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Overview

These notes cover the following

• Form of a typical similarity solution

• Transforming a partial differential equation and initial / boundary conditions
to a similarity variable

• Identifying exponents in the definition of the similarity variable

• Solving the resulting ordinary differential equation

A model problem

Consider what happens when hot magma suddenly intrudes into a host (or ‘country’)
rock along a narrow sill or dyke. Initially, the host rock will be cold, and will only
be warmed over time by the conduction of heat away from the sill or dyke. This
warming can be important if it leads to changes in the structure of the host rock.
Some of the relevant questions one can ask are: how hot does the host rock get at a
certain distance from the sill or dyke? How far away from the sill or dyke will it heat
up enough to get chemically altered? One way to look at this is to construct a model.

We consider heat conduction into the host rock in one dimension. We assume that
there is no advection as the rock is stationary. Let the dyke lie in the yz-plane, and
the x-axis be perpendicular to from the dyke. We also assume that temperature T
depends on x and t only. With density ρ, heat capacity c and thermal conductivity
k constant and no heat production in the rock, we have

ρc
∂T

∂t
− k∂

2T

∂x2
= 0. (1)
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We assume that the injection of magma occurs at time t = 0, so (1) holds for t > 0.
At time t = 0, assume that the host rock is at a uniform temperature T0 everywhere
away from the dyke or sill. For simplicity, suppose the dyke or sill is very narrow, so
that we can write this initial condition as

T (x, 0) = T0 for x 6= 0. (2)

We also assume that there is no heat flux in or out at large distances, so

lim
x→±∞

∂T

∂x
→ 0 for all t > 0. (3)

So far, we have constructed a problem to which T (x, t) ≡ T0 seems to be a valid
solution (substitute to verify this). The reason is that we have not provided any
information about the energy injected at t = 0. By making the dyke or sill infinitely
narrow, we have assumed that this heat is initially confined in an infinitely narrow
space (i.e., the plane x = 0). Presumably, this can’t quite be right as a finite amount
of heat in an infinitely small volume must mean an infinite temperature. But the
assumption provides a useful starting point. The remaining problem is how to specify
the amount of heat injected. To understand how to do this, consider the column of
material that lies above and below a base area A in the yz-plane (i.e, a column
of material perpendicular to the plane of the dyke or sill that extends infinitely to
x → ±∞. As T is assumed to depend only x, there is no conduction of heat out of
the sides of the column, so the total amount of heat contained in the column must
remain constant at all times t. We concern ourselves only with the amount caused by
a temperature excess beyond the background temperature T0. This amount of heat
is, at any time t, given by

H =

∫
V

ρc(T − T0) dV = Aρc

∫ ∞
−∞

(T (x, t)− T0) dx (4)

Following the argument above, the amount of energy H should remain constant in
time. That is, the integral in (5) should not depend on t. However, at time t = 0,
the temperature T is equal to T0 everywhere except at x = 0, and this allows us to
identify H as the amount of energy contained in a part of the dyke or sill that has
surface area A.1 We can then define E0 = H/A as the amount of energy injected
per unit surface area of the dyke. The relevant information that tells us about heat
injection in the problem is therefore that

ρc

∫ ∞
−∞

(T (x, t)− T0) dx = E0 for all t > 0 (5)

with E0 constant.

1Here, having squashed the dyke into a plane of zero thickness, we ignore the fact that the dyke
or sill actually has two surfaces, i.e. left/right or top/bottom
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Figure 1: A column of material V lying above and below base area A.
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Exercise 1 Let V be the column of material given by 0 < y < L, 0 < z < L,
−R < x < R, where L and R are fixed (i.e., do not depend on time). Consider
conservation of heat in the absence of advection or heat production,

ρc
∂T

∂t
−∇ · (k∇T ) = 0.

If T = T (x, t), show that the ‘excess’ heat content
∫
V
ρc(T − T0) dV of the column

changes as

d

dt

∫
V

ρc(T − T0) dV = −kL2

(
∂T

∂x

∣∣∣∣
x=R

− ∂T

∂x

∣∣∣∣
x=−R

)
.

Show (by taking the limit R→∞) that

d

dt

∫ ∞
−∞

ρc(T (x, t)− T0) = 0.

Note 1 There is a potential flaw in assuming that the heat equation (1) holds for all
x when t > 0: we are therefore assuming that this equation also holds at x = 0, the
location of the dyke itself, so that the dyke effectively behaves as part of the host rock.
This may be wrong if dyke initially contains liquid magma that releases a significant
amount of heat during solidification. If that is the case, then the temperature of the
dyke may remain at the melting point until all the latent heat is conducted away,
which the present model cannot account for.

Exercise 2 Another physical setting that the model can be applied to is sudden heat
production along a plane. This can occur during an earthquake, where heat is produced
on a fault (which can be idealized as a plane) by a sudden slip in the presence of
friction. If τ (the Greek letter tau) denotes the amount of friction per unit area of
the fault (units of N m−2) and the slip distance is d, what is E0?

We can contrast the dyke/sill problem with the temperature wave problem we
looked at before. The latter was an example of the heat equation forced by a boundary
condition that varies over time. In fact, we considered a particular type of time-
varying boundary condition by considering ‘sinusoidal’ (sine-wave-like) variations by
imposing T (0, t) = T0 cos(ωt). The problem we are looking at here is different in
that we apply boundary conditions that are fixed, and instead force the problem with
an initial condition. That is, the temperature field is not driven by variations at a
boundary over time, but by the state in which it started out.
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The form of a similarity solution

To be definite, and to make clear some technical points, we re-state the problem here.
We have

ρc
∂T

∂t
− k∂

2T

∂x2
= 0 for t > 0 (6a)

lim
t→0

T (x, t) = T0 for any fixed x 6= 0 (6b)

lim
x→±∞

∂T

∂x

∣∣∣∣
(x,t)

= 0 for any fixed t > 0 (6c)

ρc

∫ ∞
−∞

(T (x, t)− T0) dx = E0 for all t > 0. (6d)

The reason why we have re-written the initial condition (2) in the form (6b) is to
make it clear what we mean by T (x, 0) = T0: We expect some odd behaviour at
time t = 0, as the temperature at x = 0 (the location of the infinitely narrow dyke2

containing a finite amount of energy) must then be infinite. The easiest way to define
an initial temperature field T (x, 0) is to take the limit t → 0 in the function T (x, t)
while staying at a fixed position x. Similarly, the limit in the boundary condition (3)
should be taken at a given point in time. The relevance of these technicalities will
become clearer below.

Now, as with the temperature wave solutions, the approach we will pursue here
is to guess a general form of the solution that we might expect, and figure out what
is required to make this guess work: in the case of temperature waves, with T (x, t) =
Re [T0 exp(iωt+ λx)], a particular choice of λ was required. Here, we would like to
use some intuition for what the solution should do to motivate a guess as to its general
form.

At time t = 0, all the excess heat (associated with temperatures above T0) is
concentrated in the dyke, so initially there will be an infinite temperature gradient
causing conduction out of the dyke. This should cause a region of elevated tempera-
tures to form immediately around the dyke as the heat initially contained in the dyke
spreads out. However, we still expect heat to be relatively concentrated, so temper-
ature gradients are still fairly high. This will cause further conduction , spreading
heat further away from the dyke. As the total amount of heat in the system stays
the same, this however means that temperatures close to the dyke have to fall. So
what we expect is a temperature distribution T (x, t) that is initially concentrated
near x = 0 but then spreads out. The maximum temperature will presumably always
be at the dyke location x = 0, but this will drop over time.

Now suppose that the temperature distribution retained the same spatial shape
over time, but that this shape got spread out sideways, and its amplitude got reduced

2or sill, but to keep the language simpler, we’ll talk about dykes from now on.
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at the same time. How can we try to capture this mathematically? One form to try
would be to write

T (x, t) = T0 + t−αθ
( x
tβ

)
(7)

where θ is a function of the single variable x/tβ. This is often called the ‘similarity
variable’ and denoted by a single symbol, the Greek letter ξ (read: xi):

ξ =
x

tβ
, (8)

in which case (7) can be written as

T (x, t) = T0 + t−αθ(ξ). (9)

The term T0 is simply there because we are interested in temperatures in excess of
the background. But why does the second term conform to our intuition developed
above?

The function θ describes the general spatial ‘shape’ of the temperature field, as
it encapsulates the dependence of T on position x. What changes over time t is that
the shape gets more ‘spread out’. To see this, suppose that θ describes a temperature
field that drops off with distance from the dyke, so θ decreases with ξ (when ξ > 0).
Now suppose we look at this at different times t, and ask how far out we have to go
before θ drops to a given level. The function θ(ξ) will always take the same value a
fixed value of ξ. Suppose the given level of θ is attained at some fixed value ξ = ξ0.
With (8), this means that in terms of physical distance, the given level is attained at
x = tβξ0: assuming β > 0, the physical distance increases with time t in a way that
is proportional to tβ.

Similarly, the factor t−α represents the fact that, as the temperature field spreads
out, its amplitude must also drop off. At the dyke location x = 0, the temperature
field will take the form T0 + t−αθ(0), so (with α > 0) this represents a dropping-off in
temperature over time. These observations are the reason why a solution of the form
(7) is called a similarity solution: its shape always remains the same (or self-similar)
but its amplitude and width change.

Perhaps the best way to see how this works is to actually solve the problem,
and then see what the solution does. Remember that we are simply going to try a
solution of the form (7), and that we are still not guaranteed that this will work. In
terms of solving the problem (6), trying this form will have the advantage that, if
this approach works, we have to find a function θ of a single variable ξ, rather than a
function T (x, t) of two variables. Alongside θ, we also have to find suitable exponents
α and β (think of this as similar to the way we wrote the solution for the temperature
wave in the form T (x, t) = Re [T0 exp(iωt+ λx)], where we had to find the right value
of λ).3

3In both cases, the temperature waves and the present dyke/sill problem, there are more general
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Figure 2: The position x at which the function θ(x/tα) attains some given value
θ = θ0 (depicted by the horizontal dashed line in the plot) depends on the value of
t. When t takes a larger value t2, the corresponding position x is larger than for a
smaller time t1.

Transforming to the similarity variable

To test whether a solution of the form (9) with ξ defined through (8) can be made
to work, we have to substitute this into (6). Take the heat equation (6a) first. To
substitute for T , we note that with (9) and (8), we have

∂T

∂t
=
∂(t−αθ(ξ))

∂t

= −αt−α−1θ(ξ) + t−αθ′(ξ)
∂ξ

∂t
= −αt−α−1θ(ξ)− βxt−α−β−1θ′(ξ),

mathematical methods that can be used to prove that a particular form of solution must hold.
For the temperature wave problem, the relevant approach is to use so-called Fourier Transforms,
which is beyond the scope of this course. Many classes on partial differential equations or on applied
complex analysis will covers this; likewise, a text on mathematical methods for physicists will provide
an introduction to Fourier Transforms. For the present problem, it turns out that one can use scaling
methods to show that the solution must take the form T (x, t) = T0 + t−αθ

(
x
tβ

)
advocated in (7).
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where the prime denotes differentiation with respect to ξ. We also have

∂T

∂x
=
∂(t−αθ(ξ))

∂x

= t−αθ′(ξ)
∂ξ

∂x
= t−α−βθ′(ξ),

and so

∂2T

∂x2
=
∂
(
t−α−βθ′(ξ)

)
∂x

= t−α−βθ′′(ξ)
∂ξ

∂x
= t−α−2βθ′(ξ).

Substituting into (6a), we get

ρc
[
−t−α−1θ(ξ)− βxt−α−β−1θ′(ξ)

]
− kt−α−2βθ′′(ξ) = 0. (10)

We see that we get something that looks like an ordinary differential equation for θ
in terms of ξ, and this in a way is the primary motivation for this approach: ordinary
differential equations are easier to handle than partial differential equations. Now,
the whole point here is that, by assumption, θ is only allowed to depend on x and t
through the similarity variable ξ = x/tβ, but cannot depend on x and t separately.
It follows that we should not have x and t appearing separately in the equation (10)
(through coefficients like t−α−1, xt−α−β−1 and t1−2α), but only in the form of ξ. To
make this happen, we can first write x in terms of ξ and t as x = ξtβ and substitute:

ρc
[
−t−α−1θ(ξ)− βξtβt−α−β−1θ′(ξ)

]
− kt−α−2βθ′′(ξ) =

ρc
[
−t−α−1θ(ξ)− βt−α−1ξθ′(ξ)

]
− kt−α−2βθ′′(ξ) = 0.

Now we still have a lot of coefficients involving t left, and we can gather them all
together by dividing both sides by t−α−1:

−ρc [αθ(ξ) + βξθ′(ξ)]− kt1−2βθ′′(ξ) = 0.

Now, in order for θ not to depend explicitly to ξ, we have to make the one remaining
coefficient involving t disappear as well. The only way to do this for general t > 0 is
to set

1− 2β = 0 (11)

so that

β =
1

2
, (12)
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and

ρc

[
αθ(ξ) +

1

2
ξθ′(ξ)

]
+ kθ′′(ξ) = 0. (13)

We see immediately that β cannot be chosen arbitrarily to make a similarity solution
work, but what about α?

We still have to deal with the initial and boundary conditions in (6). Take (6b)
next. Substituting, we get

lim
t→0

[
T0 + t−αθ

(
ξ

tβ

)]
= T0 for any fixed x 6= 0.

Again, because we want to find θ as a function of the similarity variable ξ = x/tβ

only, we should transform this into an expression involving ξ. We know that β > 0,
and therefore the limit t→ 0 implies ξ →∞ if x > 0, and ξ → −∞ if x < 0. Because
the limit is taken with x fixed, we can also write t = |x|1/β|ξ|−1/β inside the limit,
and treat x as a constant. Cancelling the T0 on both sides,

lim
ξ→±∞

|x|−α/β|ξ|α/βθ(ξ) = 0.

But x is fixed as the limit is taken and so can be taken outside the limit, giving

lim
ξ→±∞

|ξ|α/βθ(ξ) = 0. (14)

This effectively gives us a boundary condition on θ, but does not yet help find the
exponent α. Still, we have two more equations in (6) to go.

Next, take (6c). This now takes the form

lim
x→±∞

t−α−βθ′
( x
tβ

)
= 0. for any fixed t > 0.

Again, we want to write this in terms of ξ = x/tβ. For fixed t > 0, the limit x→ ±∞
clearly corresponds to the limit ξ → ±∞. Taking the fixed t−α−β outside the limit
as well, we have

lim
ξ→±∞

θ′(ξ) = 0. (15)

We get a second boundary condition on θ, but still no information on α.
This brings us to the last piece of information in (6), namely (6d): Substituting,

we get

ρc

∫ ∞
−∞

t−αθ
( x
tβ

)
dx = E0 for all t > 0.

Again, transform to ξ = x/tβ, so dx = tβ dξ. We get

ρct−α+β
∫ ∞
−∞

θ(ξ) dξ = E0 for all t > 0.
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Now the right-hand side is independent of t, and so the left-hand side also cannot
depend on t. The only way to make this work is to put

−α + β = 0 (16)

and hence

α = β =
1

2
, (17)

in which case

ρc

∫ ∞
−∞

θ(ξ) dξ = E0 (18)

We see that, like β, α also cannot be chosen arbitrarily. However, with the choice
α = β = 1/2, we now have a sensible problem. This consists of (14) with α = 1/2,,
which we can write as

lim
ξ→±∞

ξθ(ξ) = 0, (19)

as well as (15), (18) and (13) with α = 1/2:

ρc

2
[θ(ξ) + ξθ′(ξ)] + kθ′′(ξ) = 0. (20)

Solution

All that remains now is to solve for θ(ξ), and look at the actual solution to understand
how this works. We start with (20). This is a second-order differential equation with
non-constant coefficients, and even if you have taken a basic differential equations
course, you may not immediately be able to see what to do with it. There is a trick
here, which often becomes useful in similarity solution problems: we recognize that
we can use the product rule in reverse. In particular, we notice that

θ(ξ) + ξθ′(ξ) =
d(ξθ)

dξ
.

Apply the product rule to the right-hand side to see this.

Exercise 3 Show that

nθ(ξ) + ξθ′(ξ) =
1

ξn−1
d(ξnθ)

dξ
.

Using this, we can write (20) in the form

ρc

2

d(ξθ)

dξ
+ k

d2θ

dξ2
= 0

We can now integrate once with respect to ξ to find

ρc

2
ξθ(ξ) + kθ′(ξ) = C
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The constant of integration can be found by taking the limit of ξ → ±∞. We have
from (15) that θ′(ξ)→ 0, while ξθ(ξ)→ 0 from (19). This requires that

C = 0

and hence
ρc

2
ξθ(ξ) + kθ′(ξ) = 0

Separating variables, we get
1

ξ

dθ

dξ
= −ρcξ

2k
.

Integrating both sides with respect to ξ,

log[θ(ξ)] = −ρcξ
2

4k
+ C.

Exponentiating, we get

θ(ξ) = C̃ exp

(
−ρcξ

2

4k

)
(21)

where C̃ = exp(C). We can find the constant C̃ in principle by applying (18):

ρc

∫ ∞
−∞

C̃ exp

(
−ρcξ

2

4k

)
dξ = E0,

so that

C̃ =
E0

ρc
∫∞
−∞ exp

(
−ρcξ2

4k

)
dξ
.

The integral on the right can be computed in principle (an analytical form requires
a few tricks that I will not go into here), but this is not particularly important to
understand the solution. The full solution is in fact T (x, t) = T0 + t−αθ(ξ), or, with
α = 1/2, ξ = x/t1/2,

T (x, t) = T0 + C̃t−1/2 exp

(
−ρcx

2

4kt

)
(22)

We want to see what this looks like. For any fixed time t, the solution is a bell-
shaped curve (a so-called ‘Gaussian curve’) centred on the original dyke location at
x = 0, with T tending to T0 at large distances x from the dyke. We can also try
to understand how this curve evolves over time. One measure of the ‘width’ of the
bell-shaped curve is the distance x at which the bell-shaped part represented by

C̃t−1/2 exp

(
−ρcx

2

4kt

)
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Figure 3: The similarity solution (22) plotted at 1000 s intervals from t = 1000 s
to t = 10000 s. Parameter values are appropriate for rock, ρ = 2.7 × 103 kg m−3,
c = 1000 J kg−1 K−1, k = 2 W m−1 K−1, T0 = 500 K and E0 = 5.4×107 J m−3 (which
would be the amount of heat stored in a 1 cm wide layer of rock with the same values
of ρ and c and a temperature exceeding T0 by 2000 K). This gives C̃ = 6.6×103 K s1/2.

reaches half its maximum height. The maximum height is clearly attained at x = 0,
and the height itself is C̃t−1/2. So, as expected the height of the curve decreases over
time. The width at which half that height is attained corresponds to the values of x at
which the exponential equals 1/2, or equally, where the argument of the exponential
reaches log(1/2). Let these values be denotes by xwidth, so that

−ρcx
2
width

4kt
= log(1/2).

Solving this gives

xwidth = ±

√
4k log(2)

ρc
t1/2.

The width of the bell-shaped curve therefore increases as xwidth ∝ t1/2, just as its
height decreases as ∝ t−1/2. Together, the decrease in amplitude and increase in
width ensure that the area under the curve (which is essentially the total energy of
the system per unit surface area of the dyke, divided by ρg) remains constant.

Exercise 4 We could have formulated the problem differently: instead of insisting
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Figure 4: The solutions at t = 1000 s and t = 10000 s shown in figure 3, with the
‘widths’ xwidth indicated by stars.

that flux at infinity is zero, we could have insisted on a fixed temperature T0 at infinity,

ρc
∂T

∂t
− k∂

2T

∂x2
= 0 for t > 0

lim
t→0

T (x, t) = T0 for any fixed x 6= 0

lim
x→±∞

T (x, t) = 0 for any fixed t > 0

ρc

∫ ∞
−∞

(T (x, t)− T0) dx = E0 for all t > 0.

Again assume a solution of the form (7), and transform the problem to the similarity
variable ξ in (8). Show that we again get α = β = 1/2, and that the problem now
takes the form

ρc

2
[θ(ξ) + ξθ′(ξ)] + kθ′′(ξ) = 0, (23a)

lim
ξ→±∞

ξθ(ξ) = 0, (23b)

lim
ξ→±∞

θ(ξ) = 0, (23c)

ρc

∫ ∞
−∞

θ(ξ) dξ = E0. (23d)
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Note that (23b) in fact implies (23c): if ξθ(ξ) tends to zero as ξ tends to ±∞, then
surely so must θ(ξ). Integrate (23a) again to show that

ρc

2
ξθ(ξ) + kθ′(ξ) = C

Use (23b) on its own to show that we must have C = 0. Hint: if C 6= 0, then θ′(ξ)
approaches a finite limit. Why is this not possible?
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