
EOS 352 Continuum Dynamics
Subscript notation

c© Christian Schoof. Not to be copied, used, or revised without explicit written permission from the copyright owner

The copyright owner explicitly opts out of UBC policy # 81.

Permission to use this document is only granted on a case-by case basis. The document is never ‘shared’ under the terms of UBC policy # 81.

April 30, 2014

Overview

These notes cover the following

• Subscript notation as an alternative to standard vector notation

• Writing equations for generic vector components

• Dot products, repeated indices and the summation convention

• Algebra and differentiation rules in subscript notation

Vectors as defined by components

In vector algebra, we have so far used boldface letters to denote vectors and defined
a number of vector specific operations such as dot and cross products to write down
equations that define relationships between different vectors. The simplest example
would be for instance to say that one vector, say a, is the sum of two other vectors,
b and c:

a = b + c (1)

A more sophisticated example would be the following: if the normal to a surface is n,
then we know the normal component of a flux field q would be q ·n. If we wanted to
give this component a direction, we would write it (q · n)n, as its direction is clearly
n. Now, if we wanted to say ‘what is the part of the flux field that causes transport
along rather than across the surface’, we would probably say that it’s whatever is left
over after subtracting the normal part,

q‖ = q− (q · n)n. (2)

1

We have used a similarly symbolic notation in vector calculus, writing for instance

q = −k∇T (3)

to write the relationship between heat flux q and the temperature field T .
This notation has the advantage of brevity, but in any practical application, what

we really need to do is translate this shorthand notation into individual components.
We might have a = (ax, ay, az) (or equally, a = axi + ayj + azk). If similarly b =
(bx, by, bz), and c = (cx, xy, xz), then (1) stands for

ax = bx + cx (4a)

ay = by + cy (4b)

az = bz + cz (4c)

These are simple but tedious to write out, even for such a trivial example. For
(2), things get even more tedious: if q = (qx, qy, qz) and n = (nx, ny, nz), then
q · n = qxnx + qyny + qznz, and q‖ = (q‖,x, q‖,y, q‖,z) is given in component form by

q‖,x = qx − (qxnx + qyny + qznz)nx, (5a)

q‖,y = qy − (qxnx + qyny + qznz)ny, (5b)

q‖,z = qz − (qxnx + qyny + qznz)nz. (5c)

Not only do you need to remember what operations like dot products mean in terms of
components, writing this out in components quickly churns out lengthy expressions.
We can also do the same with vector calculus-based relations like Fourier’s law (3),
which becomes

qx = −k∂T
∂x

, qy = −k∂T
∂y

, qz = −k∂T
∂z

(6)

The point is that, in order to fully specify a vector, we have to specify all its
components. This is what is really meant by saying that ’a vector has a length and a
direction’. A relationship between different vectors and scalars is therefore really a set
of equations that links all their components. This is what standard vector notation
does, but it hides the individual components in boldface symbols like q and n and in
vector operations like q · n and ∇T .

Subscript notation offers a more explicit alternative to this that becomes extremely
useful later — for instance, when we try to write down conservation laws for vector-
valued quantities like momentum. Rather than saying that a vector is denoted by
a single symbol q, subscript notation tries to identify its individual components.
Ordinarily, we would expect this to mean writing the vector out as (qx, qy, qz) and
then writing out equations for each component. However, as we’ve seen above, writing
out equations for components is tedious, and we need a shorthand.

2

The first thing to recognize when trying to write out equations for components is
that there is nothing special about the x-, y- and z-directions. We can equally label
them the first, second and third axes, and treat them as basically being the same.
Instead of of writing the coordinates of a point as (x, y, z), an alternative notation is
to write (x1, x2, x3) (so x = x1, y = x2, z = x3). Similarly, instead of writing a vector
a in component form as (ax, ay, az), we can denote the components by (a1, a2, a3). We
can then say that we know the vector a if we know ai for each i = 1, 2, 3. Likewise,
to specify the position of a point, we need to know the corresponding xi for each
i = 1, 2, 3

What do we gain by this change in notation? By identifying components by a
numerical subscript (i.e. a1 rather than ax), we can write down equations for a generic
(rather than specific) subscript. For instance, a naive take on (4) would be that it
now reads

a1 = b1 + c1, (7a)

a2 = b2 + c2, (7b)

a3 = b3 + c3. (7c)

But it should be clear that this is just a lot of repetition, replacing the ‘1’ in the first
equation by ‘2’ and ‘3’ to obtain the second and third equations. A more succinct
way of saying the same thing would be that

ai = bi + ci (8)

for i = 1, 2, 3. So we need to write down only a single equation, rather than one
separately for each component. This is the basic idea of subscript notation: to write
down equations for generic vector components. For instance, instead of a = b + c,
one would simply write that ai = bi + ci, on the understanding that this must hold
for i = 1, 2, 3.

While it is common to use the subscript i to denote the index of a generic vector
component, one could use any other letter also, so long as it is used consistently. For
instance, (8) could also be written as

aj = bj + cj

for j = 1, 2, 3.

Dot products and the summation convention

Simple summation of vectors is relatively easy to understand in component notation.
The real power of component notation lies in its ability to render much more tedious
equations like (5) in succinct form. Recall that we have

q · n = qxnx + qyny + qznz (9)

3

Switching to numerical subscript notation, we have to write q = (q1, q2, q3) instead of
(qx, qy, qz), and similarly n = (n1, n2, n3) instead of (nx, ny, nz). In that case,

q · n = q1n1 + q2n2 + q3n3 (10)

But this can be abbreviated succinctly as

q · n =
3∑
i=1

qini. (11)

Exercise 1 In subscript notation, Fourier’s law (3) is

qi = −k ∂T
∂xi

which, with i = 1, 2, 3, reproduces (6) when we recognize that qx = q1, qy = q2, qz = q3
and x = x1, y = x2, z = x3. Consider now the equation

∇ · q = a.

How would you write this out as succinctly as possible in subscript notation?

Suppose we would like to write (2) in component form. Using (11), we might be
tempted to write

q‖,i = qi − (q · n)ni = qi −

(
3∑
i=1

qini

)
ni. (12)

But now we have a problem: Suppose I want to know the first component q‖,1, so I’d
like to put i = 1. But then, on the right-hand side, it looks like I should sum over i
going from 1 to 3. So should I put i = 1 everywhere or sum over i? Clearly, comparing
with (5), the answer should be q‖,1 = q1− (q1n1 +q2n2 +q3n3)n1 = q1− (

∑3
i=1 qini)n1,

so the sum only applies to the indices i inside the bracket. But this notation is highly
ambiguous (and actually plain wrong): we cannot simultaneously have a quantity
fixed (i = 1) and sum over the same quantity going from 1 to 3.

The correct way to go about this is to realize that, in (11), the index i can be
changed to any other index and the resulting sum will always be the same. In other
words, we can put

3∑
i=1

qini =
3∑
j=1

qjnj =
3∑

k=1

qknk, (13)

because all three expressions stand for the sum q1n1 + q2n2 + q3n3. To make (12)
unambiguous, a better notation would therefore be

q‖,i = qi −

(
3∑
j=1

qjnj

)
ni, (14)

4

so i is reserved for labelling the generic component q‖,i that we are defining, while j
labels the components in the sum, and there is no ambiguity about what needs to be
summed. The index j is then called a dummy index.1 It can be changed to any other
index apart from i, and the equation retains its meaning. In other words, we could
equally write

q‖,i = qi −

(
3∑

k=1

qknk

)
ni. (15)

or even

q‖,j = qj −

(
3∑

k=1

qknk

)
nj.

Sums over products involving repeated indices are extremely common when us-
ing subscript notation: basically, they occur whenever there would have been a dot
product in classical vector notation. To shorten subscript notation, the following
convention is therefore adopted almost universally: if a subscript index is repeated
in a product or derivative, a sum over that index from 1 to 3 is implied. A subscript
index must not be repeated more than once in the same product or derivative.

In other words, if we write ajbj, what is meant by this by definition is ajbj ≡∑3
j=1 ajbj, but the summation sign will be omitted. Similarly, aibi or akbk mean the

same thing, and we can legitimately write ajbj = akbk =
∑3

l=1 albl.
This is the first part of the summation convention. The second part is that we

cannot have expressions like aibici: the same index (here i) can only be repeated once
in the same product of terms. This is because dot products only involve two factors,
and expressions like aibici are mostly likely to be incorrect attempts to write out a
product of a vector with a dot product as in (12), which might have suggested that
the last term on the right-hand side should be written as qinini — but as we saw
above, this does not answer the question of which index was fixed and which was to
be summed over.

Example 1 With the summation convention, (2) can be written in subscript notation
as

q‖,i = qi − qjnjni.
Compare this for efficiency in notation with the lengthier expressions in (5).

Note 1 An index must not be repeated more than once when the product is formed
— this still allows an index to appear more than twice if there is an operation that
must be performed before the product is taken. For instance, it is legitimate to write

ai(bi + ci)

1This is the same as the integration variable in definite integration being a dummy variable. Take
an integral like

∫ π
0

sin(x) dx. This evaluates to 2. There is no reason however why we need to have

x as the integration variable here. We could equally write
∫ π
0

sin(y) dy, which also evaluates to 2.

In fact, quite generally we have
∫ b
a
f(x) dx =

∫ b
a
f(y) dy if a and b are fixed.

5

because the term in brackets must be evaluated first: we really have ai(bi + ci) = aidi,
where di = bi + ci, and hence the index i is only repeated once in the actual product.
This expression in fact stands for a · (b + c) in standard vector notation.

Now, the definition of the summation convention allows for derivatives as well as
products. This is because divergences lead to sums over repeated indices, just as dot
products do. For instance, we have

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

In numerical subscript notation, this becomes

∇ · q =
∂q1
∂x1

+
∂q2
∂x2

+
∂q3
∂x3

=
3∑
i=1

∂qi
∂xi

.

Using the summation convention, this can be written more succinctly as

∇ · q =
∂qi
∂xi

,

the summation over i being implied.

Exercise 2 Write the following in subscript notation, using the summation conven-
tion throughout where applicable:

1. a = λb− c,

2. q · n if q = −k∇T ,

3. ρc∂T
∂t

+ ρcu · ∇T −∇ · (k∇T) = a.

4. ∂ρ
∂t

+∇ · (ρu) = 0

5. ∇2T = a.

6. ∇ · (q + p)

7. |a|2

Exercise 3 Find a1, a2 and a3 if

1. ai = bi + ci with b = (1, 2, 3), c = (4,−5, 6)

2. ai = bi + (bjcj)ci with b = (2,−1, 4), c = (1, 3, 4)

3. ai = − ∂f
∂xi

with f = x21 + 2x1x2 + x22 − x23

6

4. ai = uj
∂ui
∂xj

with u = (x2,−x1, x23)

5. ai = uj
∂ui
∂xj
− uj ∂uj∂xi

with u = (x1 + x2,−x1 + x2, x3)

6. ai = ui
∂uj
∂xj

with u = (x1, x2, x3)

Exercise 4 Write in standard (non-component) vector notation

1.
∫
V
∂qi
∂xi

dV =
∫
S
qini dS

2. ui
∂uj
∂xj

3.
∂(ujuj)

∂xi

4. 1
2
uj

∂uj
∂xi

5. ∂h
∂t

+ ∂(hui)
∂xi

+ ∂qi
∂xi

= a

Algebra and calculus rules

The usual rules of algebra and calculus continue to hold when subscript notation is
used together with the summation convention. For instance, multiplication is dis-
tributive:

ai(bi + ci) = aibi + aici.

How can we show this? Recall that the repeated index i indicates a summation, so

ai(bi + ci) =
3∑
i=1

ai(bi + ci)

But for each term in the sum, the product is distributive. In other words, for i = 1,
2 or 3 fixed, ai(bi + ci) = aibi + aici holds, Hence2

3∑
i=1

ai(bi + ci) =
3∑
i=1

(aibi + aici) =
3∑
i=1

aibi +
3∑
i=1

aici.

2In case the last step is not obvious, write the sums out explicitly:

3∑
i=1

(aibi + aici) = (a1b1 + a1c1) + (a2b2 + a2c2) + (a3b3 + a3c3)

= a1b1 + a2b2 + a3b3 + a1c1 + a2c2 + a3c3

=

3∑
i=1

aibi +

3∑
i=1

aici.

7

But we can then drop the summation signs again if we revert to using the summation
condition, or

3∑
i=1

aibi +
3∑
i=1

aici = aibi + aici.

In a similar vein, we can apply the usual rules of calculus. For instance, differen-
tiation is distributive over sums,

∂(fi + gi)

∂xj
=
∂fi
∂xj

+
∂gi
∂xj

,

and the product rule for sums over repeated indices can be written as

∂(figi)

∂xj
=
∂fi
∂xj

gi + fi
∂gi
∂xj

(16)

Exercise 5 The following are examples of the product rule:

1. Show that (16) holds by writing out the terms involved in the sum over i

2. Show similarly that
∂(figj)

∂xi
=
∂fi
∂xi

gj + fi
∂gj
∂xi

.

Clearly, this denotes a vector field (with each component of the vector field being
described by index j, as i is summed over). Would it be easy to write this identity
in standard (non-subscript) vector notation?

8

