
Midterm Answers: EOSC 352

30 October, 2009

There are three questions in this exam. Marks available are as indicated, so
choose the level of detail you give and the amount of time you spend on a
question accordingly. Attempt all three questions. You have fifty (50) minutes to
complete this exam. Good luck!

1. (4 points) Figure 1 shows eight examples of vector fields. For each of these
labelled a-h, state whether the divergence of the vector field at the origin is
positive, negative, zero, or of ambiguous sign. Question for a bonus mark: Two
of the vector fields actually have a divergence of +∞ at the origin. Which ones?
ANS: a — positive (x-component increases with x, y-component is zero)
b — zero (x-component is zero, y-component does not depend on y)
c — positive (x-component increases with x, y-component increases with y)
d — zero (rotation: along x-axis, x component depends only on y, and along
y-axis, y-component depends only on x)
e — positive (x-component increases with x, y-component increases with y; in
fact, there is an abrupt jump in these at the origin, so their derivatives, and hence
the divergence, are infinite)
f — ambiguous (x-component decreases with x, y-component increases with y)
g — negative (x-component decreases with x along x-axis, y-component decreases
with y along y-axis)
e — positive (x-component increases with x at origin, y-component increases
with y at origin; in fact, there is an abrupt jump in these at the origin, so their
derivatives, and hence the divergence, are infinite)

2. Let ρX(x, y, z, t) be a scalar field representing the density of some conserved scalar
quantity X (measured in in units of X per cubic metre — for instance, X could
be mass, in which case ρX would be the ordinary mass density).

(a) (1 point) Give a formula for the content of X in a given fixed volume V .
ANS:

∫
V
ρX dV (which can be derived by splitting V into small volumes

∆V , calculating their X-content as X-density times volume = ρX∆V and
summing.
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(b) (3 points) In general, a conserved quantity X can be transported by advec-
tion and by conduction. If there is a velocity field u(x, y, z, t), show from
first principles that the rate at which quantity X is transported out of the
volume V by advection is given by∫

S

ρXu · n̂ dS, (1)

where S is the surface of the volume V , and n̂ is the outward-pointing unit
normal.
ANS: Split the surface S into small surface elements ∆S. Advection is the
transport of X as it moves with bits of matter rather than being exchanged
between them. To compute this movement of matter, calculate the volume of
material that passes throgh ∆S in a short period of time ∆t. Geometrically,
this volume is a prism of base area ∆S and side length u∆t. The sides of
the prism make an angle θ with the normal to the base ∆S; this angle is the
angle between the velocity vector u and the unit normal n̂. The height of
the prism is then equal to side length times the cosine of the angle θ, or

u∆t cos θ.

The volume of the prism is base times height,

∆Su∆t cos θ = ∆Su · n̂∆t

by the definition of a cross product. The content of X in the volume is
X-density times volume

ρXu · n̂∆S∆t

Sum over all the ∆S’s to get the total amount of X that is carried out of
the volume V with bits of matter,

∆X =

∫
V

ρXu · n̂ dS.∆t

The rate at which X leaves V by advection is then

∆X

∆t
=

∫
V

ρXu · n̂ dS.

(c) (1 point) If there is also transport by a conductive flux qc, give a formula
for the rate at which X leaves the volume V by conduction.
ANS: For advective transport, the rate of transport is∫

S

qadvect · n̂ dS =

∫
V

ρXu · n̂ dS.
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as advective flux is qadvect = ρXu. The rate of transport through conductive
flux can likewise be calculated as∫

S

qc · n̂ dS.

(d) (1 point) State an equation that relates your answer in part a to the surface
integral in (1) and your answer in part c.
ANS: Rate of increase of X-content = - rate at which X flows out through
boundary of V . As the rate of outflow is given by the sum of advection and
conduction,

d

dt

∫
V

ρX dV = −
∫

S

ρXu · n̂ dS −
∫

S

qc · n̂ dS.

(e) (3 points) From this equation, carefully derive a the differential equation
that relates ∂ρX/∂t to ρX , u and qc, stating any assumptions that you
make.
ANS: Rearrange and apply the divergence theorem, assuming also that the
time derivative can be taken inside the integral:∫

V

∂ρX

∂t
+∇ · (ρXu + qc) dV = 0.

Now, V is arbitrary : this equation must be true for any volume V if X is
conserved. If the integrand is continuous, we can then make V a very small
volume ∆V , over which the integrand is approximately constant. In that
case, we have approximately∫

V

∂ρX

∂t
+∇ · (ρXu + qc) dV ≈

[
∂ρX

∂t
+∇ · (ρXu + qc)

]
∆V = 0

But ∆V is non-zero, so we must have

∂ρX

∂t
+∇ · (ρXu + qc) = 0.

(f) (3 points) If X is mass, we have ρX = ρ and the differential equation you
derived in part e should take the form

∂ρ

∂t
+∇ · (ρu) = 0.

Next, take X to be thermal energy. Let ρX = ρcpT , and assume that heat
capacity cp is a constant. Also, let qc = −k∇T . Derive the equation

ρcp
∂T

∂t
+ ρcpu · ∇T −∇ · (k∇T ) = 0.
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Hint. You may want to use the product rule for divergences, ∇ · (fg) =
f∇ · g + g · ∇f , where f is a scalar field and g is a vector field.
ANS: We have

∂ρX

∂t
+∇ · (ρXu + qc) = 0.

Substituting ρX and qc as indicated, we get

∂(ρcpT )

∂t
+∇ · (ρcpTu− k∇T ) = 0.

Using the product rule, noting that cp (but not ρ) is constant,

ρcp
∂T

∂t
+ cpT

∂ρ

∂t
+ ρcpTu · ∇T + cpT∇ · (ρu)−∇ · (k∇T ) = 0

But

cpT
∂ρ

∂t
+ cpT∇ · (ρu) = cpT

[
∂ρ

∂t
+∇ · (ρu)

]
= 0

from the conservation law for mass above. Using this, we get

ρcp
∂T

∂t
+ ρcpu · ∇T −∇ · (k∇T ) = 0

as required.

3. (4 points) Suppose you have a temperature field T that satisfies the heat equa-
tion,

ρcp
∂T

∂t
− k∂

2T

∂x2
= 0.

Suppose that temperature at x = 0 is sinusoidal in time,

T (0, t) = T0 cos(ωt),

while at a long distane from x,

k
∂T

∂x
→ qgeo.

Try a solution of the form

T (x, t) = Re [T0 exp(iωt+ λx)] + qgeox/k.

Substitute this in the heat equation and from this derive a formula for λ in
terms of ω, k, ρ and cp. Show also that the solution satisfies the two boundary
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conditions.
ANS: We have1

∂T

∂t
=

∂

∂t
{Re [T0 exp(iωt+ λx)] + qgeox/k}

= Re

[
∂

∂t
T0 exp(iωt+ λx)

]
+
∂(qgeox/k)

∂t

= Re [iωT0 exp(iωt+ λx)] (2)

and

∂2T

∂x2
=

∂2

∂x2
{Re [T0 exp(iωt+ λx)] + qgeox/k}

= Re

[
∂2

∂x2
T0 exp(iωt+ λx)

]
+
∂2(qgeox/k)

∂x2

= Re
[
λ2T0 exp(iωt+ λx)

]
(3)

Substituting these in the heat equation, we get (as in class!)

Re
[
T0(iρcpω − kλ2) exp(iωt+ λx)

]
= 0

which holds if we set
iρcpω − kλ2 = 0

or

λ =
√
i

√
ρcp
k
.

But 2

√
i = ±

(
1√
2

+
i√
2

)
,

1Do not be tempted to write things like

∂T

∂t
= iωRe [T0 exp(iωt+ λx)] ,

which would make ∂T
∂t imaginary. Similarly, it is not true that

∂2T

∂x2
= λ2Re [T0 exp(iωt+ λx)] ,

as λ turns out to be complex number. In the same vein, you cannot write things like

{Re [T0 exp(iωt+ λx)] = T0 exp(λx)Re exp(iωt) = T0 exp(λx) cos(ωt)

if λ is complex. In general, if z1 and z2 are complex numbers, it is not true that Re(z1z2) =
Re(z1)Re(z2) To see this, try z1 = 1+i, z2 = 1+i. Then z1z2 = 2i, Re(z1z2) = 0, but Re(z1)Re(z2) =
1.

2Note that it is not true to say that

√
i =

1√
2
± i√

2
.
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so

λ = ±
(√

ρcp
2k

+ i

√
ρcp
2k

)
Substituting this into the solution, and taking the real part, we get

T (x, t) = Re [T0 exp(iωt+ λx)] + qgeox/k

= T0 exp

(
±
√
ρcp
2k

x

)
cos

(
ωt±

√
ρcp
2k

x

)
where the same sign out of ± must be used in both the exponential and cosine
functions. Clearly, putting x = 0, we get the surface boundary conditon

T (0, t) = T0 cos(ωt).

We can also calculate the heat flux

−k∂T
∂x

= −kRe

[
∂

∂x
T0 exp(iωt+ λx)

]
− k∂(qgeox/k)

∂x

= −kRe [λT0 exp(iωt+ λx) ]− qgeo

= −T0

√
ρcpk

2
exp

(
±
√
ρcp
2k

x

)[
cos

(
ωt±

√
ρcp
2k

x

)
− sin

(
ωt±

√
ρcp
2k

x

)]
− qgeo

The first term only dies off as x→∞ if we choose the − in ±, in which case

−k∂T
∂x
→ −qgeo,

which reproduces the boundary condition at infinity. Choosing this sign, we get

λ = −
(√

ρcp
2k

+ i

√
ρcp
2k

)
and

T (x, t) = T0 exp

(
−
√
ρcp
2k

x

)
cos

(
ωt−

√
ρcp
2k

x

)
.

If you choose the minus sign and square, you get(
1√
2
− i√

2

)2

= −i

which is obviously not i!
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Figure 1: Examples of vector fields. Each panel is labelled by a letter (a-h) in the
top right-hand corner, slightly obscured by the arrows showing the vector field.
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