Midterm Answers: EOSC 352

30 October, 2009

There are three questions in this exam. Marks available are as indicated, so choose the level of detail you give and the amount of time you spend on a question accordingly. Attempt all three questions. You have fifty (50) minutes to complete this exam. Good luck!

1. (4 points) Figure 1 shows eight examples of vector fields. For each of these labelled a-h, state whether the divergence of the vector field at the origin is positive, negative, zero, or of ambiguous sign. Question for a bonus mark: Two of the vector fields actually have a divergence of $+\infty$ at the origin. Which ones? ANS: a — positive (x-component increases with x, y-component is zero)

b — zero (x-component is zero, y-component does not depend on y)

c — positive (x-component increases with x, y-component increases with y)

d — zero (rotation: along x-axis, x component depends only on y, and along y-axis, y-component depends only on x)

e — positive (x-component increases with x, y-component increases with y; in fact, there is an abrupt jump in these at the origin, so their derivatives, and hence the divergence, are infinite)

f — ambiguous (x-component decreases with x, y-component increases with y)

g — negative (x-component decreases with x along x-axis, y-component decreases with y along y-axis)

e — positive (x-component increases with x at origin, y-component increases with y at origin; in fact, there is an abrupt jump in these at the origin, so their derivatives, and hence the divergence, are infinite)

- 2. Let $\rho_X(x, y, z, t)$ be a scalar field representing the density of some conserved scalar quantity X (measured in in units of X per cubic metre for instance, X could be mass, in which case ρ_X would be the ordinary mass density).
 - (a) (1 point) Give a formula for the content of X in a given fixed volume V. ANS: $\int_V \rho_X \, dV$ (which can be derived by splitting V into small volumes ΔV , calculating their X-content as X-density times volume = $\rho_X \Delta V$ and summing.

(b) (3 points) In general, a conserved quantity X can be transported by advection and by conduction. If there is a velocity field $\mathbf{u}(x, y, z, t)$, show from first principles that the rate at which quantity X is transported out of the volume V by advection is given by

$$\int_{S} \rho_X \mathbf{u} \cdot \hat{\mathbf{n}} \, \mathrm{d}S,\tag{1}$$

where S is the surface of the volume V, and $\hat{\mathbf{n}}$ is the outward-pointing unit normal.

ANS: Split the surface S into small surface elements ΔS . Advection is the transport of X as it moves with bits of matter rather than being exchanged between them. To compute this movement of matter, calculate the volume of material that passes through ΔS in a short period of time Δt . Geometrically, this volume is a prism of base area ΔS and side length $u\Delta t$. The sides of the prism make an angle θ with the normal to the base ΔS ; this angle is the angle between the velocity vector **u** and the unit normal $\hat{\mathbf{n}}$. The height of the prism is then equal to side length times the cosine of the angle θ , or

$$u\Delta t\cos\theta$$
.

The volume of the prism is base times height,

$$\Delta Su\Delta t\cos\theta = \Delta S\mathbf{u}\cdot\hat{\mathbf{n}}\Delta t$$

by the definition of a cross product. The content of X in the volume is X-density times volume

$$\rho_X \mathbf{u} \cdot \hat{\mathbf{n}} \Delta S \Delta t$$

Sum over all the ΔS 's to get the total amount of X that is carried out of the volume V with bits of matter,

$$\Delta X = \int_V \rho_X \mathbf{u} \cdot \hat{\mathbf{n}} \, \mathrm{d}S.\Delta t$$

The rate at which X leaves V by advection is then

$$\frac{\Delta X}{\Delta t} = \int_V \rho_X \mathbf{u} \cdot \hat{\mathbf{n}} \, \mathrm{d}S.$$

(c) (1 point) If there is also transport by a conductive flux \mathbf{q}_c , give a formula for the rate at which X leaves the volume V by conduction. ANS: For advective transport, the rate of transport is

$$\int_{S} \mathbf{q}_{\text{advect}} \cdot \hat{\mathbf{n}} \, \mathrm{d}S = \int_{V} \rho_{X} \mathbf{u} \cdot \hat{\mathbf{n}} \, \mathrm{d}S.$$

as advective flux is $\mathbf{q}_{advect} = \rho_X \mathbf{u}$. The rate of transport through conductive flux can likewise be calculated as

$$\int_{S} \mathbf{q}_{c} \cdot \hat{\mathbf{n}} \, \mathrm{d}S.$$

(d) (1 point) State an equation that relates your answer in part a to the surface integral in (1) and your answer in part c.

ANS: Rate of increase of X-content = - rate at which X flows out through boundary of V. As the rate of outflow is given by the sum of advection and conduction,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \rho_X \,\mathrm{d}V = -\int_{S} \rho_X \mathbf{u} \cdot \hat{\mathbf{n}} \,\mathrm{d}S - \int_{S} \mathbf{q}_c \cdot \hat{\mathbf{n}} \,\mathrm{d}S.$$

(e) (3 points) From this equation, carefully derive a the differential equation that relates $\partial \rho_X / \partial t$ to ρ_X , **u** and **q**_c, stating any assumptions that you make.

ANS: Rearrange and apply the divergence theorem, assuming also that the time derivative can be taken inside the integral:

$$\int_{V} \frac{\partial \rho_X}{\partial t} + \nabla \cdot \left(\rho_X \mathbf{u} + \mathbf{q}_c \right) \mathrm{d}V = 0.$$

Now, V is *arbitrary*: this equation must be true for *any* volume V if X is conserved. If the integrand is continuous, we can then make V a very small volume ΔV , over which the integrand is approximately constant. In that case, we have approximately

$$\int_{V} \frac{\partial \rho_X}{\partial t} + \nabla \cdot \left(\rho_X \mathbf{u} + \mathbf{q}_c\right) \mathrm{d}V \approx \left[\frac{\partial \rho_X}{\partial t} + \nabla \cdot \left(\rho_X \mathbf{u} + \mathbf{q}_c\right)\right] \Delta V = 0$$

But ΔV is non-zero, so we must have

$$\frac{\partial \rho_X}{\partial t} + \nabla \cdot (\rho_X \mathbf{u} + \mathbf{q}_c) = 0.$$

(f) (3 points) If X is mass, we have $\rho_X = \rho$ and the differential equation you derived in part e should take the form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Next, take X to be thermal energy. Let $\rho_X = \rho c_p T$, and assume that heat capacity c_p is a constant. Also, let $\mathbf{q}_c = -k\nabla T$. Derive the equation

$$\rho c_p \frac{\partial T}{\partial t} + \rho c_p \mathbf{u} \cdot \nabla T - \nabla \cdot (k \nabla T) = 0.$$

Hint. You may want to use the product rule for divergences, $\nabla \cdot (f\mathbf{g}) = f\nabla \cdot \mathbf{g} + \mathbf{g} \cdot \nabla f$, where f is a scalar field and \mathbf{g} is a vector field. ANS: We have

$$\frac{\partial \rho_X}{\partial t} + \nabla \cdot (\rho_X \mathbf{u} + \mathbf{q}_c) = 0.$$

Substituting ρ_X and \mathbf{q}_c as indicated, we get

$$\frac{\partial(\rho c_p T)}{\partial t} + \nabla \cdot (\rho c_p T \mathbf{u} - k \nabla T) = 0.$$

Using the product rule, noting that c_p (but not ρ) is constant,

$$\rho c_p \frac{\partial T}{\partial t} + c_p T \frac{\partial \rho}{\partial t} + \rho c_p T \mathbf{u} \cdot \nabla T + c_p T \nabla \cdot (\rho \mathbf{u}) - \nabla \cdot (k \nabla T) = 0$$

But

$$c_p T \frac{\partial \rho}{\partial t} + c_p T \nabla \cdot (\rho \mathbf{u}) = c_p T \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \right] = 0$$

from the conservation law for mass above. Using this, we get

$$\rho c_p \frac{\partial T}{\partial t} + \rho c_p \mathbf{u} \cdot \nabla T - \nabla \cdot (k \nabla T) = 0$$

as required.

3. (4 points) Suppose you have a temperature field T that satisfies the heat equation,

$$\rho c_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = 0.$$

Suppose that temperature at x = 0 is sinusoidal in time,

$$T(0,t) = T_0 \cos(\omega t),$$

while at a long distance from x,

$$k\frac{\partial T}{\partial x} \to q_{geo}$$

Try a solution of the form

$$T(x,t) = \operatorname{Re}\left[T_0 \exp(i\omega t + \lambda x)\right] + q_{geo}x/k.$$

Substitute this in the heat equation and from this derive a formula for λ in terms of ω , k, ρ and c_p . Show also that the solution satisfies the two boundary

conditions. ANS: We have¹

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial t} \left\{ \operatorname{Re} \left[T_0 \exp(i\omega t + \lambda x) \right] + q_{geo} x/k \right\} \\ = \operatorname{Re} \left[\frac{\partial}{\partial t} T_0 \exp(i\omega t + \lambda x) \right] + \frac{\partial(q_{geo} x/k)}{\partial t} \\ = \operatorname{Re} \left[i\omega T_0 \exp(i\omega t + \lambda x) \right]$$
(2)

and

$$\frac{\partial^2 T}{\partial x^2} = \frac{\partial^2}{\partial x^2} \left\{ \operatorname{Re} \left[T_0 \exp(i\omega t + \lambda x) \right] + q_{geo} x/k \right\} \\ = \operatorname{Re} \left[\frac{\partial^2}{\partial x^2} T_0 \exp(i\omega t + \lambda x) \right] + \frac{\partial^2 (q_{geo} x/k)}{\partial x^2} \\ = \operatorname{Re} \left[\lambda^2 T_0 \exp(i\omega t + \lambda x) \right]$$
(3)

Substituting these in the heat equation, we get (as in class!)

$$\operatorname{Re}\left[T_0(i\rho c_p\omega - k\lambda^2)\exp(i\omega t + \lambda x)\right] = 0$$

which holds if we set

$$i\rho c_p\omega - k\lambda^2 = 0$$

or

$$\lambda = \sqrt{i} \sqrt{\frac{\rho c_p}{k}}.$$

But 2

$$\sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right),$$

 $^1\mathrm{Do}$ not be tempted to write things like

$$\frac{\partial T}{\partial t} = i\omega \operatorname{Re}\left[T_0 \exp(i\omega t + \lambda x)\right],$$

which would make $\frac{\partial T}{\partial t}$ imaginary. Similarly, it is not true that

$$\frac{\partial^2 T}{\partial x^2} = \lambda^2 \operatorname{Re}\left[T_0 \exp(i\omega t + \lambda x)\right],$$

as λ turns out to be complex number. In the same vein, you cannot write things like

$$\left\{\operatorname{Re}\left[T_0\exp(i\omega t + \lambda x)\right] = T_0\exp(\lambda x)\operatorname{Re}\exp(i\omega t) = T_0\exp(\lambda x)\cos(\omega t)\right\}$$

if λ is complex. In general, if z_1 and z_2 are complex numbers, it is *not* true that $\operatorname{Re}(z_1z_2) = \operatorname{Re}(z_1)\operatorname{Re}(z_2)$ To see this, try $z_1 = 1+i$, $z_2 = 1+i$. Then $z_1z_2 = 2i$, $\operatorname{Re}(z_1z_2) = 0$, but $\operatorname{Re}(z_1)\operatorname{Re}(z_2) = 1$.

²Note that it is *not* true to say that

$$\sqrt{i} = \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}.$$

 \mathbf{SO}

$$\lambda = \pm \left(\sqrt{\frac{\rho c_p}{2k}} + i \sqrt{\frac{\rho c_p}{2k}} \right)$$

Substituting this into the solution, and taking the real part, we get

$$T(x,t) = \operatorname{Re}\left[T_0 \exp(i\omega t + \lambda x)\right] + q_{geo}x/k$$
$$= T_0 \exp\left(\pm\sqrt{\frac{\rho c_p}{2k}}x\right)\cos\left(\omega t \pm \sqrt{\frac{\rho c_p}{2k}}x\right)$$

where the same sign out of \pm must be used in both the exponential and cosine functions. Clearly, putting x = 0, we get the surface boundary conditon

$$T(0,t) = T_0 \cos(\omega t).$$

We can also calculate the heat flux

$$-k\frac{\partial T}{\partial x} = -k\operatorname{Re}\left[\frac{\partial}{\partial x}T_{0}\exp(i\omega t + \lambda x)\right] - k\frac{\partial(q_{geo}x/k)}{\partial x}$$
$$= -k\operatorname{Re}\left[\lambda T_{0}\exp(i\omega t + \lambda x)\right] - q_{geo}$$
$$= -T_{0}\sqrt{\frac{\rho c_{p}k}{2}}\exp\left(\pm\sqrt{\frac{\rho c_{p}}{2k}}x\right)\left[\cos\left(\omega t \pm\sqrt{\frac{\rho c_{p}}{2k}}x\right) - \sin\left(\omega t \pm\sqrt{\frac{\rho c_{p}}{2k}}x\right)\right] - q_{geo}$$

The first term only dies off as $x \to \infty$ if we choose the - in \pm , in which case

$$-k\frac{\partial T}{\partial x} \to -q_{geo},$$

which reproduces the boundary condition at infinity. Choosing this sign, we get

$$\lambda = -\left(\sqrt{\frac{\rho c_p}{2k}} + i\sqrt{\frac{\rho c_p}{2k}}\right)$$

and

$$T(x,t) = T_0 \exp\left(-\sqrt{\frac{\rho c_p}{2k}}x\right) \cos\left(\omega t - \sqrt{\frac{\rho c_p}{2k}}x\right).$$

If you choose the minus sign and square, you get

$$\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^2 = -i$$

which is obviously not i!

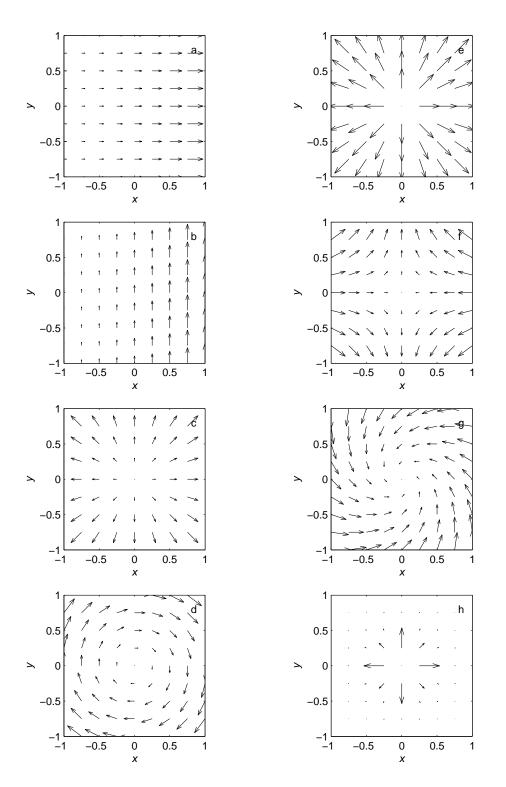


Figure 1: Examples of vector fields. Each panel is labelled by a letter (a-h) in the top right-hand corner, slightly obscured by the arrows showing the vector field.