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Overview

These notes cover the following

• How to use complex variables to solve the heat equation

• Superposition: exploiting the linearity of the heat equation

Temperature waves

Figure 1 shows two temperature time series measured in Ottawa. The pink line
shows air temperature, while the blue line represents temperature 15 cm underground.
There are some obvious similarities and differences between these two time series. The
most obvious difference is that the daily temperature fluctuations that are clearly
visible in the air temperature record are heavily suppressed at 15 cm depth in the
ground, whereas the annual temperature signal is much more clearly visible at depth.
However, the annual temperature signal is delayed somewhat underground compared
with the surface, and negative temperatures (in celsius) are also suppressed.

Here we ask whether these qualitative features of the time series can be explained
by theory. In the heat equation, we have a model for temperature evolution based
directly on conservation of heat and a couple of empirically grounded constitutive
relations for conductive heat flux and heat density. Can this model explain an actual
real-world observation? To test this, we have to solve the heat equation. In its most
general form, this equation takes the form

ρc
∂T

∂t
+ ρcu · ∇T −∇(·k∇T ) = a
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Figure 1: Two time series of temperature taken concurrently in Ottawa, one (pink)
showing air temperature, the other (blue) showing soil temperature at 15 cm depth.

It is worth noting that this form of the heat equation with constant c assumes that
heat content per unit volume (heat density) is h = ρcT and is unable to capture
latent heat effects associated with phase changes: where there is a phase change, heat
density changes discontinuously at constant temperature (e.g. in going from ice to
water at O◦ C), while ρcT changes continuously (linearly, in fact) with temperature.
This is clearly relevant to the time series in figure 1 as soil temperatures appear to
become stuck at 0◦ C in winter, presumably as water in the soil freezes and melts.

We simplify our task somewhat further by making a few additional assumptions.
Firstly, we are concerned with heat transport in a solid, where advection is unimpor-
tant as velocities are essentially zero (neglecting any small velocities that arise due to
thermal expansion etc. as well as heat transport by any water that flows downwards
through the soil, which considerably complicates any model). Hence we set u = 0.
We also assume that there are negligible heat sources (which could in practice be
radioactivity, oxidation reactions or biological activity), and put a = 0. Lastly, we
assume that temperature depends only on time t and depth in the ground, which we
measure by the coordinate x, but not on horizontal displacements (measured by y
and z). We also assume that thermal conductivity k is a constant. Then the heat
equation becomes

ρc
∂T

∂t
− k∂

2T

∂x2
= 0. (1)

Now, stating the heat equation alone isn’t enough to specify a solvable problem.
Clearly, the temperature variations in the soil shown in figure 1 are driven by tem-
perature variations in the air. The way that this is expressed for the heat equation
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is through a boundary condition at the surface x = 0. We are interested in termpera-
ture oscillations, and the simplest way to do this is to have a sinusoidal temperature
imposed at the surface. We choose to do this in the form

T (0, t) = T0 cos(ωt) (2)

where T0 is the amplitude of temperature variations at the surface, and ω is known as
the ‘angular frequency’. To understand what an angular frequency is, note that the
period t0 of an oscillation is the time period required to go through one cycle. In the
cosine above, a single cycle is gone through when the argument of the cosine (i.e., ωt)
goes from 0 to 2π. The length of time t0 that is required to do this is clearly given
by ωt0 = 2π. Hence ω = 2π/t0 = 2π/ period of oscillation. This can be linked to the
ordinary frequency f , which measures the number of cycles per unit time. Ordinary
frequency is therefore 1/t0, so that ω = 2πf .

Exercise 1 What are the S.I. units of ω? If the cosine wave describes an annual
cycle, what is ω? What if the cosine wave describes a daily cycle? A Milankovitch
cycle of 40,000 years?

Now we have to solve the heat equation with this boundary condition. This is
where the complex variable material becomes useful. The boundary condition (2) at
x = 0 can also be expressed in the form

T (0, t) = Re [T0 exp(iωt)] . (3)

To make use of this, we simply try and see if a solution of the form

T (x, t) = Re [T0 exp(iωt+ λx)] . (4)

can be made to satisfy the problem. Clearly, this expression satisfies the boundary
condition (3). The remaining question is simply whether it can also be made to satisfy
the heat equation (1). To find out, substitute

ρc
∂T

∂t
− k∂

2T

∂x2
= ρc

∂

∂t
{Re [T0 exp(iωt+ λx)]} − k ∂

2

∂x2
{Re [T0 exp(iωt+ λx)]}

= 0.

But from the notes on complex variables, we know that derivatives with respect to a
real variable like ∂/∂t and taking the real part commute, so

∂

∂t
{Re [T0 exp(iωt+ λx)]} = Re

[
T0
∂

∂t
exp(iωt+ λx)

]
= Re [iωT0 exp(iωt+ λx)]
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Recall that there is no simple expression for the real part of the product of two
complex numbers, Re(z1z2), so there is no point in trying to simplify further just yet.
We similarly have

∂2

∂x2
{Re [T0 exp(iωt+ λx)]} = Re

[
T0

∂2

∂x2
exp(iωt+ λx)

]
= Re

[
λ2T0 exp(iωt+ λx)

]
Putting this back in the heat equation gives

ρcRe [iωT0 exp(iωt+ λx)]− kRe
[
λ2T0 exp(iωt+ λx)

]
= 0

But, if a and b are real and z1 and z2 are complex numbers, then the properties
of Re described in the notes on complex variables ensure that aRe(z1) + bRe(z2) =
Re(az1 + bz2). Applying this here allows us to write

Re
[
(iρcω − kλ2)T0 exp(iωt+ λx)

]
= 0

Now one way in which to ensure that the expression on the left equals zero is to
demand that

iρcω − kλ2 = 0. (5)

Hence the form of T (x, t) in (4) can be made to satisfy the heat equation by choosing
a particular λ, namely that which satisfies (5).

Note 1 So far we have shown that putting iρcω − kλ2 = 0 ensures that the heat
equation is satisfied, but you may be left wondering whether this equality is in fact
necessary or not. Note that prior to putting iρcω − kλ2 = 0 , we only knew that

Re
[
(iρcω − kλ2)T0 exp(iωt+ λx)

]
= 0

But x and t are arbitrary (the only constraints being that x must be positive. So we
can let x→ 0 to find

Re
[
(iρcpω − kλ2)T0 exp(iωt)

]
= 0

If t is arbitrary, then we can put t = 0 so

Re
[
(iρcω − kλ2)T0

]
= 0

We can also put t = π/(2ω) so that exp(iωt) = i, and

Re
[
i(iρcω − kλ2)T0

]
= 0

But now consider a complex number z = a+ ib about which we know that Re(z) = 0
and Re(iz) = 0. Writing this out, we have Re(a + ib) = a = 0 and Re[i(a + ib)] =
−b = 0. Hence z = a + ib = 0. In our case, z = (iρcω − kλ2)T0 = 0. We know that
T0 6= 0, so we must have

iρcω − kλ2 = 0.
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Formally, we get

λ = ±
√
iρcω

k
= ±
√
i

√
ρcω

k
. (6)

The snag is that we apparently have to find the square root of i. Is this itself a
complex number, or something more complicated? There are two ways of showing
that

√
i is indeed a complex number, and to compute its real and imaginary parts.

Version one is simply to assume that we can write
√
i = a+ ib

with a and b real. Squaring both sides,

i = a2 − b2 + 2iab,

from which it follows that

a2 − b2 = 0 2ab = 1.

The first inequality implies b = ±a. Substituting this into the second inequality gives

±2a2 = 1.

But a is, by assumption, real, so a2 > 0 and we must choose the plus sign, so that

b = a

and
2a2 = 1.

Hence a = ±1/
√

2 and
√
i = ±

(
1√
2

+
i√
2

)
. (7)

Putting this back into (6), we find

λ = ±
√
ρcω

2k
(1 + i)

Note 2 Another way to find the square root of i is to assume it can be written in the
polar form

√
i = r exp(iθ). Squaring both sides,

i = r2 exp(i2θ) = r2 cos(2θ) + ir2 sin(2θ)

so that
22 cos(2θ) = 0, r2 sin(2θ) = 1.

From the first equality we conclude that cos(2θ) = 0, so 2θ = π/2 or 3π/2. With
2θ = π/2, the second equality gives r2 = 1 or r = ±1, while with 2θ = 3π/2, we get
r2 = −1, which has no real solutions. Hence θ = π/2, r = ±1 and

√
i = ± exp(iπ/4) = ±(cos(π/4) + i sin(π/4))

But cos(π/4) = sin(π/4) = 1/
√

2, and we recover (7).
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Now that we have found λ, we can substitute back into (4):

T (x, t) = Re

{
T0 exp

[
iωt±

√
ρcω

2k
(1 + i)

]}
. (8)

To make sense of this, we need to take the real part. We can re-write

T (x, t) = Re

{
T0 exp

[
iωt±

√
ρcω

2k
(1 + i)x

]}
.

= Re

{
T0 exp

(
±
√
ρcω

2k
x

)
exp

[
i

(
ωt±

√
ρcω

2k
x

)]}
= T0 exp

(
±
√
ρcω

2k
x

)
cos

(
ωt±

√
ρcω

2k
x

)
. (9)

It is important to note here that the same sign out of ± must be chosen in both, the
exponential and the cosine: there are only two possibilities for λ, either with a minus
in both instances or with a plus.

Note 3 The above procedure shows the trick to extracting the real part: write the
solution in the form

T (x, t) = Re {T0 exp [iωt+ iIm(λ)x+ Re(λ)x]}
= Re {T0 exp [i(ωt+ Im(λ)x)] exp [Re(λ)x]}
= T0 exp [Re(λ)x] cos [ωt+ Im(λ)x]

We still need to decide which sign to pick. If we were to pick ‘+’, the solution
would be

T (x, t) = T0 exp

(√
ρcω

2k
x

)
cos

(
ωt+

√
ρcω

2k
x

)
. (10)

The important term to look at is the exponential. Because of the positive coefficient,
the size of the exponential increases with depth in the ground without bound. The
deeper we go underground, the more violent the temperature osciallations expressed
by the cosine function become. This is clearly unphysical. But how can this be
prevented in the original set-up of the problem? (10) clearly satisfies the heat equation
(1) and the boundary conditions (2). The answer is that the heat equation actually
requires boundary conditions at another boundary. In our case, there is no actual
boundary to sensibly impose, unless we want to model the entire interior of the earth.
Instead, the most sensible thing to do is to impose boundary conditions ‘at infinity’,
i.e., a long way from the top of the soil. Physically, a long way down from the top
of the soil, we expect a steady geothermal heat flux qgeo to be flowing towards the
surface. This suggests that we put

−k∂T
∂x
→ −qgeo. (11)
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Figure 2: Top row: an annual temperature wave (ω = 2π/(365 × 24 × 3600) s−1)
with amplitude T0 = 10 C, shown at (left to right) t = 1.5 months, 4.5 months,
7.5 months, 10.5 months. Parameter choices are intended to reflect soil, with k =
0.4 W m−1 K−1, ρ = 1000 kg m−3, c = 800 W kg−1 K−1. The dashed line represent
the temperature envelope (minimum and maximum temperatures reached at each x
during the cycle). Bottom row: same parameter values, but for a diurnal temperature
cycle, ω = 2π/(24 × 3600) s−1, shown at times t = 3 hours, 9 hours, 15 hours, 21
hours.

Note that there is a negative sign on the right because qgeo flows towards the surface,
i.e., in the negative x-direcetion.

Clearly, (11) excludes a solution like (10). If we take the minus sign in (9), we
have

T (x, t) = T0 exp

(
−
√
ρcω

2k
x

)
cos

(
ωt−

√
ρcω

2k
x

)
. (12)

With this, the heat flux at depth x is

−k∂T
∂x

=

√
ρcω

2k
T0 exp

(
−
√
ρcω

2k
x

)[
sin

(
ωt−

√
ρcω

2k
x

)
− cos

(
ωt−

√
ρcω

2k
x

)]
.

Clearly, −k∂T/∂x→ 0 now as x→∞, and the solution satisfies (11) when qgeo = 0.
This is a good model when geothermal heat flux is small. The solution is plotted as
a function of depth x for various times t in the temperature cycle in figure 2. We will
see later how a finite geothermal heat flux can also be accomodated.

Note 4 This note is an aside that is not necessary to follow the course, but will be
of interest to those taking a separate course on partial differential equations (which I
recommend!). Many partial differential equations courses teach the method of separa-
tion of variables. The temperature wave problem (1) with (2) can also be solved using
this method. (1) takes the form

ρc
∂T

∂t
− k∂

2T

∂x2
= 0
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Separation of variables for this equation means looking for a solution

T (x, t) = Θ(x)τ(t),

in which the function T that depends on both x and t can be expressed as the product
of two functions, each of which depends only on x or t but not on both.1 Substituting
into the heat equation gives

ρc
dτ

dt
Θ− kτ d2Θ

dx2
= 0.

We can rearrange this into
ρc

k

1

τ

dτ

dt
=

1

Θ

d2Θ

dx2
.

The standard argument now goes that the left-hand side of this equality only depends
on t, while the right-hand side depends only on x. As x and t are independent vari-
ables, this is only possible if both sides are actually constant (otherwise I could change
the value of the left-hand side by changing t while keeping the value of the right-hand
side constant by keeping x constant, thereby negating the equality). If both sides are
constant, then we can assign this constant a symbol, m:

ρc

k

1

τ

dτ

dt
= m =

1

Θ

d2Θ

dx2
.

This gives us two ordinary differential equations, one for τ and one for Θ.

ρc

k

1

τ

dτ

dt
= m (13a)

1

Θ

d2Θ

dx2
= m. (13b)

The first is simple to solve by direct integration: we get

ρc

k
log(τ) = mt+ C

or

τ(t) = C ′ exp

(
mk

ρc
t

)
.

where C ′ = exp(C) is a constant. But we can now restrict the choice of m, as T has
to satisfy our boundary conditions. We would like

T (0, t) = Θ(0)τ(t) = C ′Θ(0) exp

(
m

ρc
t

)
= Re [T0 exp(iωt)] .

1Note that most functions of two variables cannot be expressed in this way. Try T (x, t) = x+ t.
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There are two exponentials here, but unfortunately also a ‘Re’, so this doesn’t quite
work. We dispense with taking the real part for now (and show below why this works),
and instead impose the boundary condition

T (0, t) = Θ(0)τ(t) = C ′Θ(0) exp

(
mk

ρc
t

)
= T0 exp(iωt). (14)

So long as we choose C ′Θ(0) = T0, this can be satisfied provided we also choose

m = i
ρcω

k
. (15)

The second equation in (13) can be rewritten in the form

d2Θ

dx2
−mΘ = 0.

The long way to solve this involves integrating factors, but a quick way to find solutions
is to assume they take the form

Θ = exp(αx)

Simply substituting gives
(α2 −m) exp(αx) = 0,

and hence
α = ±

√
m (16)

will work.
Now, recall that

m = i
ρcω

k
so that

√
m =

√
i

√
ρcω

k

and we can recognize that λ =
√
m from (6):

√
m =

√
ρcω

2k
(1 + i).

where we dispense with the ± because (16) already incorporates both +
√
m and −

√
m.

The solution T (x, t) can then finally be written as

T (x, t) = Θ(x)τ(t)

= C ′ exp(±
√
mx)′ exp

(
mk

ρc
t

)
= C ′ exp

(
iωt±

√
ρcω

2k
(1 + i)x

)
. (17)
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In order to satisfy (14), we must also have C ′ = T0. Basically, we have recovered (8),
but without the ‘Re’. This is because we dropped the ‘Re’ in the boundary condition
(14).

But if a complex function T (x, t) satisfies the heat equation, then so does its real
part on its own. This is because taking the real part and differentiation with respect
to a real variable commute. In other words, if T satisfies the heat equation, we have

0 = Re

[
ρc
∂T

∂t
− k∂

2T

∂x2

]
= ρc

∂[Re(T )]

∂t
− k∂

2[Re(T )]

∂x2
,

so that Re(T ) satisfies the heat equation. This (which we knew already by a different
route) means that taking the real part of the solution (17) gives us a function that
also solves the heat equation. Moreover, taking real parts on both sides of (14) (which
T satisfies), we get

Re(T (0, t)) = Re(T0 exp(iωt)) = T0 cos(ωt),

i.e., we find that (2) is satisfied by Re(T ) rather than T . In fact, the real part of T is

Re(T (x, t)) = T0 exp

(
±
√
ρcω

2k
x

)
cos

(
ωt±

√
ρcω

2k
x

)
which is precisely the solution (8) of (1) with (2). Of course, if we also assume that
−k∂T/∂x → 0 as x → 0 (i.e., (11) with qgeo = 0) then we must also choose the −
sign and we recover (12).

A few properties of the solution

In basic physical terms, we see that the temperature oscillation shown in figure 2
propagates downwards with decreasing amplitude and an increasing time lag. What
happens is that heat flowing downwards from the surface when the surface is hot at
the maximum in the cycle needs to warm up the soil immediately under the surface.
Only once this has happened can the near-surface soil transfer heat downwards to
warm up layers of soil that lie further down in the ground. This explains the time
lag. However, before deeper layers of soil can be warmed up, the surface tempearture
starts to drop again. This causes heat loss back to the surface from the near-surface
soils. Less heat is therefore available to warm up layers deeper underground, and this
is why the amplitude of the temperature variation decreases with depth.

We can put these observations into a more quantitative framework. Consider first
the time lag in warming up deeper layers. This is associated with cosine term

cos

(
ωt−

√
ρcω

2k
x

)
,
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which is a travelling wave: we can write it in the form

cos(a(x− vt))

if we put a = −
√
ρcω/2k and

v = ω

√
2k

ρcω
=

√
2kω

ρc
.

The point of writing it in this form is that we can see that the cosine wave moves at
a speed v as time t progresses. To understand this, note that the maximum of the
wave cos(a(x−vt)) is attained where a(x−vt) = 0, i.e. where x = vt. So the location
at which the cosine wave takes its maximum value moves at speed v downwards into
the ground.

We can also calculate the wavelength of the cosine wave. This is the distance x0
by which we have to increase x to go through an entire cycle of the wave. In other
words, it is given by √

ρcω

2k
x0 = 2π

or

x0 = 2π

√
2k

ρcω
.

The actual solution (12) is the sine wave times an exponentially decreasing enve-
lope function,

T0 exp

(
−
√
ρcω

2k
x

)
,

so that the solution is a travelling cosine wave whose amplitude decreases with dis-
tance into the ground. A frequently used measure of how fast an exponential function
decreases in amplitude is the ‘e-folding length’ xe of the envelope. Thishe distance
over which the amplitude decreases by a factor e−1, and is therefore given by√

ρcω

2k
xe = 1

so that

xe =

√
2k

ρcω
.

With these observations in mind, we can now understand the time series in figure
1. The e-folding length scale xe is shorter for larger ω. Recall that ω is angular
frequency, equal to 2π/ period of oscillation. For faster temperature oscillations at
the surface (e.g. diurnal versus annual), the temperature signal therefore decays
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faster than for slower oscillations. This is why the annual signal is clearly visible at
15 cm depth (though reduced in amplitude from the surface), whereas the diurnal
signal is filtered out quite strongly. We can also understand the time lag between the
annual signal at 15 cm depth and at the surface. The cosine wave is a travelling wave
propagating into the ground at a finite velocity

v =

√
2kω

ρc
,

and the peak in temperature therefore takes a finite amount of time to reach a point
at depth.

Superposition of different frequencies

In our set-up of the problem, we assumed that we had a single angular frequency ω in
the problem, whereas the temperature time series in figure 1 clearly contains at least
two frequencies. A more realistic boundary condition at the surface than (2) might
therefore have been

T (0, t) = T0,1 cos(ω1t+ θ1) + T0,2 cos(ω2t+ θ2) (18)

where we have included a phase shift θ in each cosine because there is no reason why
the two oscillations need to reach their maximum at the same time t = 0. If we had
only one of the two frequencies, it would be a simple matter to adjust the solution
derived above in (12) to account for the phase shift. For instance, if we had only the
oscillation subscripted with a ‘1’ (so T0,2 = 0), then a solution of (1) with (18) would
be T (x, t) = T1(x, t) defined by

T1(x, t) = T0,1 exp

(
−
√
ρcω1

2k
x

)
cos

(
ω1t−

√
ρcω1

2k
x+ θ1

)
(19)

and similarly if T0,1 = 0, a solution to (1) with (18) would be T (x, t) = T1(x, t), where

T2(x, t) = T0,2 exp

(
−
√
ρcω2

2k
x

)
cos

(
ω2t−

√
ρcω2

2k
x+ θ2

)
. (20)

Exercise 2 Note that the boundary conditions in (18) contain phase angles θ1 and
θ2, which are assumed to be constant. These were not present in the original version
of the problem, in which the boundary condition was (??), T (0, t) = cos(ωt). Consider
therefore the slightly generalized version consisting of the heat equation (1), (11) with
zero geothermal heat flux, and (2) with a phase angle,

ρc
∂T

∂t
− k∂

2T

∂x2
=0, (21a)

T (0, t) =T0 cos(ωt+ θ), (21b)

−k∂T
∂x
→ 0. (21c)
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Look for a solution
T (x, t) = Re[A exp(iωt+ λx)]

where A is complex. Express A in polar form

A = |A| exp(iφ)

Substitute into (23a) and show that you still satisfy the heat equation provided

iρcω − λ2k = 0.

Find the unique value of λ needed to satisfy (23c) Substitute into (23b) and find |A|
as well as φ. Show that

T (x, t) = T0 exp

(
−
√
ρcω

2k
x

)
cos

(
ωt− .

√
ρcω

2k
x+ θ

)
. (22)

Next, consider instead defining a new time variable t′ = t − θ/ω. Let T ′(x, t′) =
T (x, t). By using the chain rule and direct substitution, show that T ′ satisfies the
original problem consisting of (1), (2) and (11) with qgeo = 0, but with t′ repalcing t,

ρc
∂T ′

∂t′
− k∂

2T ′

∂x2
=0, (23a)

T ′(0, t′) =T0 cos(ωt′), (23b)

−k∂T
′

∂x
→ 0. (23c)

We already have a solution for this problem

T ′(x, t′) = T0 exp

(
−
√
ρcω

2k
x

)
cos

(
ωt′ − .

√
ρcω

2k
x

)
.

Show that this is the same as (22).

So how can we cope with both, T0,1 and T0,2 being non-zero? The important
observation is that the heat equation (1) is linear, meaning that if T1(x, t) and T2(x, t)
satisfy the heat equation, then so does their sum T (x, t) = T1(x, t) + T2(x, t):

ρc
∂T

∂t
− k∂

2T

∂x2
= ρc

∂(T1 + T2)

∂t
− k∂

2(T1 + T2)

∂x2

= ρc

(
∂T1
∂t

+
∂T2
∂t

)
− k

(
∂2T1
∂x2

+
∂2T2
∂x2

)
=

(
ρc
∂T1
∂t
− k∂

2T1
∂x2

)
+

(
ρc
∂T2
∂t
− k∂

2T2
∂x2

)
= 0

where the last equality follows becayse T1 and T2 separately satisfy the heat equation,
so the two terms in brackets on the penultimate line both equal zero.
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Exercise 3 The above could have been stated more generally. Show that, if a number
of functions Ti(x, t) all satisfy the heat equation, then so does T =

∑
i ciTi, where the

ci are arbitrary constants.

Exercise 4 The concept of linearity in mathematics goes much further than this par-
ticular example. Consider an operation L acting on some object for which multipli-
cation by either real or complex numbers (generically called scalars in this context) is
defined along with the operation of addition. An example of such an ‘object’ could be
a vector. For instance, for two vectors a and b, we can define addition a + b as well
as multiplication by a real (or more exotically, complex) number λ, λa. The object
could however be a function, too. For instance, we can define the sum of two func-
tions f(x)+g(x) as well as multiplication of a function by a number λ to form λf(x).
The ‘operation’ can also take many different forms, so long as it produces another
object for which addition and multiplication by scalars is defined. For instance, for a
vector, the operation could be forming the scalar product with a fixed vector such as i,
or for a function, the operation could be taking a derivative, or forming an integral.
For instance, we could define L(a) = i · a, or we could have L(f) =

∫ 1

0
f(x) dx, or

L(f) = df/ dx. In these examples, the first is an operator acting on a vector a, while
the second and third are operators on a function f .

Whatever the type of object φ that the operator acts on, whatever type of scalar c
(real or complex) or the operation L, the operation L is called linear if

L(c1φ1 + c2φ2) = c1L(φ1) + c2L(φ2)

always holds for all φ1, φ2, c1 and c2. The advantage of linearity in a set of equations
is that, if φ1 and φ2 separately satisfy L(φ1) = 0 and L(φ2) = 0, then we immediately
know that L(c1φ1 + c2φ2) = 0. More generally if a set of φi, i = 1, . . . , n satisfy
L(φi) = 0 for all i, then φ =

∑
i ciφi also satisfies

L(φ) = L

(∑
i

ciφi

)
=
∑
i

ciL (φi) = 0.

This is know as the principle of superposition: a ‘weighted’ sum (the scalars ci being
the ‘weights’) of solutions of L(φ) = 0 is also a solution of the same equation.

For the following examples, determine whether L is linear or not. Make sure you
are clear what L is acting on: if f(x) is a function and L(f) acts on the function
f , then linearity is in f , not in the argument x of the function. In other words,
linearity of L implies that L(c1f1(x) + c2f2(x)) = c1L(f1(x)) + c2L(f2(x)), and not
that L(f(c1x1 + c2x2)) = c1L(f(x1)) + c2L(f(x2).2 Because of this, we usually omit
the argument of the function f when an operator L acts on a function f .

1. L(f) = df/ dx, where f is a function of x.

2This latter result holds if L(f) is linear in f and f(x) is linear in x.
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2. L(f) = dnf/ dxn, where n is a fixed integer, and f is a function of x.

3. L(f) = h(x)df
dx

, where h is a fixed function of x.

4. L(f) =
∫ b

a
f(x) dx, where f is a function of x, while a and b are fixed.

5. L(f) =
[∫ b

a
|f(x)|2 dx

]1/2
, where f is a function of x, a and b are fixed.

6. L(f) = ∇f , where f is a function of (x, y, z, t).

7. L(q) = ∇ · q, where q is a vector field.

8. L(z) = |z|, where z is a complex number.

9. L(a) = a · i, where a is a vector.

10. L(f) = Re(f(x)), where f is a complex function of the real variable x, and the
scalars c are required to be real.

11. L(f) = Re(f(x)), where f is a complex function of the real variable x, and the
scalars c can be complex.

Now it will come as no suprise if we ask whether the two functions T1 and T2
defined in (19) and (20) can be added to solve (1) with (18) as a boundary condition
for the general case T0,1 6= 0, T0,2 6= 0. Clearly, the answer is yes. Each satisfies the
heat equation separately, and therefore, by the above, so does

T (x, t) = T1(x, t) + T2(x, t)

Moreover, this sum also satisfies the boundary condition (18), as can be seen by
substituting x = 0. Hence

T (x, t) = T0,1 exp

(
−
√
ρcω1

2k
x

)
cos

(
ω1t−

√
ρcω1

2k
x+ θ1

)
+T0,2 exp

(
−
√
ρcω2

2k
x

)
cos

(
ω2t−

√
ρcω2

2k
x+ θ2

)

Non-zero geothermal heat flux

We have seen how to superpose solutions for different driving frequencies ω, but all
of these solutions still have vanishing heat flux as x→∞. How can we incorporate a
finite heat flux qgeo in the boundary condition (11) into the solution? In other words,
how can we solve (1) with (2) and (11) when qgeo 6= 0?
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Figure 3: Superposition of annual and diurnal frequencies, both with amplitude 10C.
Parameter values are the same as in figure 2. Top row: Snapshots of the temperature
field during day 45 of the cycle. Bottom row: snapshots of the temperature field
spaced 3 months apart.
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Figure 4: The temperature solution shown in figure 3 plotted against time at depths
x = 0 (top panel) and x = 0.45 m (bottom panel). The attenuation of the high-
frequency (diurnal) signal with depth is clearly visible; the phase lag and attenuation
of the slow-frequency (annual) signal with depth are also evident, but require a closer
look.
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The answer is again to use the linearity of the heat equation. Assume that T can
be expressed as the sum of two functions T1 and T2. From the heat equation, we have

ρc
∂T1
∂t
− k∂

2T1
∂x2

+ ρc
∂T2
∂t
− k∂

2T2
∂x2

= 0. (24)

An obvious function to try for T1 is the solution (12), so that T2 then represents a
correction that is added on to account for a finite geothermal heat flux:

T1 = T0 exp

(
−
√
ρcω

2k
x

)
cos

(
ωt−

√
ρcω

2k
x

)
.

Finding T then amounts to finding T2. As T1 itself satisfies the heat, (24) becomes

ρc
∂T2
∂t
− k∂

2T2
∂x2

= 0. (25)

We still have to deal with the boundary conditions. At the surface, (2) holds:

T1(0, t) + T2(0, t) = T0 cos(ωt).

But, using the form of T1 above, this simply becomes

T2(0, t) = 0. (26)

At infinity, we have (11):

−k∂T1
∂x
− k∂T2

∂x
→ −qgeo.

But ∂T1/∂x→ 0 as x→∞, so

−k∂T2
∂x
→ −qgeo. (27)

Now we have to solve (25) with boundary conditions (26) and (27). Neither
boundary condition includes time t explicitly, so we can try to find a steady state
solution, T2 = T2(x). This turns (25) into

−kd2T2
dx2

= 0

So that, by integrating twice,
T = ax+ b

with a and b constants. But to satisfy the boundary conditions (26) and (27), we
must have a = qgeo/k, b = 0:

T2 =
qgeox

k
.

A solution to the full problem is then T = T1 + T2:

T (x, t) = T0 exp

(
−
√
ρcω

2k
x

)
cos

(
ωt−

√
ρcω

2k
x

)
+
qgeox

k
.
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Figure 5: Temperature wave in ice with a period of 2000 years and amplitude 10C
in the presence of a geothermal heat flux. Parameter values are k = 2.1 W m−1 k−1,
ρ = 900 kg m−3, c = 2.2 × 103 W kg−1 K−1. Geothermal heat flux is 40 mW m−2.
Snapshots of the temperature field are shown 500 years apart. Note that the figures
suggest temperatures in excess of 0 ◦C, which must obviously be nonsense: the tem-
perature here must be measured relative to some mean T̄ that is below zero. See
exercise 5.

Exercise 5 We can actually cast what we have done in the last two sections a bit
more systematically in terms of the linearity not only of the heat equation, but also
of the boundary conditions we apply. Suppose we have a more general problem

ρc
∂T

∂t
− k∂

2T

∂x2
= a(x) for x > 0 (28a)

T (0, t) = T̄ +
∑
j

T0,j cos(ωjt)at x = 0, (28b)

k
∂T

∂x
→ qgeo as x→∞. (28c)

We can actually write the left-hand sides of not only the heat equation, but also the
boundary conditions, as linear operators, if we put

L1(T ) = ρc
∂T

∂t
− k∂

2T

∂x2
, L2(T ) = T (0, t), L3(T ) = lim

x→∞
k
∂T

∂x
.

1. Show that L1, L2 and L3 are linear operators, in other words, that L(
∑

i ciTi) =∑
i ciL(Ti) for constants ci and arbitrary functions Ti(x, t)

2. In the problem above, we do not have equations of the form L(T ) = 0. Instead,
the heat equation and the boundary conditions take the form Li(T ) = fi, where
fi is given. The fi are known as ‘inhomogeneous’ terms. For instance, for the
heat equation, we can put f1 = a(x), or for the far-field boundary condition,
we would put f3 = qgeo. The trick is now to find functions T1, T2 and T3 such
that each takes care of one of the inhomogeneous terms. Specifically, we would
require that T1 satisfies

L1(T1) = f1, L2(T1) = 0, L3(T1) = 0,
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with analogous definitions for T2 and T3 (so that Li(Tj) = 0 if i 6= j, and
Li(Tj) = fi if i = j). Show that if such functions can be found, then T =
T1 + T2 + T3 satisfies (28).

3. Find a solution T1(x), a solution T2(x, t) and a solution T3(x) that satisfy these
requirements. You have to assume that

∫∞
0
a(x) dx is finite to make this work,

and your solution for T1 will probably an integral that looks like
∫ x

0
a(x′) dx′.

The solution for T2 will itself be a sum of terms, which you can find by splitting
f2 = f2,1 + f2,2 + . . . and putting T2 = T2,1 + T2,2 + . . . so that L1(T2,i) = 0,
L2(T2,i) = f2,i and L3(T2,i) = 0.

4. Write down a solution to (28) as an explicit formula for T (x, t).

5. So far, we have not mentioned initial conditions. In order to specify a unique
solution to the heat equation, we need not only boundary conditions, but also
initial conditions — meaning, for instance, an initial temperature T (x, 0) needs
to be specified at every point x in the region where the heat equation is solved
for.3 Suppose we add this to (28),

T (x, 0) = T0(x) (29)

where T0 is a known function. Show that this initial condition also takes the form
L4(T ) = f4. Let T1, 2 and T3 be the same function defined above, and assume
that T = T1 + T2 + T3 + T4 solves (28) combined with (29). As T1 + T2 + T3
already solves (28), the role of T4 must be to satisfy the initial conditions. Using
the operators L1, L2, L3 and L4, what equations does T4 need to satisfy in order
to make T a solution?

3This region is also known as the ‘domain’ on which the heat equation is solved
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