
Midterm: EOSC 352

15th November 2010

There are two questions in this exam. Marks available are as indicated, so choose
the level of detail you give and the amount of time you spend on a question
accordingly. Attempt all questions. You have fifty (50) minutes to complete this
exam. Good luck!

1. In class, we considered the diffusion of heat away from a plane into which it was
injected at t = 0. A similar analysis can be done for injection of heat into a line
in a rock at an initially constant background temperature (which we set to zero
below). The appropriate dimensionless (scaled) model for temperature T (r, t) as
a function of distance r from the line and time t after injection is then

∂T

∂t
− 1

r

∂

∂r

(
r
∂T

∂r

)
= 0 for r ≥ 0, t > 0. (1a)

lim
t→0

T (r, t) = 0 for any fixed r > 0 (1b)

lim
r→±∞

T (r, t) = 0 for any fixed t > 0 (1c)

2π

∫ ∞
0

T (r, t)r dr = 1 for all times t > 0 (1d)

where the last equation represents the energy injected per unit length of the line.
No need to derive these equations; instead you will be guided through their solution
below.

Look for a similarity solution

T (r, t) = t−αθ
( r
tβ

)
(2)

by following these steps (if you get stuck, try skipping to the next step):

(a) (3 points) Let ξ = r/tβ, and substitute the form of T from (2) into (1a).
Transform all derivatives of T into derivatives of θ with respect to ξ.
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Using the product and chain rules,

∂T

∂t
= −αt−α−1θ(ξ) + t−αθ′(ξ)

∂ξ

∂t

== αt−α−1θ(ξ)− βt−αθ′(ξ) r

tβ + 1

= −αt−α−1θ(ξ)− βt−α−1θ′(ξ)ξ

as r/tβ+1 = ξ/t. Similarly,

∂T

∂r
= t−αθ′(ξ)

dξ

dr
= t−α−βθ′(ξ)

∂2T

∂r2
=

∂

∂r

∂T

∂r

= t−α−βθ′′(ξ)
dξ

dr
= t−α−2βθ′′(ξ)

Substituting in the heat equation,

−ρcpt−α−1 [αθ(ξ) + βξθ′(ξ)]− t−α−2βθ′′(ξ) = 0.

(b) (3 points) Collect terms so that you have only ξ and t appearing in your
equation (but not r), and t appears only as a coefficient in one term in
the resulting equation. What does the numerical value of β have to be if a
solution of the form (2) can work?
See above. We can rearrange this as

−ρcp [αθ(ξ) + βξθ′(ξ)]− t1−2βθ′′(ξ) = 0.

Now, if θ depends only on ξ but not explicitly on t, then the differential
equation for θ had better not contain t explicitly. This is the case if and
only if 1− 2β = 0 so that t1−2β = 1. But then

β =
1

2
.

(c) (2 points) Using the definition of ξ, express t as a function of ξ and r. What
does the initial condition (1b) become in terms of r and ξ?
ξ = r/tβ so t = (r/ξ)1/β and T (r, t) = t−αθ(ξ) = ξα/βr−α/betaθ(ξ). If t→∞
at fixed r, then ξ = r/tβ → ∞ (t−β = t−12 → ∞ as t → 0. So the initial
condition becomes

lim
ξ→∞

ξα/βr−α/betaθ(ξ) = 0

with r > 0 fixed. But if r is fixed, we can pull r−α/beta out to find

lim
ξ→∞

ξα/βθ(ξ) = 0.
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(d) (1 point) What does the boundary condition (1c) become in terms of t and
ξ?
Similar to the above: if t is fixed, then ξ = r/tβ →∞ as r →∞, so

lim
ξ→∞

t−αθ(ξ) = 0

at fixed t. But if t is fixed, then we pull it out of the limit to find

lim
ξ→∞

θ(ξ) = 0.

(e) (3 points) Change variables from r to ξ in the energy conservation constraint
(1d). Collect all terms involving t in the resulting equation. Explain why
α = 1 if a solution of the form (2) is to work.
Change variables (at fixed t) to ξ = r/tβ so that r = tβξ, dr = tβ dξ. Then
the limits of integration are still 0 to infinity. Also substitute T = tαθ(ξ)

2π

∫ ∞
0

t−αθ(ξ)tβξtβ dξ = 2πtα−2β
∫ ∞
0

θ(ξ)ξ dξ = 1.

But if θ depends only on ξ, so integral does not depend on t. Hence this can
only work at all times t if the left-hand side does not contain t explicitly, so
that α− 2β = 0 and tα−2β = 1. Hence

α = 2β = 1.

(f) (4 points) At this point, you should have derived the ordinary differential
equation

−1

2

(
2ξθ + ξ2

dθ

dξ

)
− d

dξ

(
ξ

dθ

dξ

)
= 0

with the additional conditions

ξ2θ(ξ)→ 0 as ξ → ±∞, (3a)

2π

∫ ∞
0

θ(ξ)ξ dξ = 1. (3b)

From this, derive the equation

−1

2
ξ2θ = ξ

dθ

dξ
+ C. (4)

where C is a constant of integration
The trick is to recognize that we can use the chain rule in reverse:

2ξθ + ξ2
dθ

dξ
=

d(ξ2θ(ξ))

dξ
.
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Then

−1

2

d(ξ2θ(ξ))

dξ
− d

dξ

(
ξ

dθ

dξ

)
= 0

Integrating once gives

−1

2
ξ2θ = ξ

dθ

dξ
+ C.

(g) (1 point) Using (3), show that C = 0.
The first equality in (3) gives ξ2θ → 0 as ξ →∞. Hence

ξ
dθ

dξ
→ −C

or equally, dξ/ dθ behaves as −C/ξ for large ξ. If C 6= 0, this however that
θ behaves as −C log(ξ) for large ξ, in which case θ does not tend to zero.

(h) (3 points) Separate variables to find a solution for θ(ξ) involving one con-
stant of integration.
With C =). we have

−1

2
ξ2θ = ξ

dθ

dξ

Separating variables,
1

θ

dθ

dξ
= −ξ

2
.

Integrating once,

log(θ) = −ξ
2

4
+ C ′

where C ′ is a constant of integration. Equally

θ(ξ) = K exp

(
−ξ

2

4

)
.

(i) (2 points) Use one of the conditions in (3) to find that constant of integra-
tion.
We have not used the integral constraint yet,

2π

∫ ∞
0

ξθ(ξ) dξ = 1.

But we can now do the integral on the left. By a change of variable ξ2/4 = u,
du = ξ dξ/2,

2π

∫ ∞
0

Kξ exp

(
−ξ

2

4

)
dξ = 4π

∫ ∞
0

K exp(−u) du = 4πK = 1,

so that

K =
1

4π
.
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2. Let r be distance from the origin and r̂ be the unit vector in the radial direction
away from the origin. Let ρ, cp and k be constants, denoting the usual physical
quantities. At t = 0, let

u =
u0r

r0
r̂, T =

T0r0
r
,

where u0, r0 and T0 are constants. Let V be the spherical volume given by r < r0,
with S its surface. Note that V is a fixed volume, and does not evolve in time.

(a) (2 points) Compute the rate at which advection carries heat out of the vol-
ume V at t = 0.
This is

∫
S
ρcpTu · n̂ dS. But, on S, u = u0r̂, T = T0 and n̂ = r̂, so

ρcpTu · n̂ = ρcpT0u0r̂ · r̂ = ρcpT0u0

because r̂ is a unit vector. Hence the integrand is constant, and
∫
S
ρcpTu ·

n̂ dS = ρcpT0u0
∫
S

dS = ρcpT0u0 × 4πr20 (as the surface area of the sphere is∫
S

dS = 4πr20.

(b) (3 points) Compute the rate at which conduction carries heat out of the
volume V at t = 0.
This is

∫
S
q · n̂ dS, where q = −k∇T . But T depends only on r, so the

gradient is perpendicular to surfaces of constant r (i.e., to spheres centered
on the origin, and therefore has direction r̂), and has magnitude dT/rdr =
−Tr0/r2. On S, r = r0, and so −k∇T has magnitude kT0/r0, while n̂ = r̂.
Hence q · n̂ = (kT0/r)r̂ · r̂ = kT0/r. Again, the integrand is constant, so∫
S
q · n̂ dS = kT0/r0

∫
S
rdS = kT0/r0 × 4πr20 = 4πkT0r0.

(c) (1 point) If temperature is in steady state, what is the total rate of heat
production in the volume (units of watts, not watts per cubic metre?).
In steady state, total rate of heat production = rate at which heat flows out
= rate of flow out through advection + conduction = 4π(ρcpT0u0r

2
0 +kT0r0).
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