, x2, x3)δx2δx3,

δF 1
3 = −

∫ x2+δx2

x2

∫ x3+δx3

x3

σ31(x1, x
′
2, x

′
3) dx′3 dx′2 ≈ −σ31(x1, x2, x3)δx2δx3

and another face – call it face 2 — experiencing a net force δF 2
i given by

δF 2
1 =

∫ x2+δx2

x2

∫ x3+δx3

x3

σ11(x1 + δx1, x
′
2, x

′
3) dx′3 dx′2 ≈ σ11(x1 + δx1, x2, x3)δx2δx2

δF 2
2 =

∫ x2+δx2

x2

∫ x3+δx3

x3

σ21(x1 + δx1, x
′
2, x

′
3) dx′3 dx′2 ≈ σ21(x1 + δx1, x2, x3)δx2δx3,

δF 2
3 =

∫ x2+δx2

x2

∫ x3+δx3

x3

σ31(x1 + δx1, x
′
2, x

′
3) dx′3 dx′2 ≈ σ31(x1 + δx1, x2, x3)δx2δx3

Hence show that the net force δF 1
i + δF 2

i on the cuboid due to those two faces is
approximately (

∂σ11
∂x1

,
∂σ21
∂x1

,
∂σ31
∂x3

)
δV

where δV = δx1δx2δx3. Similarly compute the net force due to the remaining four
faces to show that the cuboid experiences a total force approximately equal to(

∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

,
∂σ21
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

,
∂σ31
∂x1

+
∂σ32
∂x2

+
∂σ33
∂x3

)
δV

or, in subscript notation

Fi =
∂σij
∂xj

δV.

Note 4 Note that
∂σij
∂xj

=
3∑
j=1

∂σij
∂xj

can be thought of as the divergence of the stress tensor σij, just as

∂qj
∂xj

=
3∑
j=1

∂qj
∂xj

is the divergence of the flux vector qi.

10



The divergence theorem still holds for a tensor σij or qij, a fact we implicitly used
in (8). We have ∫

S

σijnj dS =

∫
V

∂σij
∂xj

dV, (16)

or, writing the sums implied by the summation convention explicitly∫
S

3∑
j=1

σijnj dS =

∫
V

3∑
j=1

∂σij
∂xj

dV. (17)

This is trivial to understand if we fix the index i. For instance, if we take i = 1,
σ1j is a vector with components (σ11, σ12, σ13), and for this vector, we know that the
divergence theorem holds: ∫

S

σ1jnj dS =

∫
V

∂σ1j
∂xj

dV.

Now we can repeat the same with i = 2 and i = 3, and find that (16) holds for any
i = 1, 2, 3.

Supply of momentum: body forces

In addition to the surface force term −
∫
S(t)

qijnj dS =
∫
S(t)

σijnj dS, (12) contains

another force term, the ‘momentum supply rate’
∫
V
ai dV . This is clearly not a force

exerted on the boundary of V (t). Instead, it arises from a sum of forces δFi = aiδV
that are exerted directly on the small volume elements δV that make up the whole
volume V (t). Forces of this kind must be the result of long-range forces rather than
of forces that result from direct contact with neighbouring material.

A good example would be the effect of gravity. This is the result of long-distance
interactions between objects that have finite mass. Consider a gravitational field
g due to some massive object acting on a continuum. In subscript notation, this
would then be written as gi. The force due to gravity on a small volume δV is then
δFi = δmgi = ρgiδV as the mass of the volume is δm = ρδV . Comparing with
δFi = aiδV above, this suggests

ai = ρgi.

for gravitational forces.
Just as we introduced a different symbol σij = −qij above to compute surface

forces, the usual symbol for ‘momentum supply density’ ai is not ai but

fi = ai.

Also, fi is usually referred to not as a supply density but as a body force (to distinguish
it from a surface force).
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Conservation of momentum in standard notation

and simplification

Having introduced the new notation σij = −qij and fi = ai, the differential equation
(10) describing conservation of momentum becomes

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=
∂σij
∂xj

+ fi (18)

This equation is a local form of Newton’s second law (11). The two terms on the
left-hand side are the change of momentum of a small Lagrangian volume. The first
term describes how the concentration of xi-momentum around a point changes in
time, while the second describes how xi-momentum is carried by the motion of the
material itself (which allows material with high momentum to move from one place
to another, thereby changing the spatial distribution of momentum over time). The
right-hand side is the net force on the same Lagrangian volume, with the first term
describing surface forces and the second describing long-range body forces.

As we did previously with the heat equation, we can use the mass conservation
equation (5) to simplify (18). Apply the product rule to the left-hand side of (18) to
find

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=
∂ρ

∂t
+ ρ

∂ui
∂t

+
∂(ρuj)

∂xj
ui + ρuj

∂ui
∂xj

=

(
∂ρ

∂t
+
∂(ρuj)

∂xj

)
ui + ρ

∂ui
∂t

+ ρuj
∂ui
∂xj

= ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

from (5). Therefore (18) becomes

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

=
∂σij
∂xj

+ fi. (19)

By itself, this equation cannot be solved — it contains thirteen unknowns (nine
components of σij, three components of ui and ρ) but only three equalities (one for
each i). Even taken together with (5), we therefore only have four equations for
thirteen unknowns. Further information about the physics involved in the motion of
a particular material is therefore required. (Note that this has an analogy in classical
particle mechanics — we cannot solve Newton’s second law (11) for velocity u unless
we are given extra information about the forces F and mass m.) This information
comes in part from the need to conserve not only momentum and mass (which we
have already dealt with) but also angular momentum (which we have not). However,
this is not enough, and the material nature of the continuum in question does matter
—- we require further constitutive relations.
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Newton’s third law

We have talked about Newton’s second law for a continumm being (12), or equally
its reformulation in terms of σij and fi instead of qij and aj, which is

d

dt

∫
V (t)

ρui dV =

∫
S(t)

σijnj dS +

∫
V (t)

fi dV (20)

You may wonder what happened to Newton’s third law. In fact, it is Newton’s third
law that ensures that momentum is conserved in classical, point-particle mechanics.

Note 5 To see that this last statement holds, consider a set of objects that we label
A, B, C etc. (ordinarily, we might have labelled them 1, 2 etc,, but as we are already
using number subscripts to indicate vector components in this text, we choose to use
upper case letters to signify different point particles). Let the force exerted by object
B on object A be FAB. Newton’s third law says that

FAB = −FBA.

If there are no external forces (so that the force acting on object A is purely
composed of forced exerted on it by the other objects), then we have

mA
duA
dt

= FAB + FAC + . . . ,

and similarly for objects B, C etc. Here mA is the mass of object A and uA is its
velocity.

To make our notation more compact, let P be the label for some object, so P could
be A, B, C etc. Then

mP
duP
dt

=
∑
P ′

FPP ′

where the sum over P ′ can be taken to be the sum over all the particles present, and
we can put FPP = 0; an object does not exert a force on itself.

The total momentum in the system of particles is the sum over indiividual particle
momenta,

p =
∑
P

mPuP

If the masses of the particles are constant, then

dp

dt
=
∑
P

mP
duP
dt

=
∑
P

∑
P ′

FPP ′

= [FAB + FAC + . . .] + [FBA + FBC + . . .] + [FCA + FCB + . . .] + . . .
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It is easy to see then that each force can be paired up with its equal and opposite
version, for instance FAB with FBA, FAC with FCA, and the sum equates to zero.
Therefore

dp

dt
= 0

and p remains constant.

When we have body forces, it is difficult to establish that Newton’s third law
holds; some object at a distance is generating a force on the material in volume V (t)
that we are looking at (for instance through a gravitational field), and that material
in V (t) will also need to generate an equal and opposite force on the object at a
distance. This is tied up with how the body force fi is generated, and (20) does not
automatically ensure that Newton’s third law holds.

However, in the absence of body forces, we have only surface forces like σijnj,
and for these we can immediately ensure that Newton’s third law holds. Consider
for simplicity two Lagrangian volumes VA(t) and VB(t) that meet along a common
boundary Sint(t). The force exerted by volume B on volume A through their common
boundary is ∫

Sint(t)

σijn
A
j dS

where nA is the normal to Sint that points out of volume A. Meanwhile, the force
exerted by volume A on volume B is∫

Sint(t)

σijn
B
j dS

where nB is the normal to Sint that points out of volume B. It is easy to see that the
normal that points out of B points into A, and therefore that nB = −nA, so that∫

Sint(t)

σijn
B
j dS = −

∫
Sint(t)

σijn
A
j dS,

and the forces are equal and opposite.

Note 6 The discussion above is analogous to the demonstration at the end of the
notes on conservation laws, where we show that the transport of some conserved quan-
tity Φ described by the surface integral of a flux

∫
S(t)

q · n̂ dS ensures conservation,

because that transport simply takes Φ out of one volume and puts it into another at
the same rate. Conservation of momentum generalizes that demonstration to the case
where Φ is a vector.
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