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Abstract

The work described in this thesis examines transient geophysical electromagnetic

forward modelling and inversion in the presence of induced polarization (IP) ef-

fects. The thesis introduces a new method of modelling IP using stretched expo-

nential relaxation. A three-dimensional (3D) forward modelling algorithm taking

full account of the coupling of IP and electromagnetic induction is developed. The

stretched exponential modelling algorithm has been implemented using efficient

numerical methods that allow it to tackle large-scale problems and are amenable

to use in inversion. In particular, a parallel time-stepping technique has been de-

veloped that allows transient electric fields at multiple time steps to be computed

simultaneously. The behavior of the stretched exponential model is demonstrated

by applying it to synthetic numerical examples that simulate a grounded source

IP survey with significant electromagnetic induction effects and a concentric-loop

airborne electromagnetic sounding over a polarizable body.

An inversion algorithm using the stretched exponential model was developed

that is able to recover the 3D structure of physical properties of the earth related

to IP from transient geophysical electromagnetic data. The method is tested on a

simple synthetic example problem. The thesis finishes with the development of

a novel stochastic parametric level-set inversion algorithm, which could be useful

in applying stretched exponential inversion to real world problems in the future.

The algorithm addresses some of the shortcomings of the simple inversion ap-

proach used for stretched exponential inversion earlier in the thesis. The stochastic

parametric inversion algorithm is used to solve shape reconstruction inverse prob-

lems in which the object of interest is embedded in a heterogeneous background

medium that is known only approximately. Shape reconstruction is posed as a

iii



stochastic programming problem, in which the background medium is treated as

a random field with a known probability distribution. It is demonstrated that by

using accelerated stochastic gradient descent the method can be applied to large-

scale problems. The capabilities of the method are demonstrated on a simple 2D

model problem and in a more demanding application to a 3D inverse conductivity

problem in geophysical imaging.
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Lay Summary

This thesis describes research in the field of electromagnetic geophysical imaging.

The work led to the development of novel algorithms and software to facilitate

three-dimensional imaging of the electromagnetic properties of the earth’s subsur-

face. Electromagnetic imaging results are useful to geologists and other geoscience

professionals in their attempts to assess subsurface geology for applications such as

natural resource exploration and environmental assessment. The particular focus of

this thesis was on improving the quality and efficiency of imaging algorithms that

consider an electromagnetic phenomenon known as induced polarization. Induced

polarization effects can be important indicators of geological features of interest

to practitioners but they are difficult to model and standard methods either ignore

them or treat them in some simplified form. This thesis has developed the compu-

tational methods necessary to fully consider the effects of induced polarization in

electromagnetic imaging.
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Preface

This thesis is my original work. It has resulted in one peer reviewed journal publi-

cation, one peer reviewed journal submission currently under review, one expanded

abstract publication, and seven conference presentations.

The parallel time-stepping algorithm in chapter 2 originated in discussions with

Dr. Haber and is based on his original idea. I developed the algorithm and imple-

mented it. It was published in [11]. Chapter 2 provides more detailed analysis and

more extensive background material than was included in the published paper.

The stretched exponential forward modelling algorithm in chapter 3 also origi-

nated in discussions with Dr. Haber and is based on his original idea. I developed,

implemented and tested the algorithm based on the discussions with Dr. Haber. A

version of chapter 3 was published as [11]. Chapter 3 contains a more extensive

comparison of the stretched exponential model of induced polarization with the

Cole-Cole model than was included in the published paper.

The stretched exponential inversion algorithm and workflow described in chap-

ter 4 is my original work. It was carried out independently but benefited from

discussions with Dr. Haber and Roman Shektman.

The stochastic inversion algorithm described in chapter 5 originated in discus-

sions with Dr. Haber based on my original idea. I implemented and analyzed the

algorithms. A version of this chapter has been submitted for publication and is

currently under review.

The work in this thesis entailed significant software development. All devel-

opment was done within the open source jInv software framework, which was

created in Dr. Haber’s research group at UBC and is available online at https:

//github.com/juliaInv. Four of the conference presentations I gave over the course
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of my Ph.D. focused on the jInv software package.
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Chapter 1

Introduction

1.1 Research Motivation
At a broad level, this thesis is concerned with numerical modelling of transient

electromagnetic (EM) geophysical surveys and associated parameter estimation

problems. The particular emphasis is on understanding how to do this efficiently

when the surveys are affected by the phenomenon of induced polarization (IP).

Geophysical methods designed to detect IP have a long history in mineral explo-

ration. They have been used in many exploration contexts but are particularly

important in the search for disseminated mineralization. Some important types of

disseminated mineralization exhibit strong IP anomalies but are not sensitive to

other geophysical methods—see e.g. Ward 96, Zonge et al. 106. IP is the most

important geophysical method in exploration for porphyry copper deposits, for ex-

ample [106]. It is also increasingly important in environmental applications [54].

IP is a dynamic EM phenomenon. However, in traditional processing and inter-

pretation of geophysical surveys designed to detect it, it is often treated as a static

electrical phenomenon—e.g. as in [67]. Such treatments neglect two key factors

that affect IP data. They ignore the nature of the time or frequency dependence

of IP relaxations and the coupling between IP and EM induction. A full treatment

of the problem requires the ability to solve the quasi-static Maxwell equations—in

either the frequency or time-domain—using a constitutive law that models the EM

response of polarizable materials.
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Traditional IP surveys excite the earth using energy sources connected to the

earth by grounded electrodes. IP effects can also be generated by closed loop sys-

tems that excite the earth by EM induction. The increasingly common observation

of IP effects in airborne transient inductive source EM data has generated renewed

interest in understanding and modelling IP in the context of transient electromag-

netics. In this thesis I develop tools that are general and efficient for modelling

grounded and inductive source transient electromagnetic surveys in the presence

of polarizable media.

Simulation tools that can accurately model realistic three-dimensional (3D) ge-

ometries are very useful both for developing physical understanding and in design-

ing surveys. Modelling the coupling of EM and IP effects can help a geophysicist

understand in detail how EM coupling might affect a grounded source IP survey

and allow them to use inductive responses as useful signal rather than just noise.

Some work has been done on modelling the quasi-static time-domain Maxwell

equations in the presence of polarizable media (e.g. [25, 62]) but it remains an

under-researched area.

The first two chapters of the thesis are focused on forward modelling and the

last two on geophysical inversion. Inversion, the process of estimating a subsurface

physical property model from data, is a key step in geophysical data processing/in-

terpretation. We want to be able to invert time-domain EM data for both conduc-

tivity and IP parameters in 3D, whether the data comes from traditional grounded

source surveys designed to detect IP or from inductive source surveys. After de-

veloping an algorithm for simulating IP effects in transient electromagnetic data,

described in chapter 3 of this thesis, I describe the corresponding inversion algo-

rithm in chapter 4.

In addition to the need for appropriate forward modelling tools, a major diffi-

culty in inverting EM data for IP parameters is underdeterminedness in the inverse

problem. Not having enough data to uniquely define a model of the subsurface

is standard in geophysical inversion but the problem is exacerbated in the case of

multi-parameter problems like IP inversion where it may be difficult to distinguish

whether some features in the data are due to IP or to variations in conductivity.

Also, in multi-parameter inverse problems, a geophysicist is often only interested

in a subset of the parameters but is forced to estimate them all in order to create a
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model that matches observed geophysical data. I address these issues in the final

chapter of this thesis by developing a stochastic inversion methodology that im-

proves the precision of estimates of parameters of interest due to uncertainty in the

nuisance parameter estimates.

1.2 Geophysical background
This section will place IP in the wider context of electromagnetic geophysics, de-

scribe some general principles of EM surveying, and how IP fits into the picture

by way of constitutive relations. By electromagnetic geophysics, here we mean

low frequency (or long time) methods that are sensitive primarily to the electri-

cal conductivity of the subsurface. This excludes high frequency techniques such

as ground penetrating radar which are, of course, electromagnetic in nature but

fundamentally different from the range of low-frequency methods normally en-

compassed by the term electromagnetic geophysics.

These methods are part of the field of applied geophysics, whose major goal is

the mapping of variations in the material properties of the earth’s subsurface using

remote measurements. Such information can be useful in characterizing subsurface

geology or locating buried objects without labour intensive and expensive direct

methods such as drilling [92].

The family of geophysical EM methods may be divided into natural source

methods, which sense the earth response to natural variations in atmospheric EM

fields, and controlled source methods that measure the response due to artificial

excitations of the earth controlled by a geophysicist. This thesis will focus exclu-

sively on controlled source methods. These may be further divided into grounded

and inductive source methods. In grounded source surveys the energy source is

directly connected to the earth by means of electrodes, allowing electric currents

to flow from the source into the earth. By contrast, inductive source surveys use

closed coils of wire to create time-varying magnetic fields that excite responses

in the earth through EM induction. Typical source and receiver arrangements for

these survey types are shown in fig. 1.1.

These methods have been designed primarily to sense the electrical conductiv-

ity of the subsurface but they can all be influenced by the IP phenomenon. When
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Figure 1.1: Illustration of typical grounded and inductive source surveys.
Left image shows current electrodes connected to ground and energy
source, and receiver measuring the potential difference between sepa-
rate measurement electrodes. Right image shows a concentric loop air-
borne EM system, where a current run through the outer loop creates a
time-varying magnetic field that induces a response from the earth that
is measured by the inner coil.

an electric field is applied to a conductive material, ions will move freely through

it. This is the flow of electric current. When the movement is impeded, charges

will build up, whether that be at the interface between two homogeneous regions of

differing conductivities or due to more complex microscopic effects. This creates

electrical polarization in the subsurface. Normally, when the applied field is re-

moved, the charges will return to an electrically neutral state extremely quickly—

far too quickly to be detected in an ordinary geophysical experiment. However,

in some geological materials large polarization effects are observed that build up

slowly under an applied current and then relax slowly enough to be measured in

a geophysical EM survey. This is the IP phenomenon. The effect has complex

origins in the microscopic properties of the rocks. At the macroscopic level po-

larization acts to impede current flow due to an externally applied field. Then,

when the applied field is removed, the relaxation of the polarized charges to equi-

librium will result in a small but measurable current flow. This effect is modelled

as reduced steady-state conductivity in the static case and as frequency dependent

conductivity for harmonic sources. In the time-domain the current flow at a given

time is modelled as depending on the history of the electric field driving the current

flow and not just its instantaneous value.

In the canonical IP experiment, a direct current is driven into the ground using a

pair of electrodes connected to an energy source. The current remains switched on
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Figure 1.2: DC experimental setup. From Tomoquest.com

until the polarization has reached a steady state, at which point potential differences

between electrodes at various locations on the earth’s surface are measured. Then

the current is abruptly switched off. The potential differences resulting from the

current created by the polarized charges returning to equilibrium is then measured.

This is illustrated in fig. 1.2

1.2.1 Maxwell’s equations

To describe this process quantitatively, we turn to Maxwell’s equations. Macro-

scopic EM fields are governed by the macroscopic Maxwell equations, the funda-

mental laws of classical electromagnetism. These may be stated as a set of partial

differential equations (PDEs) describing the behaviour of EM fields, augmented

by a set of empirical rules called constitutive relations that define how EM fields

are modified by materials. Maxwell’s equations are collected in table 1.2. The

equations may be expressed in the time-domain, where the fields are functions of

space and time. What are known as the frequency-domain equations are obtained

by taking the Fourier transforms with respect to time of the time-domain equations.

The macroscopic Maxwell equations relate several vector fields: the electric

field e, the magnetic induction b, the magnetic field h, the electric displacement d
and the electric current j. There are three constitutive laws. The first relates the
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Name Time Frequency

Faraday’s law ∇× e =−∂b
∂ t

(1.1.1) ∇×E =−iωB (1.1.2)

Ampère-Maxwell ∇×h− j =
∂d
∂ t

(1.1.3) ∇×h− j = iωD (1.1.4)

Gauss’s law ∇ ·d = ρ f (1.1.5) ∇ ·D = ρ f (1.1.6)

Unnamed ∇ ·b = 0 (1.1.7) ∇ ·B = 0 (1.1.8)

Table 1.2: Maxwell’s equations

electric field to the electric displacement, the second, the magnetic induction to the

magnetic field, and the third the electric field to the electric current. In general

these may be non-linear functions

d = d(e) (1.1)

h = h(b) (1.2)

j = j(e) (1.3)

but the EM properties of most earth materials may be described by linear constitu-

tive relations. These are typically written

d = εe (1.4)

h = µ
−1b (1.5)

j = σe, (1.6)

where ε is called the electrical permittivity, µ the magnetic permeability, and σ the

electrical conductivity. The constants of proportionality may be scalars or symmet-

ric rank-2 tensors but depend only on position, not on time or frequency.

In this thesis I will consider Maxwell’s equations in the quasi-static approxi-

mation, in which the electric displacement term in Ampère-Maxwell equation is
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ignored. This is a standard assumption in geophysical EM [97]. Most materi-

als have ε on the order of the permittivity of free space, ε0 = 8.85× 10−12 F/m.

The least conductive common earth materials have conductivities on the order of

10-6 S/m. Larger values in the range 10-3-1 S/m are most often encountered and

some important geological materials such as nickel sulphides can have conductivi-

ties as high as 105 S/m [70]. Frequency-domain geophysical experiments typically

use frequencies under 105 Hz and time-domain experiments operate on time-scales

longer than 10-6 s. Consider the Ampère-Maxwell equation in frequency using

linear constitutive relations

∇×µ
−1b− (σ + iωε)e = 0. (1.7)

It is clear from the above paragraph that in typical geophysical parameter regimes

σ >> ωε , making it safe to ignore the electric displacement.

1.2.2 IP models

The constitutive law that really concerns us here is that between electric field and

electric current, which we use to model the IP effect. For common materials that

don’t exhibit IP, Ohm’s law is typically used to describe how currents flow in

response to applied electric fields

j = σe (1.8)

where the electrical conductivity σ may be a scalar or symmetric rank-2 tensor that

varies in space but not in time or frequency. When IP effects are present, the flow

of electric current will depend on the frequency of the applied electric field. These

effects can be modelled by replacing the standard Ohm’s law with a dispersive

constitutive relation.

Early IP modelling treated the phenomenon statically, as a perturbation of the

DC resistivity problem. This was characterized mathematically by Seigel [85]. He

described the polarization of a subsurface body as a perturbation of the conductiv-

ity, writing Ohm’s law as

j = σ(1−η)e (1.9)
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where η is a unit-less number on the interval [0,1) called chargeability. The charge-

ability quantifies the magnitude of the polarization effect, given sufficient time for

charge accumulation. This provided a powerful framework for the interpretation

of IP data from the standard time-domain IP experiment described above. How-

ever, Seigel himself noted that chargeability says nothing about how polarization

potentials decay in time. In the 1970s, several authors showed how mineral types

with similar conductivities and chargeabilities could be distinguished based on the

spectral characteristics of their IP responses—see e.g. [71, 94, 107]. Pelton et al.

[71] described this spectral IP effect using an Ohm’s law with a frequency de-

pendent complex conductivity, where the frequency dependence is given by the

phenomenological Cole-Cole model

σ(ω) = σ∞

(
1− η

1+(1−η)(iωτ)c

)
(1.10)

where ω is angular frequency, η is Seigel’s chargeability, τ is a time constant that

governs the overall time-scale of the relaxation, the exponent c controls the shape

of the spectrum, and σ∞ is the conductivity at infinite frequency or in the absence

of IP effects. This phenomenological model was introduced by Cole and Cole [22]

to describe dispersive dielectric permittivity. Pelton et al. [71] had considerable

success in discriminating between minerals based on their Cole-Cole parameters

in laboratory experiments. The Cole-Cole model has become the de facto standard

model for characterizing the IP spectrum of geological materials. Zhdanov [105]

proposed a more general model of induced polarization based on effective medium

theory, known as GEMTIP, that includes the Cole-Cole model as a special case but

it does not seem to be widely used. This may be because the Cole-Cole model

has been seen as sufficient to fit IP data seen in the field or because it has not

improved the ability to correlate IP with geology. Given one of these models, or any

other frequency dependent conductivity model, frequency domain IP effects can

be modelled using standard methods for solving the frequency domain Maxwell

equations designed without IP in mind. There are several examples of this approach

in the geophysical literature, including [24, 100, 102].

It should be noted that in the analysis of data collected in frequency domain

IP surveys, it is not standard to model inductive effects by solving the full quasi-

8



static Maxwell equations. Typical experiments have traditionally been designed to

reduce or eliminate the effects of EM induction. What induction did occur was con-

sidered noise and had to be removed from field data using imperfect pre-processing

procedures. Classical examples of this approach include [71] and [79].

Grounded source frequency domain surveys designed to detect IP effects are

still in use, especially for near-surface environmental work (see e.g. [54, 76]) but

time-domain surveys remain the more common way to collect data in the mineral

exploration setting. Being able to extract information on the ground based on the

shape and time-scale of the IP decay in a time-domain IP experiment, as well as be-

ing able to fully model EM coupling effects motivates us to study how to efficiently

model IP effects in the time-domain.

A larger motivation for the EM geophysics community at large to study IP in

the time domain (and to study coupled IP and EM induction effects) is the increas-

ing awareness of IP effects in airborne time-domain electromagnetic (ATEM) data.

The well known phenomenon of negative transients in concentric loop ATEM data

(see e.g. [56, 99]) cannot be modelled using non-dispersive ATEM modelling algo-

rithms. More subtly, IP signals may mask conductive features at depth without the

smoking gun of negative transients. Some groups (e.g. [56, 87]) have focused on

separating induction and IP effects in ATEM data through data processing rather

than capturing both phenomena in earth model based simulations. Uniquely, Kang

and Oldenburg [53] have taken a compromise approach between data driven decou-

pling and full time domain EM-IP simulation. They simulated IP affected ATEM

data as a linear perturbation of non-dispersive EM data, then used those perturba-

tions as data to invert for chargeability.

Unfortunately, modelling IP in the time domain is more complex than in fre-

quency. The simple notion of Ohm’s law with a frequency dependent conductivity

is lost and the constitutive law becomes a convolution. Most work in modelling

time-domain dispersive EM in time has attempted to avoid treating the convo-

lutional Ohm’s law directly by performing the modelling in frequency domain

at many frequencies and then transforming the results to the time-domain. This

was done in the suite of software released through AMIRA project P223F [100].

More recently, Fiandaca et al. [32] used this approach in a scheme to invert ATEM

data for Cole-Cole parameters. Their inversion algorithm was computationally
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tractable because they used one-dimensional forward modelling. The approach of

modelling in frequency then transforming to time becomes very computationally

expensive for 3D problems. Zaslavsky and Druskin [104] were able to to more effi-

ciently compute time-domain responses from frequency domain information using

a Krylov subspace reduction technique.

By contrast, there have been very few methods described that model time-

domain IP by direct time-stepping. Recently, Commer et al. [25] modelled dis-

persive TEM fields using an explicit time-stepping finite difference time-domain

(FDTD) algorithm, approximating the Cole-Cole convolutional Ohm’s law using

a spectrum of Debye decays. Marchant [62] used an implicit time-stepping ap-

proach, directly treating the convolutional Ohm’s law using numerical quadrature,

with the convolution kernel transformed to the time-domain by the digital filtering

technique. The only other approach we are aware of in the literature was developed

by Marchant et al. [63]. In this approach the transformation of Ohm’s law to time is

handled using rational function approximations, which allow it to be described by

an ordinary differential equation in time. This approach was recently extended by

Cai et al. [20] to make it more computationally efficient. In chapter 3 I will discuss

the details of time domain EM and IP modelling in more detail and describe our

new approach to the problem.

1.3 Thesis outline
The first part of this thesis (chapters 2 and 3) considers forward simulation of

transient EM survey data, while the second part (chapters 4 and 5) discusses the

inversion of such data. Chapter 2 focuses on the development of efficient time

discretization methods for the quasi-static Maxwell equations. IP is ignored in

this chapter. Modelling IP effects adds additional computational complexity to the

standard EM forward simulation problem. I develop efficient methods for the non-

dispersive case before expanding to consider IP effects in chapter 3. The main

result is a novel parallel time-stepping algorithm. I give a brief overview of the

spatial discretization approach, followed by a discussion of discretization in time

and the development of the parallel time-stepping algorithm.

Chapter 3 presents a novel approach to modelling IP effects in time-domain
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electromagnetic data developed by my supervisor Dr. Haber and myself, based on

stretched exponential relaxation. Stretched exponential relaxation has been used to

model relaxations in disordered systems in other fields such as the study of glassy

systems in solid-state physics. It has been suggested by Everett [31] and by Haber

[37] as a way to model IP effects but has not been studied in detail in the geophys-

ical community. I compare the stretched exponential model of IP to the widely

used Cole-Cole model and develop an efficient forward modelling algorithm using

the stretched exponential approach. The capabilities of the algorithm are demon-

strated using synthetic examples based on typical scenarios in grounded source IP

surveying and airborne EM surveying.

Chapter 4 of the thesis describes preliminary investigations into inverting tran-

sient EM data to recover the parameters that describe polarizable materials in the

stretched exponential model. This is a difficult, multi-parameter, highly under-

determined inverse problem. The work in chapter 4 presents a proof of concept

demonstration that recovery of stretched exponential IP related parameters from

transient EM data is possible but further work is needed in order to develop robust

inversion algorithms and workflows suitable for use by practising geophysicists.

Chapter 5 begins to address these issues. One approach to addressing the non-

uniqueness in the stretched exponential inverse problem is to use parametric inver-

sion. In a parametric inversion one assumes that the target of the inversion is a ho-

mogeneous body embedded in a heterogeneous background medium and attempts

to recover its shape, position and physical properties—rather than trying to recover

physical property values for each cell in a computational mesh. In chapter 5 I de-

velop a stochastic parametric inversion algorithm that accounts for uncertainty in

estimation of the heterogeneous background medium. I test the algorithm on a sim-

ple linear two-dimensional (2D) inverse problem and on a 3D direct current (DC)

resistivity inverse problem. Applying this approach to stretched exponential in-

version is beyond the scope of this thesis but presents an excellent opportunity for

future work.
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Chapter 2

Efficient modelling of
non-dispersive TEM data

Modelling the quasi-static time-domain Maxwell equations is a computationally

expensive problem, even in the non-dispersive case. Adding induced polariza-

tion (IP) effects further increases the complexity. Therefore efficient numerical

methods are essential to the successful application of coupled modelling of elec-

tromagnetic (EM) and IP effects to large scale real world problems. A significant

amount of research has investigated spatial discretization of Maxwell’s equations

over large domains and at high spatial resolutions—e.g domain decomposition

([29, 75]) and multigrid methods ([38]). Advancing solutions in time, however,

remains a bottleneck. This chapter addresses that bottleneck by developing a novel

parallel in time forward modelling algorithm for the quasi-static Maxwell equa-

tions. I consider only the non-dispersive case in this chapter before considering IP

effects in chapter 3.

I start this chapter by describing the formulation of Maxwell’s equations I

will solve and giving a brief overview of how the equations are discretized in

space. I use established methods for spatial discretization. I then discuss some

general considerations for time-discretization of Maxwell’s equations before de-

scribing the parallel time-stepping algorithm for geophysical time-domain electro-

magnetic (TDEM) simulations.
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2.1 Discretization of the time-domain quasi-static
Maxwell equations

This section will describe how I’ve discretized the quasi-static Maxwell equations

to simulate time-domain electromagnetic geophysical surveys over non-dispersive

earth models. These surveys are governed by Faraday’s law and Ampère’s law

supplemented by appropriate initial and boundary conditions. Recall Faraday’s

law and Ampère’s law

∇× e =−∂b
∂ t

(2.1)

∇×µ
−1b− j = js, (2.2)

where e is the electric field, b the magnetic flux density, j the electric current in the

earth and js the source current. In this chapter I will neglect IP effects and assume

that currents in the earth are governed by Ohm’s law,

j = σe, (2.3)

where σ is the isotropic conductivity, a scalar function of space. Substituting

Ohm’s law into Ampère’s law eliminates explicit dependence on j. I eliminate

explicit dependence on b by combining eq. (2.1) and eq. (2.2) to give the single

vector-valued parabolic partial differential equation (PDE)

∇× (µ−1
∇× e)+σ

∂e
∂ t

=−∂ js

∂ t
. (2.4)

This electric field equation is the preferred formulation of Maxwell’s equations for

modelling grounded source surveys as it provides the most natural setting for dis-

cretizing the sources and computing observable quantities from the electric fields.

I consider this equation on a rectangular spatial domain Ω ∈ R3, on the closed

time interval [0, t∗]. I assume steady-state initial conditions. For grounded source

surveys the initial electric field is computed by solving the steady-state problem

∇ ·σ∇φ = ∇ · js, (2.5)
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where e(t = 0) = −∇φ . The initial electric field is zero in inductive source prob-

lems. I impose natural boundary conditions on the electric field

n̂× (µ−1
∇× e) = 0, (2.6)

where n̂ is the unit normal vector to the boundary. The diffusive electric fields in

quasi-static electromagnetics decay asymptotically toward zero away from energy

sources. In practice the boundary conditions are implemented approximately by

choosing a domain large enough such that the boundaries are far enough from any

sources that 2.6 is approximately satisfied.

Collecting the information from the last paragraphs, I can now state the initial

boundary value problem that is to be solved

∇× (µ−1
∇× e)+σ

∂e
∂ t

=−∂ js

∂ t
on Ω× (0, t∗] (2.7a)

∇ ·σ∇φ = ∇ · js on Ω× (−∞,0] (2.7b)

n̂× (µ−1
∇× e) = 0 on ∂Ω. (2.7c)

I take a method of lines approach to discretizing the problem. The main focus

of this chapter is on modelling and utilizing the temporal information in TDEM

geophysical surveys. I have used existing numerical methods and software for

spatial discretization. I will give a brief overview of the spatial discretization I

have employed before moving on to describe time-discretization methods and the

application to grounded source TDEM inversion.

2.1.1 Spatial discretization

I perform spatial discretization using the mimetic finite volume method on locally

refined rectilinear meshes called OcTrees. The general approach I use is described

in [37]. It is based on the mimetic finite difference algorithms developed by Hyman

and Shashkov [49]. It was extended for use in modelling the quasi-static Maxwell

equations on OcTree meshes in work by Haber and Heldmann [38] and by Horesh

and Haber [45].
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I discretize the weak form of eq. (2.7a),

(µ−1
∇× e,∇×v)+(σ

∂e
∂ t

,v) =−(∂ js

∂ t
,v), (2.8)

where the parentheses indicate the L2(Ω) inner product, v is an arbitrary test func-

tion from the Sobolev space H0(curl,Ω), and the curl operator is to be understood

in the weak sense. The definition of H0(curl,Ω) is

H0(curl,Ω) = {u ∈ L2(Ω)3 : ∇×u ∈ L2(Ω)3,n×u = 0 ∈ ∂Ω}, (2.9)

where L2(Ω)3 is the set of 3-component vector valued functions whose compo-

nents are square integrable on Ω. A solution of eq. (2.8), called a weak solution,

is a function in H0(curl,Ω) that satisfies eq. (2.8) for arbitrary test functions in

H0(curl,Ω).

The weak formulation of the electric field curl-curl equation admits a larger

class of solutions than the strong form. In particular it provides a natural setting to

study non-smooth solutions. It also provides a convenient setting in which to for-

mulate mimetic finite volume discretization. For a detailed and rigorous treatment

of the weak formulation of Maxwell’s equations the reader is referred to [65].

The discretization of eq. (2.8) follows three steps. First the curl operator is

discretized, followed by the inner products, giving a system of ordinary differential

equations (ODEs). Finally, the time derivatives are discretized to give an implicit

time-stepping scheme to solve for the time evolution of the electric field.

The electric field is approximated on mesh cell edges and its curl on face cen-

tres, following the staggered grid approach introduced by Yee [103]. This is illus-

trated in fig. 2.1. The use of staggered grids is standard in the numerical solution

of Maxwell’s equations. See e.g. [4, 23, 30] for examples from the geophysical

literature using staggered grids to approximate Maxwell’s equations using spectral,

finite difference, and finite element methods, respectively.

I will briefly sketch the discretization of the curl operator. The curl of a vector

field u may be defined as

(∇×u) · n̂ = lim
A→0

(
1
|A|

∮
∂A

u ·dr
)

(2.10)
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Figure 2.1: Yee grid. Components of the electric field are discretized on mesh
edges in corresponding Cartesian coordinate directions. Magnetic fields
are discretized on face centres. Figure adapted from [51].

where A is an area and the line integral is around the boundary of A. Let a f be the

area of a face fi of the finite volume mesh. The component of ∇×u normal to fi

is approximated by

(∇×u) · n̂f ≈
1
a f

mid(u) (2.11)

where mid(u) is the midpoint rule approximation of the line integral of u around

the boundary of the face fi. Applying this over the entire mesh gives the discrete

curl operator C which maps an edge grid vector to a face grid vector.

The inner product integrals are approximated using the three-dimensional (3D)

trapezoidal rule. For a detailed derivation see [39]. This leads to the implicit system

of ODEs

CT Mµ−1Ce+Mσ

∂e
∂ t

=−∂ s
∂ t

(2.12)

where e is now understood to be an edge grid vector and s is the discretization of

the source current. The M matrices are symmetric positive definite mass matrices

arising from discretization of the inner products in eq. (2.8). Their subscripts refer

to the PDE coefficients involved in the respective inner products.

I have used the julia software package jInv ([80]) to implement the spatial dis-
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cretization. Julia is a relatively new dynamic language designed for high perfor-

mance technical computing [15]. It allows rapid prototyping, with a syntax similar

to Matlab, but gives high performance and has built in distributed memory paral-

lelism that allows for code that scales to large distributed memory systems.

jInv is a software package and framework for PDE constrained parameter es-

timation problems. It provides finite volume discretizations of differential opera-

tors, other building blocks for developing software for the numerical solution of

partial differential equations, and optimization routines designed specifically for

PDE constrained parameter estimation problems. It uses Julia’s builtin distributed

memory parallelism and is designed to scale to large scale industrial problems. I

was not involved in the initial development of jInv but have become a contribu-

tor to the core jInv package, a primary maintainer of the JOcTree package which

provides support for finite volume discretizations on OcTree meshes, and the pri-

mary developer of the open source transient EM module used to run transient EM

forward modelling and inversions in the jInv framework.

2.1.2 Discretization in time

Having approximated eq. (2.8) by the system of ODEs eq. (2.12), I now study its

discretization in time using backward differentiation formulas (BDFs). The quasi-

static Maxwell equations in time are extremely stiff [40]. It is difficult to give a

precise and rigorous definition of stiffness of ODEs. Ascher and Greif [8] give the

following intuitive definition:

The initial-value ODE problem is stiff if the step size needed to main-

tain absolute stability of the forward Euler method is much smaller

than the step size needed to represent the solution accurately.

Stiffness is a common property of systems of ODEs that result from the discretiza-

tion of parabolic PDEs such as the curl-curl equations derived from the quasi-static

Maxwell equations. This seems to occur because it is often the case that the so-

lutions of these equations have secondary features that decay extremely quickly

while their primary features, that are typically of interest, evolve more slowly.

Because of stiffness the choice of time-stepping method is dictated as much

by stability considerations as accuracy considerations I limit my attention to time-
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stepping methods that maintain absolute stability for all step-sizes. Such methods

are called A-stable. All A-stable methods are implicit, meaning that a system of

linear or non-linear equations must be solved at each time-step. This makes them

much more expensive per step than explicit methods, in which the solution at a

given time can be computed explicitly in terms of known quantities. However, for

stiff problems, the much larger step-sizes that can be taken with implicit methods

more than compensate for the increased cost of each step.

In addition to A-stability, time-stepping methods for some very stiff problems,

including the quasi-static Maxwell equations, must possess a property known as

L-stability. Roughly speaking, L-stable methods are methods that when applied to

ODEs with solutions that decay in time, will produce approximate solutions that

decay arbitrarily close to zero in a single step as the step-size grows toward infinity

[6, 7]. A-stable methods that are not L-stable will produce decaying solutions

for all step-sizes but may introduce spurious solution components that decay very

slowly. I have seen in practice that such methods (e.g. trapezoidal rule, TR-BDF2)

fail for transient electromagnetic geophysics problems.

I use the class of A and L-stable methods known as BDFs. I have used the

first and second order BDF methods. Higher order methods could be used but in

the transient EM geophysics use case the benefit is not likely to be large enough

to outweigh the additional code complexity incurred, especially when considering

sensitivity computations in inverse problems. The simplest BDF method is the

backward Euler algorithm. It approximates the solution of the initial value problem

ẏ(t) = f(t,y) (2.13)

y(t0) = y0 (2.14)

at discrete times {tn+1} by

yn+1 = yn +∆tnf(tn+1,yn+1), (2.15)

where ∆tn = tn+1− tn. Applying backward Euler to eq. (2.12) gives a system of
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linear equations to be solved to update the electric field at each time-step

(CT Mµ−1C+
1

∆tn
Mσ )en+1 =

1
∆tn

(Mσ en + sn− sn+1). (2.16)

For second order time-stepping I used the variable step-size and fixed leading

coefficient forms of the second order backward differentiation formula (BDF2).

Defining ρn = ∆tn/∆tn−1, the variable step-size BDF2 method is

1+2ρn

1+ρn
yn+1 = (1+ρn)yn−

ρ2
n

1+ρn
yn−1 +∆t f (yn+1, tn+1). (2.17)

The method maintains stability and second order accuracy for ρ < 1+
√

2 [43].

Applying this method to eq. (2.12) gives the linear time-stepping system of equa-

tions

(CT Mµ−1C+
1+2ρ

∆tn(1+ρ)
Mσ )en+1 =

1
∆tn

(
Mσ

[
(1+ρ)en−

ρ2

1+ρ
en−1

]
−

1+2ρ

1+ρ
sn+1 +(1+ρ)sn−

ρ2

1+ρ
sn−1

)
. (2.18)

Two main factors complicate the use of BDF2 in TDEM simulations. The first

difficulty is that the source current in TDEM surveys is usually discontinuous in

time. Secondly, one is usually interested in simulating TDEM fields on logarith-

mic time scales. Previous work [68] has shown that simulating TDEM geophysical

surveys over such time-scales is most efficiently accomplished by using sparse di-

rect matrix factorization methods to solve eq. (2.16). The time-range of interest

is divided into regions, with the step-size kept constant in each region. For exam-

ple, fig. 2.2 shows a synthetic transmitter waveform—the current in the transmitter

as a function of time—similar to that employed in the commercial SkyTEM TDEM

system [88]. A single step-size is used to discretize the on-time, during which mag-

netic fields in the earth are developed. The response to the shutoff of the transmitter

is simulated over a time range from 0.01 ms to 6 ms after the end of the transmitter

shutoff, using six distinct step-sizes. The backward Euler system matrix must be

factored once for each unique step-size.

Like the backward Euler system, the variable step-size BDF2 system matrix
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Figure 2.2: Typical example of realistic TDEM transmitter current time-
dependence plotted in black, with dots showing times at which solution
is computed. The solid blue line shows the variation in the step-size over
the full time range of the simulation. There are six unique step-sizes.

eq. (2.19) remains constant while the step-size is constant. However, the system

matrix at a transitional step between a time region where a constant step size ∆t1
was and ∆t2 is different from the matrix for subsequent steps of size ∆t2. Matrix

factorization is computationally expensive and for TDEM simulation methods to

be efficient, it is essential to minimize the number of factorizations. There are

two main approaches in the ODE literature to avoid factoring an additional matrix

when the step-size changes (see e.g. [6, 43]). In the first approach, the fields at

previous times may be interpolated to compute the solution at the time that will

allow the constant step-size BDF2 method for the new step size to be used at the

step-size boundary. In the second approach, which I have used, the BDF2 method is

reformulated in so-called fixed leading coefficient form. This is more robust than

the interpolation approach. In the fixed leading coefficient form, the coefficient

of the mass term at the leading time is replaced by one that depends only on the

current step-size, at the cost of an additional term in the right hand side of the time-

stepping linear system. Using the fixed leading coefficient second order backward

differentiation formula (FLCBDF2) in the discretization of eq. (2.16) gives the

20



time-stepping system of equations

(CT Mµ−1C+
3

2∆tn
Mσ )en+1 =

1
∆tn

Mσ

[
3
2
(1+ρ

2/3)en−
ρ2

2
en−1

]
−

−dsn+1 +
ρ−1

2
(
CT Mµ−1Cen +dsn

)
. (2.19)

where dsn+1 denotes the second order backward approximation to the time deriva-

tive of the transmitter current at time tn+1.

For efficiency, it is crucial that BDF2 time-stepping is initialized without per-

forming an additional factorization. BDF2 is a multi-step method, with compu-

tation of each step requiring the approximate solution at the two previous steps.

Therefore the first step must be computed using a different algorithm. Standard

practice is to initialize BDF2 with a single step of backward Euler. Unfortunately,

this requires an additional factorization, since the system matrix for backward Eu-

ler time-stepping is different from the BDF2 matrix. However, the constant step-

size and fixed leading coefficient BDF2 system matrices for step-size ∆t are equal

to the backward Euler system matrix for step-size ∆tbe = 2∆t/3. I have initialized

BDF2 time-stepping by taking two backward Euler steps of size ∆tbe and linearly

interpolating between them to compute the fields at time t0 +∆t, where t0 is the

time at which initial conditions are specified. The additional backward Euler step

needed for interpolation is much cheaper to compute than an additional factor-

ization and the interpolation does not cause a degradation in the overall order of

accuracy of the BDF2 method.

Now I address the treatment of discontinuities in the electric field. BDF2,

and indeed all higher order time-stepping methods, lose their convergence prop-

erties in the presence of discontinuities in the solution [89]. In TDEM surveying,

electrical currents in the earth are induced by rapid changes in the magnetic field

of the transmitter. The change in magnetic field is achieved by shutting off the

transmitter current as quickly as possible. In cases where the transmitter on-time is

short, and data will be collected in early times after the transmitter shutoff, accurate

modelling of the full transmitter current time-dependence, such as that depicted

in fig. 2.2 is necessary. In other cases, the transmitter current may be modelled as

I(t) = 1−H(t), where H(t) is the Heaviside step function. Such a waveform is
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Figure 2.3: Transmitter current step-off waveform. Assumes transmitter cur-
rent has been on long enough that fields are steady-state at t = 0, where
forward modelling begins. Shutoff takes place in one time-step.

illustrated in fig. 2.3. Regardless of the exact waveform, the time-derivative of the

source current, which appears in the forward modelling equation eq. (2.16), is typ-

ically discontinuous at the point where the current reaches 0. Fortunately the point

of discontinuity depends only on the transmitter waveform and so is known a pri-

ori. In simulation of actual geophysical surveys the waveform will be known only

approximately but the approximate waveform will be taken as a fixed input to the

forward modelling algorithm—thereby making the point of discontinuity a fixed

input to the algorithm. This makes it straightforward to take steps to minimize its

effect. I have found empirically that when no effort is made to address discontinu-

ities, much error is introduced into the solution near the time of the discontinuity

but that the accuracy at late times is not severely affected.

Because BDF2 is a backward looking two step method, it will use information

from both sides of a discontinuity when taking the first step immediately after the

discontinuity, giving spurious results. For example, in the approximate step-off

waveform in fig. 2.3 the true time derivative of the current at 1×10−4 s is clearly
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0 A/s. However, the BDF2 approximation of the derivative is

dI
dt
≈ 3

2
I(1×10−4)−2I(5×10−5)+

1
2

I(0) =
1
2
. (2.20)

I address this problem by reverting to backward Euler time-stepping for two

steps after crossing a discontinuity so that the solution at the time of the disconti-

nuity is not used in any BDF2 steps. In the case of a step-off transmitter I simply

take the first three steps using backward Euler.

I use a simple concentric loop survey configuration above a homogeneous

earth—for which an analytic solution is available—to empirically study the effec-

tiveness of this approach. This model problem consists of a circular loop transmit-

ter of radius r, placed at the surface of a homogeneous half space of conductivity

σh. Assuming that a steady current runs through the transmitter for times t < 0,

and that the current is instantaneously terminated at t = 0, the time derivative of

the vertical component of the magnetic field for t > 0 is

∂hz

∂ t
=

1
µ0σhr3

(
3erf(τ)− 2√

π
τ(3+2τ

2)e−τ2
)
, (2.21)

where τ = r
√

σhµ0
4t , erf is the error function, and µ0 is the magnetic permeability of

free space [97]. This idealized problem is based on the typical airborne transient

EM survey in which a horizontal induction coil at the centre of a horizontal loop

transmitter measures the ∂hz
∂ t response when the current in the loop is abruptly shut

off.

I simulated the electric fields due to a loop with radius 13.5 m at the surface of

a half-space with a conductivity of 0.01 S/m using backward Euler time-stepping,

BDF2 initialized with a single step of backward Euler, and BDF2 initialized with

three steps of backward Euler. The spatial discretization was the same in all three

cases. It used an OcTree mesh consisting of a core region of 5 m3 fine cells cov-

ering a rectangular volume of side length 200 m centred at the loop centre. The

fields were simulated from 0.005-1 ms using 200 steps of length 0.005 ms. The

transmitter current was set to 1 A at the initial time t = 0 (immediately prior to the

instantaneous shutoff) and 0 A for all subsequent times. The z-component of the

magnetic field dhz/dt was computed from the electric fields at each time-step by
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numerically computing the z-component of ∇× e at the centre of the transmitter

loop. Because spatial discretization adds additional error to the numerical solution,

the analytic solution eq. (2.21) cannot be used to perform a rigorous convergence

study of my implementations of the backward Euler and BDF2 time-stepping algo-

rithms. However, by using a relatively fine spatial mesh much can be learned from

comparisons with the analytic solution.

The true solution and computed dhz/dt from all three time-stepping methods

are shown in fig. 2.5a. All three methods are wildly inaccurate in the first few time-

steps. This is the expected behaviour. In these early steps the solution is dominated

by the approximation of the transmitter step-off. Fortunately these artefacts are

quickly damped and at later times the solution is less affected by the accuracy of

the current waveform approximation. This is consistent with the general behaviour

of BDF methods applied to parabolic problems. In these problems it is not neces-

sary to resolve the details of early time behaviour in order to capture the late time

behaviour [6]. In practice, when approximating a real transmitter waveform by a

step-off, one must simply choose a small enough step-size such that any artefacts

from inaccurate approximation of the step-off are sufficiently damped before the

earliest time of interest.

After these early steps dominated by artefacts, both BDF2 solutions are much

more accurate than the backward Euler solution. This can be seen by eye in fig. 2.5a

and in the relative errors in the approximate solutions plotted in fig. 2.4b. Fig-

ure 2.4b also shows that initializing the time-stepping with three backward Euler

steps in order to avoid using BDF2 across the discontinuity in the solution does im-

prove the accuracy at later times, as well as eliminating the large oscillation seen in

the naive solution where BDF2 is applied across the discontinuity. This oscillation

can be more clearly seen in fig. 2.4c, in which the solutions are plotted on a linear,

rather than a logarithmic scale. At very late times the two BDF2 solutions do con-

verge but this is likely because other sources of error, such as those due to spatial

discretization, are starting to dominate the discrepancy with the true solution.
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Figure 2.4: Comparison of time-stepping methods in concentric loop exam-
ple. In the legend, BDF2 1 step init refers to the solution computed
using backward Euler for the first step only, using BDF2 thereafter with
no special treatment of the discontinuity. BDF2 3 step init refers to
the solution computed using backward Euler time-stepping for the first
three steps and BDF2 stepping thereafter. Dashed lines indicate negative
values. a) shows the overall behaviour of each method over the full 200
time-step simulation. c) illustrates the large oscillation observed from
the second time-step when using BDF2 with one step initialization.
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2.2 Parallel time-stepping
The computational cost of transient geophysical EM forward modelling is dom-

inated by the solution of the linear system of equations needed to advance the

electric fields at each time-step. The process is inherently sequential. As discussed

above, sparse direct methods have proven to be more efficient than iterative meth-

ods for geophysical transient EM modelling. It is possible to use parallel sparse

factorization software but the factorization computations have limited parallel scal-

ing.

With these considerations in mind I seek alternative methods for the parallel nu-

merical solution of the stretched exponential forward modelling problem and other

parabolic initial-boundary value problems. Parallelism across time has received

much less attention from the numerical analysis community than parallelism in

space but a body of literature on the topic does exist. The greatest effort has been

in the acceleration of high order time-stepping methods. The prototypical algo-

rithm of this class is the parareal method [59]. These methods are likely of little

use here since they require serial execution of a low order time-stepping method to

facilitate parallelization of the high-order method. Here I am seeking to parallelize

a first or second order method. Other methods such as space-time multigrid [46]

and multigrid waveform relaxation [47] treat the entire space-time problem all at

once, which is difficult for large scale problems. Additionally, it is not clear how

to reuse information from forward modelling in derivative computations with these

methods. Relatively recently, parallel exponential integrator methods, such as the

method presented by Börner et al. [16], have shown promising performance and

potential for reuse of information during derivative computations but they are dif-

ficult to differentiate. It may be that their parallelism can scale to large numbers of

processors but this is not clear to us.

Here I propose a parallel time-stepping method for time-domain electromag-

netic geophysics that is a small adjustment of the methods already discussed in this

chapter. The key insight leading to the method is that due to the diffusive nature of

quasi-static transient EM fields it is possible to use independent time stepping pro-

cesses to simulate electric fields at different time-scales of interest. For parabolic

PDEs, with sources that step off or ramp off in time, it is possible to model late
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time behaviour in a stable fashion without resolving early-time behaviour [6]. Fea-

tures of the fields decay in magnitude and become spatially smoother as the time

after source shutoff increases. For example, to simulate a survey collecting data

over the time interval 0.001-1 s, a minimum step-size of 1×10−4 or smaller would

be required but a step-size of 0.05 s might be sufficient to roughly approximate the

electric field 1 s after current shutoff.

In my parallel time-stepping algorithm I consider modelling the electric field

at each time of interest as an independent forward problem. I then choose a sin-

gle time step size and number of steps adequate to accurately model the field at

that time. Then each time-stepping process has a single step-size. Recall that the

matrix of the time-stepping linear system remains constant while the step-size re-

mains constant, so each independent forward problem in the parallel time-stepping

scheme requires only a single factorization, and the time-stepping processes are

trivially parallel.

I have tested this parallel time stepping approach only for ideal step-off sources.

As just described it should also work for more complex transmitter current time-

dependence (waveform), provided that the source waveform can be adequately dis-

cretized in time using the same step size required for simulating late time fields. In

cases where the source waveform varies on a shorter time-scale than the step-size

required for simulating late time fields, a more sophisticated scheme would need

to be used in order to achieve good parallel scaling. A possible approach would be

that described by Gander and Güttel [34]. The reader is directed to that work for

a detailed explanation of the method. In their method, an inhomogeneous linear

initial value problem is split into two independent sub-problems that can be solved

in parallel, one homogeneous and one inhomogeneous. In this manner a small step

time-stepping process incorporating the source behaviour may be run in parallel

with a large step process run until the time of interest. The solution of the true

problem is then given by the sum of the independent sub-problems. I have not im-

plemented it but I believe my parallel time-stepping approach could be augmented

by such a scheme in order to extend it to more complex transmitter waveforms.

The main determining factor of the parallel efficiency of the method is the

number of time steps, which I call spin-up steps, needed to simulate the electric

field at a given time. If a very small step-size—and therefore an excessive number
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of steps—are needed to ensure accuracy at late times then the benefit of performing

multiple factorizations in parallel will be greatly reduced. Although knowledge of

early time-behaviour is not required to resolve late-time behaviour, the accuracy of

the electric field at any time t will be proportional to the step-size or square of the

step-size for backward Euler and BDF2, respectively. I have found by numerical

experiment that the number of backward Euler time steps required to resolve late

time fields with sufficient accuracy was large enough to significantly dissipate the

speedup acquired through parallelization. The benefit of parallel time-stepping is

greatly improved by the use of second order time-stepping methods.

2.2.1 Evaluating accuracy

The parallel BDF2 time-stepping algorithm was tested with a range of example

problems to get an empirical sense of the typical number of spin-up iterations re-

quired to achieve sufficient accuracy over a wide range of time-scales. For each test

problem I computed a reference backward Euler solution using a very small step-

size and then computed the relative error between the reference solution and BDF-2

solutions with various constant step-sizes. Results for a typical test problem using

a reference solution with BE step-size of 1× 10−5 s are shown in figure fig. 2.5.

The test problem used to generate those figures was that of computing the electric

field at the surface of the earth due to a 2 km long straight wire grounded trans-

mitter over a homogeneous half-space. The transmitter waveform was a simple

step-off. The mesh consisted of a core region of 50× 50× 50 m cells covering

the transmitter and a 1.2×1.2 km area centred about the centre of the transmitter.

fig. 2.5a shows the component of the electric field parallel to the transmitter wire,

at the point half way between the transmitter electrodes. It shows that for the first

two to three time-steps for each BDF2 step size, the fields differ significantly from

the reference backward Euler solution, as expected. A step-size of 5× 10−4 s for

example is not small enough to accurately resolve the electric field at 10−3 s. How-

ever, the fields for all BDF2 step sizes start to agree with the backward Euler field

after four steps. Figure 2.5b shows the relative difference between the reference
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Figure 2.5: Parallel time-stepping accuracy on grounded source test problem.
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backward Euler solution and the BDF2 solutions, which is computed point-wise as

rel. dif. =
d−dref

dref
. (2.22)

For all step-sizes the BDF2 solutions have a relative difference with the reference

solutions of less than 1× 10−2 after 6 time steps. In the context of inverse mod-

elling such accuracy is normally sufficient. Errors in the physical property models

will overwhelm discrepancies from this parallel time-stepping scheme. Testing on

more complex conductivity models did not show a degradation in accuracy.

2.2.2 Evaluating performance

I tested the performance of the algorithm on a synthetic problem with a more re-

alistic time-stepping scheme. This problem is based on the gradient array style

of survey used in induced polarization experiments. It includes two perpendicular

long grounded wire transmitters that intersect at their centres. An array of electric

dipole receivers is laid out on a regular grid centred at the point of intersection of

the transmitter wire paths. The volume enclosing the survey area was meshed with

a core volume of 50×50×25 m cells, with the cell size gradually expanding from

there to fill the domain. With the domain being made large enough to approxi-

mately fulfill the zero-flux boundary conditions. In total the mesh had 41120 cells

and 135233 edges. Constraining the so-called hanging edges of the mesh (a detail

of spatial discretization not discussed in this chapter) then gave a linear system

with 112849 unknowns to be solved at each time-step.

This single mesh was used to simulate the data from both transmitters. The

linear systems of equations at each time-step of the forward modelling process

were solved using the Pardiso sparse-direct linear solver software package [84].

As discussed earlier in this chapter, factorization of the system matrix is the most

expensive element of transient EM simulations when using direct methods. The

system matrix depends on the mesh, earth model and time-step size but not on the

transmitter or the time itself. The transmitter enters the system only through the

right hand side. Therefore multiple transmitters and multiple time-steps of equal

size can be handled very efficiently by a direct solver—each additional transmitter

and equally sized time-step adds a forward and backward substitution step but not
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Figure 2.6: Time-stepping scheme for reference backward Euler solution .
There are 10 steps each of sizes 2×10−5 s, 4×10−5 s, 8×10−5 s, 1.6×
10−4 s, and 14 steps of size 3.2×10−4 s.

an additional factorization. Previous surveys of sparse matrix factorization soft-

ware such as those by Gould et al. [36] and by Davis et al. [26] have found Pardiso

to be among the best sparse factorization software in terms of performance and us-

ability. My own previous work ([9]) and the experience of my research group have

found it to be the fastest such software for factorizing matrices and solving linear

systems arising in geophysical EM simulations.

The current waveforms of both transmitters were modelled as step-offs. Re-

ceiver voltages were computed at 22 time steps in the interval [2.8× 10−4,7.5×
10−3] s. In the reference backward Euler solution this was modelled using 54 steps

of 5 unique sizes, as illustrated in fig. 2.6. Due to its lower accuracy, a larger num-

ber of steps before the first observation time are needed to eliminate initialization

artefacts in backward Euler time-stepping than with BDF2. In this example 12

steps were taken to reach the first observation time.

I performed parallel BDF2 time-stepping on the same mesh to compute the re-

ceiver voltages at the same 22 observation times. I did not have sufficient computa-

tional resources to test using a separate time-stepping process for each observation

time but I was able to divide the 22 observation times into 6 parallel time-stepping

processes that each used could be performed in parallel, with each using a constant
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step-size first obs. time last obs. time # of obs. times total # of steps
3.5×10−5 2.8×10−4 4.4×10−4 3 13
6.5×10−5 5.2×10−4 7.6×10−4 3 13
1.15×10−4 9.2×10−4 1.4×10−3 4 13
2.15×10−4 1.72×10−3 2.68×10−3 4 13
3.75×10−4 3×10−3 4.28×10−3 3 13
6.15×10−4 4.92×10−3 7.48×10−3 5 13

Table 2.1: Parallel time-stepping scheme. Six parallel forward modelling
simulations with constant step-sizes shown in this table were run in par-
allel to simulate the receiver voltages at the same observation times used
in the reference backward Euler simulation. The number of observation
times per parallel process varied but the total number of time-steps was
the same in all the simulations.

step-size and thus only a single factorization. For each parallel time-stepping pro-

cess, 8 steps were taken to reach the first observation time. The step sizes used and

observation times covered by each parallel time-stepping process are summarized

in table 2.1. These tests were performed on a small computer cluster containing

four twelve core compute nodes, with two nodes running one time-stepping pro-

cess each and the other two nodes each running two time-stepping processes. At-

tempting to run more than two parallel time-stepping processes per node resulted

in significantly reduced performance. Each time-stepping process is both compute

and memory intensive and this poor performance was presumably due to low mem-

ory bandwidth on the cluster nodes causing the computations to become memory

bound rather than compute bound. The specific time-stepping scheme detailed in

table 2.1 was chosen to minimize the number of time-steps per parallel process

while balancing their computational loads.

The reference backward was computed in approximately 89 s on a single core

of a single node of the cluster. This time, as with all timings in this performance

test, did not include initial setup computations such as the construction of the mesh

and differential operator matrices. This method of measuring performance was

chosen because it is most representative of the typical cost of forward modelling

during an inversion. The setup computations need only be done once at the begin-

ning of an inversion and subsequent simulations with updated earth models need
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# of threads run time (s)
1 89.
2 62.
4 46.
6 40.
12 36.

Table 2.2: Backward Euler solution run times.

only update the mass matrices that depend on the earth model.

As previously mentioned in this chapter, aside from running parallel time-

stepping processes, the linear solver itself can be parallelized. The Pardiso solver

uses openMP shared memory parallelism. Using shared memory limits the parallel

scaling to a single node but provides efficient parallelism within a node. Distributed

memory parallel sparse matrix factorization software that can scale across multi-

ple computers, such as the MuMPS package [3], are available. Previous experience

with MuMPS seems to indicate that good parallel scaling across multiple machines

will only occur for the largest of geophysical EM simulation problems.

The parallel time-stepping algorithm provides a way to expand the parallelism

of transient EM forward modelling beyond what a parallel sparse linear solver can

provide. In this example the best performance was achieved when combining the

two modes of parallelism. To achieve a full comparison, I ran both the reference

backward Euler solution and the parallel time-stepping BDF2 solutions with Par-

diso in both single and multi-threaded modes.

I ran the reference backward Euler solution with 1, 2, 4, 6, and 12 threads.

Recall that this simulation involved 54 time-steps of 5 unique sizes, thus requir-

ing 5 factorizations. The run times for these tests are shown in table 2.2 and the

corresponding parallel efficiency plot is shown in fig. 2.7. Using Pardiso gives a

non-trivial speedup but the parallel efficiency drops off precipitously as the number

of threads increases.

The parallel time-stepping scheme achieved lower run times than was possi-

ble by parallelizing the linear solver. This was the case despite the fact that the

parallel time-stepping solution actually performed more floating point operations

than the backward Euler solution, using a total of 78 time-steps and six factoriza-
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Figure 2.7: Pardiso parallel scaling results when using a single sequential
backward Euler time-stepping process. Parallel efficiency for N threads
is T1/(N ·TN) where T1 is the sequential run time and TN is the run time
using N threads.

threads per process run time (s)
1 20
2 15
4 11
6 11

Table 2.3: Parallel time-stepping run times using 6 parallel time-stepping
processes run across 4 compute nodes of a computer cluster.

tions across all six processes in comparison with the 54 steps and 5 factorizations

used by the backward Euler solution. The parallel time-stepping algorithm is able

to take advantage of distributed memory high performance computing hardware,

while the sequential time-stepping algorithm is not. With each process running

single threaded, the parallel time-stepping run time was 20 s—already a substan-

tial improvement over single time-stepping process running with 12 threads. This

was improved by running Pardiso with multiple threads in each time-stepping pro-

cess. The results are summarized in table 2.3. These results show that the parallel

time-stepping method is capable of significantly improving upon the parallelism

present in matrix factorization software.
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2.3 Conclusions
The work presented in this chapter has shown that the speed and accuracy of geo-

physical transient EM forward modelling can be significantly improved by the use

of more sophisticated numerical methods than are typically used in the temporal

discretization of the problem. I have investigated the use of second order time-

stepping methods in initial boundary value problems involving the time-domain

quasi-static Maxwell equations. I found that as long as care is taken in initializing

the time-stepping and handling discontinuities, then these methods provide supe-

rior performance, relative to first order methods. The use of second order meth-

ods allowed the development of a parallel time-stepping algorithm that removed a

major bottleneck in the parallel scaling of quasi-static transient EM forward mod-

elling. I demonstrated that the parallel time-stepping method could achieve signifi-

cantly greater speedup than parallelization of the linear algebra of the time-stepping

alone could achieve.
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Chapter 3

Forward modelling of the
dispersive time-domain Maxwell
Equations using the stretched
exponential function

This chapter will describe the algorithm I have developed for modelling time-

domain quasi-static electromagnetic (EM) fields in the presence of polarizable

earth materials. I start by stating the forward modelling problem precisely, dis-

cussing the difficulties introduced by the consideration of induced polarization (IP),

and motivating the choice to use stretched exponential relaxation to model IP de-

cays. I then discuss the similarities and differences between the stretched exponen-

tial model of IP and the Cole-Cole model, the de facto standard frequency domain

geophysical IP model, before describing the implementation of the stretched ex-

ponential forward modelling algorithm. The chapter finishes with synthetic mod-

elling examples illustrating the capabilities of the stretched exponential approach.

3.1 The stretched exponential formulation
I am interested in solving the quasi-static time-domain Maxwell equations to de-

termine the electric field due to either grounded or inductive sources, in the pres-
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ence of polarizable media. The polarization effect is contained in the constitutive

relation between the electric current j and the electric field e. I formulate the quasi-

static Maxwell equations in the time-domain in terms of the electric field e, mag-

netic flux density b, current in the earth j and source current js. I use zero-flux

boundary conditions. Other boundary conditions could be used but zero-flux were

sufficient for the work considered in this thesis. I will assume steady state initial

conditions. Formally, the forward modelling problem is described by the follow-

ing initial boundary value problem on a cuboidal domain Ω ∈R3 and time interval

t ∈ [0, t∗].

∇× e =−∂b
∂ t

on Ω× (0, t∗) (3.1a)

∇×µ
−1b− j = js on Ω× (0, t∗) (3.1b)

∂e
∂ t

= 0 on (−∞,0] (3.1c)

n̂× (µ−1
∇× e) = 0 on ∂Ω× (0, t∗). (3.1d)

For inductive sources, I assume the electric field is zero initially and for grounded

sources, I compute the initial electric field by solving the DC problem for the given

electrode configuration. The current in the earth j is the primary concern here. In

the non-dispersive case, explicit dependence on j may be eliminated by the use

of the standard constitutive relation j = σe, where σ might be a scalar or tensor

quantity but depends only on position.

As briefly discussed in the introduction to this thesis, the relationship between

electric field and current is less straightforward when IP effects are considered. The

IP phenomenon is most often described in the frequency domain, as a frequency

dependent conductivity. Here Ohm’s law remains a simple linear relationship

J = σ(ω)E. (3.2)

When transformed to the time-domain, this becomes a convolution

j(t) =
∫

∞

−∞

σ̂(t− τ̃)e(τ̃)dτ̃ (3.3)

37



where σ̂(t) is the impulse response of the conductivity. Due to causality and the

initial condition on the electric field for t ≤ 0, this may be reduced to [62]

j(t) = σ∞e(t)−
∫ t

0
σ̂(t− τ̃)e(τ̃)dτ̃. (3.4)

Note that I have not assumed any particular frequency dependence here. The Cole-

Cole model is the most popular choice but eq. (3.4) applies generally to any fre-

quency dependence. Making a different choice will simply lead to a different im-

pulse response function.

The question then becomes, how to deal with this convolution. This question

has seen some recent attention in the geophysical geophysical EM community and

in the electrical engineering finite difference time domain (FDTD) modelling com-

munity. As noted by, e.g Commer et al. [25], Takayama and Klaus [91], the efforts

fall into three main categories: direct numerical evaluation of the impulse response

and convolution integral (e.g. [62, 101]), auxiliary differential equation methods

(e.g. [63, 74, 91]), and methods based on the Z-transform (e.g. [90, 98]).

These methods are all based on translating frequency domain characteriza-

tions of dispersive electromagnetic media to the time-domain and they all have

advantages and disadvantages whose importance depends on the application. For

example, Z-transform methods can be made highly efficient only when constant

time-stepping is employed, making them inappropriate for geophysics when the

variation in EM fields over logarithmic time scales is typically of interest. Auxil-

iary differential equation methods work well when the frequency dependence has a

simple enough form but require the use of fractional derivatives for more complex

scenarios. Direct convolution methods are quite general but can be computationally

expensive and difficult to differentiate with respect to model parameters.

Another approach is to consider a parametrization of the IP effect defined natu-

rally in the time-domain. This is the approach I take in this chapter. I use stretched

exponential relaxation to describe the decay of IP currents. The stretched exponen-

tial function

f (t) = e−tβ /τ , (3.5)

where β ∈ (0,1] and τ is a time-constant, describes the relaxation of complex sys-
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tems whose multiple components exhibit exponential decays of different time con-

stants [2]. It has been used widely in solid state physics to describe relaxations in

glassy systems [2], and also in other areas of physics such as time-resolved lumi-

nescence spectroscopy [13] and the diffusion of water in biological tissues [12]. In

the application to glassy systems it is often thought of as a time-domain analogue

to frequency domain representations similar to the Cole-Cole model [2, 44]. This

experience in the physics literature motivates the choice to explore the use of the

stretched exponential to describe geophysical IP effects. Everett [31] and Haber

[37] have noted how the stretched exponential may be used to describe the de-

cay of IP currents but to my knowledge no electromagnetic simulation algorithms

based on the idea have been developed.

The algorithm developed in this chapter incorporates stretched exponential

relaxation into Maxwell’s equations using an auxiliary differential equation ap-

proach. The implementation originated from an auxiliary differential equation

algorithm for the special case of Debye dispersion (Cole-Cole with c = 1) by

Marchant et al. [63]. Here I generalize the approach and make key changes to

improve the stability of the resulting numerical algorithm. I will show that formu-

lating the constitutive law as an ordinary differential equation (ODE) is mathemat-

ically equivalent to the convolution representation.

Before describing the implementation of the stretched exponential approach, I

will discuss the general approach to defining the j(e) constitutive law via an ODE

and how it relates to convolutions. I start with two definitions. First, I introduce

the effective DC conductivity σ0 = σ∞(1−η). As noted by Seigel [85], this is the

effective conductivity observed in a DC survey of a material with conductivity σ∞

in the absence of IP effects and chargeability η . Next I write the total earth current

j(t) as

j(t) = σ0e(t)− r(t). (3.6)

I call r(t) the residual current. It contains any deviations from standard non-

dispersive current flow. This decomposition of the current will be important for

achieving a stable and robust discretization of the time-domain dispersive Maxwell

equations.

Before specializing to the stretched exponential case, consider defining the con-
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stitutive law relating e and r by the following ordinary differential equation (ODE)

in r:

ασ0
∂e
∂ t

=
∂r
∂ t

+λ (α,θ ,β ,x, t)r, (3.7)

where λ is an arbitrary smooth function of position and possibly time, and α ,

θ , and β are spatially varying parameters. They will be related to the Cole-Cole

parameters below. I will also associate the initial condition r(0) = 0 with the ODE.

This condition gives the correct initial current for both grounded and inductive

source time-domain EM experiments.

The ODE (3.7) has the solution

r(t) = ασ0

∫
∞

0
G(λ , t− τ̃)

∂e
∂ τ̃

dτ̃ (3.8)

where G is a Green’s function. The r(0) = 0 conditions implies G = 0 for τ̃ > t,

which is consistent with the physical notion that r is caused by an applied electric

field e. Thus the integration may be truncated at t, giving

r(t) = ασ0

∫ t

0
G(λ , t− τ̃)

∂e
∂ τ̃

dτ̃. (3.9)

Considering the derivative of the Green’s function in the distributional sense,

one may use a generalized integration by parts to give

r(t) =−ασ0

∫ t

0

∂G(λ ,x, t− τ̃)

∂ τ̃
edτ̃. (3.10)

Comparing this result with eq. (3.4) it is seen that −ασ0
∂G(x,t−τ̃)

∂ τ̃
is equivalent to

a conductivity impulse response that arises when transforming a frequency depen-

dent Ohm’s law to the time domain.

In principle one could choose the function λ in eq. (3.7) to generate the Cole-

Cole impulse response but except for the special cases of c = 1,0.5, this would

likely still lead to an integral that would need to be evaluated numerically. Stretched

exponential relaxation offers a similar range of behaviour to the Cole-Cole model

and has a simple functional form in the time-domain. Alternatively, I will choose λ

such that the residual currents decay with a stretched exponential time dependence

in the absence of induction effects. One may ignore induction when ∂e
∂ t is negligi-

40



bly small. Thus we choose lambda such that r=Ae−tβ /θ satisfies the homogeneous

version of eq. (3.7)
∂r
∂ t

+λ (α,θ ,x, t)r = 0. (3.11)

This implies λ = θ−1β tβ−1. In the general case when induction and IP effects

occur simultaneously, r will depend on the electric field and the constitutive law

relating current and electric field will be defined by eq. (3.6) and the inhomoge-

neous ODE

ασ0
∂e
∂ t

=
∂r
∂ t

+θ
−1

β tβ−1r. (3.12)

The forward modelling initial boundary value problem is then fully specified by

Maxwell’s equations ((3.1)), the constitutive relation defined by eqs. (3.6) and (3.12),

and the initial condition r(0) = 0.

3.1.1 Comparison of stretched exponential and Cole-Cole models

It is instructive to compare the properties of the stretched exponential to the Cole-

Cole model. In the case of Debye dispersion the two models are entirely equiv-

alent, which may be shown with the appropriate choice of parameters. Follow-

ing Marchant et al. [63] and Haber [37], I write Ohm’s law in frequency for the

Debye model as
1

σ0

(
1− iωτη

1+ iωτ

)
J = E. (3.13)

In this case, Ohm’s law may be analytically transformed to the time domain, where

it becomes the differential equation

(1−η)
∂ j
∂ t

+ τ
−1j = σ0

(
∂e
∂ t

+ τ
−1e
)
, (3.14)

This is equivalent to eq. (3.12) if we substitute j = σ0e− r, α = 1− (1−η)−1,

θ = τ(1−η), and set β = 1. This shows that in the stretched exponential model,

α plays the role of chargeability and θ that of a time constant. The parameter β

plays a role analogous to that of c in the Cole-Cole model.

For c,β 6= 1 the models are not fully equivalent but they share many char-

acteristics. These connections can be explored by comparing the Cole-Cole and
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Figure 3.1: a) Stretched exponential impulse response for various values of
β . b) Cole-Cole impulse responses for various values of c. For both
plots η = 0.1, τ = 0.1 and σ∞ = 0.1.

stretched exponential impulse responses. The stretched exponential impulse re-

sponse is

σ̂se(t) =−ασ0
∂G
∂ t

=−ασ0θ
−1

β tβ−1e−(t
β )/θ . (3.15)

The α and σ0 parameters control the amplitude of the response, τ controls the over-

all time scale of the response, and β the shape. The impulse response is very small

for times much greater than τ . Recall that the residual current r is the convolu-

tion of the impulse response with the electric field. This means that when gaining

intuition about r one should think of early times in the impulse response plots as

affecting the behaviour of r at late times. For example, a sharp drop in σ̂se(t) at

late times corresponds to a negligible IP current at early times after source shutoff

and σ̂se(t) increasing at early times as β decreases corresponds to slower decay

of r with decreasing β . This is illustrated in fig. 3.1a, which shows the stretched

exponential impulse response σ̂se(t) when η = 0.1, τ = 0.1 and σ0 = 0.1(1−η)

plotted for several values of β . The Cole-Cole impulse responses for the same pa-

rameter values are shown in fig. 3.1b. The responses are very similar at early times

but the stretched exponential curves decay much more quickly at late times than

their Cole-Cole equivalents.

The Cole-Cole impulse responses were computed based on analytic series rep-

resentations derived by Hilfer [44]. To my knowledge his paper is the only source
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to give a general analytic expression for the Cole-Cole impulse response. He de-

rives frequency and time domain representations of several models of relaxation in

disordered systems (including the stretched exponential and Cole-Cole models) in

terms of contour integrals of a specific form known as H-functions. Infinite series

representations of these relaxation functions may be derived from the H-function

representations. The series form of the Cole-Cole impulse response is

d
dt

Ec [−(t/τ)c] , (3.16)

where Ec is the Mittag-Leffler function

Ec(x) =
∞

∑
k=0

xk

Γ(ck+1)
. (3.17)

While this series representation is exact, it is very ill-behaved in certain parameter

regimes and generally difficult to work with numerically. To my knowledge, more

robust analytic formulae for the Cole-Cole conductivity impulse response only ex-

ist for the special cases c = 1 and c = 0.5.

Although the general form of the Cole-Cole impulse response is rather un-

wieldy, Marchant [62] was able to show that for t� τ and any c ∈ (0,1), it has the

approximate form

σ̂cc ≈ mtc−1 +d (3.18)

for some constants m and d. Inspection of eq. (3.15) shows that

σ̂se(t)≈−ασ0θ
−1

β tβ−1 (3.19)

for t� τ , the same time dependence as the Cole-Cole response. This implies that at

late times the Cole-Cole and stretched exponential models generate approximately

equivalent current flow, again recalling that early time behaviour of the impulse

response corresponds to late time current flow.

The relationship between the Cole-Cole and stretched exponential impulse re-

sponses can be further illustrated through the exercise of trying to fit the stretched

exponential impulse response function to a given Cole-Cole response. I used non-

linear least squares to find the stretched exponential parameters that best fit the
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Figure 3.2: Cole-Cole impulse response with c = 0.5, τ = 0.1, η = 0.1, σ∞ =
0.1 plotted in blue alongside stretched exponential impulse responses
with parameters chosen by non-linear least squares fitting. The green
line attempted to fit the 0.001 < t < 100s time range and the magenta
line the 0.1 < t < 100s range.

Cole-Cole impulse response with parameters c = 0.5, σ∞ = 0.1 S/m, η = 0.1, and

τ = 0.1 s. Figure 3.2 shows the Cole-Cole response along with two fitted stretched

exponential models, one to the time range 0.001 < t < 100 s and one to the range

0.1 < t < 100 s. As expected, when attempting to fit the wide time range it is easy

to fit the early-time Cole-Cole response at the expense of capturing its late time

persistence. The best fitting stretched exponential model had α = 0.088, β = 0.47,

θ = 0.23. Using 1−α = 1/(1−η) and θ = τ(1−η), α corresponds to η = 0.081

and θ corresponds to τ = 0.25. Again, recall that this excellent fit at early times

in the impulse response corresponds to equivalent residual current decays at late

times.

It is not possible to fit the entire Cole-Cole model with a single stretched ex-

ponential. Trying to fit only the late time Cole-Cole impulse response gives a

very rough approximation, as shown in fig. 3.2. This analysis also shows that

the stretched exponential parameters do not correspond exactly to Cole-Cole pa-

rameters, even when the responses coincide. However, if one is interested in the

time-scale where the models are equivalent it would be straightforward to find the
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Cole-Cole parameters that match a certain stretched exponential electric or mag-

netic field decay. If one is concerned with matching the Cole-Cole behaviour very

closely over a wide range of time-scales then a residual current model based on a

sum of stretched exponential decays with different time constants could be used.

I have not explored that possibility in this thesis but it would be a straightforward

extension.

3.2 Discretization
I present two discretizations of the coupled system of differential equations com-

posed of eqs. (3.1a), (3.1b) and (3.12). In both cases the spatial operators are

discretized using the mimetic finite volume method on locally refined rectilinear

meshes known as OcTrees, as discussed in chapter 2. In previous work of my Ph.D.

supervisor’s research group (e.g. [41]), which this thesis builds upon, the back-

ward Euler method has been used for discretization in time of the non-dispersive

quasi-static Maxwell equations. Backward Euler was chosen for its simplicity and

excellent stability properties. The quasi-static Maxwell equations in time are very

stiff and implicit time-stepping was used to avoid having to take excessively small

steps to preserve stability.

The backward Euler discretization described here extends that approach to in-

clude the stretched exponential auxiliary ODE formulation of Ohm’s law. A similar

algorithm for the special case of Debye dispersion and for the Cole-Cole model de-

scribed by Padé approximation was described by [63]. I will show how the systems

of equations arising from this discretization can be solved efficiently using a combi-

nation of direct and iterative methods. In the second approach time-discretization is

accomplished by the second order backward differentiation formula (BDF2). This

more accurate time-stepping method may be used to parallelize the time-stepping

process by the method developed in chapter 2.

3.2.1 Backward Euler Algorithm

I begin the first scheme by discretizing the time derivatives in Maxwell’s equations

and Ohm’s law. I will then manipulate this semi-discrete system of equations to

eliminate explicit dependence on the magnetic flux density b and form an equation
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for the electric field e at time t in terms of quantities at earlier times. This equation

will then be discretized in space to form a system of linear-algebraic equations to

be solved for e at each time-step.

Discretizing eqs. (3.1a), (3.1b) and (3.12) in time using the backward Euler

method but keeping spatial variables continuous yields a system of semi-discrete

equations

bn+1−bn

∆tn
=−∇× en+1 (3.20a)

∇×µ
−1bn+1−σ0en+1 = js

n+1− rn+1 (3.20b)

rn+1− rn +∆tntβ−1
n+1 θ

−1rn+1 = ασ0(en+1− en), (3.20c)

where ∆tn is the size of the nth time-step and the n+1 subscript on field variables

refers to the field at time tn+1 =∑
n
j=1 ∆t j. These three equations can be combined to

form a single equation expressing en+1 in terms of the residual current and electric

field at earlier times, and the source current:

∇×µ
−1

∇× en+1 +∆t−1
n σ0(1− γα)en+1 =

−∆t−1
n
[
js
n+1− js

n +(1− γ)rn− (1− γα)σ0en
]
, (3.21)

where I define γ = (1+∆tntβ−1θ−1)−1 for brevity.

Next, following the methods described in section 2.1.1, I convert eq. (3.21) to

weak form and discretize it. This results in a system of linear algebraic equations

that can be solved for the approximate electric field discretized on cell edges

(CT Mµ−1C+∆t−1
n Mσ0(1−γα))en+1 =

−∆t−1
n
[
sn+1− sn +M(1−γ)rn−Mσ0(1−γα)en

]
. (3.22)

The matrix C is the discrete curl operator. All M matrices are mass matrices. Their

subscripts indicate the PDE coefficients they discretize. The discrete source current

s is computed by discretizing the transmitter wire path onto mesh edges.

After solving for the electric field at a given time-step the residual current must

also be updated, for use in the right hand side of the next electric field update.
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To derive the residual current update I solve eq. (3.20c) for rn+1 and discretize in

space, giving the linear system

Mrn+1 = Mγrn +Mσ0γα(en+1− en), (3.23)

where M is a unit coefficient mass matrix. M is not diagonal in general but it is

very sparse and has a structure amenable to efficient factorization by sparse direct

methods. It may be factored once at the beginning of a simulation and eq. (3.23)

can be solved quickly by triangular substitution thereafter.

Initial conditions are the last ingredient in the discretization. I assume steady

state initial conditions, which have the convenient implication that the initial resid-

ual current is always zero. The initial electric field may either be zero or given by

the solution to a DC resistivity problem, as occurs e.g. when modelling step-off

galvanic sources. In this case I use a mimetic finite volume method to solve for the

DC potential on mesh nodes. The initial electric field is then given by the nega-

tive discrete gradient of the potential. In this chapter I present numerical examples

only for step off sources but the implementation is capable of handling arbitrary

transmitter waveforms.

3.2.2 Solving the linear system

I now move to solving the electric field-update system eq. (3.22). For realistic pa-

rameter values and step-sizes the stretched exponential time stepping system can

be considered a perturbation from the corresponding system arising from back-

ward Euler discretization of the non-dispersive Maxwell equations. As such, ex-

perience with the non-dispersive equations has guided the approach here and I

will frequently refer to the non-dispersive problem in the following discussion. In

non-dispersive TEM simulation and inversion algorithms based on implicit time-

stepping it is often preferable to solve the electric field update system using direct

factorization methods rather than iterative techniques such as the conjugate gradi-

ent method. Stretched exponential modelling creates additional challenges but I

can still make efficient use of direct methods and argue that they are preferable to

iterative methods.

Over the last fifteen years, several excellent sparse matrix factorization soft-
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ware packages have been developed [26] that make direct methods practical for

very large matrices such as those encountered in 3D electromagnetic simulations.

In this work I have chosen to use the MUMPS [3] software package because of

its performance and numerical stability. Matrix factorization is expensive both in

terms of memory and CPU time but once it has been completed, the factors can

be reused to solve systems with the same matrix and different right hand sides ex-

tremely efficiently. In backward Euler discretization of the non-dispersive Maxwell

equations (and in the dispersive TEM algorithm of [62]), the electric field update

system depends on the step-size but not on the current time. Therefore, as long

as the step size remains constant, one may factor the system matrix once and then

advance the solution many time steps for relatively little computational cost. In

an inversion using gradient based optimization, the factors may also be reused to

accelerate the computation of cost function gradients.

In transient electromagnetic simulation, one is generally interested in a wide

range of time-scales. Airborne systems typically collect data over several orders of

magnitude in time. To maximize information about both inductive and IP effects

in a grounded source survey one may need to simulate electric fields over four or

five decades in time. In such scenarios, very small step-sizes must be used to accu-

rately model early time behaviour and it is not feasible to use a single step-size for

the entire simulation. However, using a small number of step-sizes, factoring the

system matrix each time the step-size changes and advancing the solution several

steps for each step size has still been more efficient than using iterative methods.

This strategy was analyzed in detail by Oldenburg et al. [68].

Unfortunately, time appears explicitly in the stretched exponential electric field

time-stepping system matrix in eq. (3.22), causing the matrix to change every step

and destroying the main benefit of direct methods. Requiring a factorization at

every time-step is too slow to be of practical use. For example, in one sample

problem (the gradient array example discussed later in this paper with an additional

source added) with two long grounded wire sources on a mesh of approximately

114000 cells with 80 time-steps and 6 unique step sizes, non-dispersive modelling,

using 6 factorizations, took an average of 285 s on a high end laptop. Stretched

exponential modelling took 2415 s factoring at each time-step.

Since it is now not possible to achieve the high reuse of matrix factors achieved
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for non-dispersive simulations, I consider iterative Krylov subspace methods for

solving the time-stepping system of equations. These methods do not manipulate

the entries of the system matrix directly. They create sequences of vectors that

hopefully converge to the solution of the system, requiring matrix-vector products

at each iteration but treating the matrix as a black box.

The matrix in eq. (3.22) is symmetric positive-definite and so I turn to the

preconditioned conjugate gradient method, the most effective iterative method for

such systems [81]. Convergence of the conjugate gradient algorithm depends on

the distribution of eigenvalues of the system matrix [81]. The algorithm will con-

verge quickly if the eigenvalues are tightly clustered away from zero. Unfor-

tunately the stretched exponential time-stepping matrix is highly ill-conditioned,

making it difficult to use the preconditioned conjugate gradient algorithm with

standard preconditioners to solve the system. The ill-conditioning is a consequence

of the non-trivial the null-space of the curl operator and the fact that as a discretiza-

tion of a differential operator the largest eigenvalue remains relatively constant,

while the smallest eigenvalue shrinks with refinement of the mesh. Adding the

mass term eliminates the zero eigenvalues associated with the null space of the curl

but its values are generally not large enough to make the system well-conditioned.

Thankfully, the explicit time dependence creates only a small perturbation in the

system matrix away from the non-dispersive case. Furthermore, as the change in

the mass term will be relatively uniform across the mesh, it seems likely that the

change in the mass term at each time-step will cause a shift in the eigenvalues

rather than increasing or decreasing their spread.

Motivated by the facts of the previous paragraph, I have developed a precon-

ditioner for the stretched exponential time-stepping system matrix based on occa-

sional matrix factorizations. Let us denote the system matrix at time t0 as A0 and

the matrix at time tn = t0 + n∆t by An. I emphasize again that these matrices de-

pend on both the step size and the current time. While the step size ∆t remains

constant, the matrix A0 is a good approximation of the matrices An at subsequent

times t0 +n∆t. I can write

An = A0 +δAn. (3.24)

Now, consider solving systems involving An with the preconditioned conjugate
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gradient method. If δAn is not too large and A−1
0 can be cheaply applied then A0

should be an excellent preconditioner for the conjugate gradient method applied

to systems involving An. If A0 is factored and the factors are stored then forward

and back substitution can be used to cheaply and accurately apply A−1
0 to arbitrary

vectors, as is required when using A0 as a preconditioner.

This motivates the use of a hybrid direct-iterative approach to updating the

stretched exponential electric field. At the first time-step, and subsequently when

the step-size changes, the system matrix is factored. Otherwise the system is solved

using the block preconditioned conjugate gradient method (PCG) [69] with the

factored matrix as a preconditioner. I use the block variant rather than standard

PCG to improve convergence in systems with multiple right hand sides. This gives

the forward modelling algorithm shown in algorithm 1.

Algorithm 1 Electric field update algorithm
Input:

Number of times steps n
List of step sizes ∆t
Initial electric field

Do:
Factor initial matrix A0 = LLT

Solve for e by forward and back substitution
for j = 2→ n do

Construct matrix A j

if ∆t(n) = ∆t(n−1) then
Solve A jX = B with block PCG

else
Factor A j

Solve using forward and back substitution
end if

end for

This approach yielded a significant decrease in forward modelling run-times. I

observed a small degradation in accuracy, which was negligible except after a large

number of time steps. I tested the algorithm by comparing run-times and computed

electric fields when factoring at each time-step and when using the hybrid direct-
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Figure 3.3: Error in PCG computed example problem electric fields for loose
and tight PCG relative residual stopping tolerances.

iterative algorithm. I considered the fields computed by factoring at each step

(edir) to be correct and computed the error in the fields computed with the hybrid

algorithm (eiter) as

δe =
‖edir− eiter‖2

‖edir‖2
. (3.25)

The highly ill-conditioned nature of the system makes it difficult to compute the

electric field accurately, with very small PCG residuals not necessarily correspond-

ing to accurate electric fields. These errors accumulate over the course of the time-

stepping process since fields and residual currents computed at a given time step

are used in the right hand side of future update linear systems. The relative error

norm of the electric field for PCG residual stopping tolerances of 1× 10−6 and

1×10−14 is shown in fig. 3.3. The fields were computed from the example model

mentioned above, with 80 times steps, covering a time range 0.0025-3.1 s, using six

unique step sizes. Hybrid forward modelling on that model using a PCG relative

residual stopping tolerance of 1×10−14 took an average of 702 s, 2.5 times slower

than non-dispersive modelling of the same example but only 29% of run-time when

factoring at every step. The number of PCG iterations per time step varied between

two and four. The time increase relative to non-dispersive modelling is mainly due

to the PCG iterations requiring multiple applications of forward and back substitu-
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tion during application of the preconditioner but also due to the cost of assembling

mass matrices at each iteration and computation of the residual current, both of

which are not required in non-dispersive modelling.

In my algorithm, A0 is a simple Neumann series preconditioner. For any square

matrix A for which the sequence {Ak}∞
k=0 converges to zero, the following identity

holds

(I−A)−1 =
∞

∑
k=0

Ak (3.26)

and the series is called the Neumann series of A. Defining A = A0+δA, it follows

easily from the Neumann series identity that

A−1 =
∞

∑
k=0

(−A−1
0 δA)kA−1

0 (3.27)

as long as {(A0δA)k}∞
k=0 converges to zero. The eigenvalues of A−1

0 are bounded

so convergence will occur if δA is small in a suitable norm. Using a truncation

or other approximation to this series as a preconditioner is called Neumann series

preconditioning [81]. My algorithm uses zeroeth order Neumann preconditioning.

If δA is too large then the Neumann series may converge slowly or not at all.

In the sample problems we tested, zeroeth order Neumann series preconditioning

worked extremely well when refactoring the system matrix each time the step size

was changed. I believe that the method would continue to work for all time-scales,

models and meshes of interest to applied geophysicists. However, in regimes with

larger perturbations, a higher order Neumann series preconditioner could easily be

implemented to accelerate convergence.

3.2.3 BDF2

As in the non-dispersive case of chapter 2, higher order time-stepping is desirable,

both to improve the accuracy of sequential time-stepping and to allow the use of

the parallel time-stepping algorithm of section 2.2. The second order time-stepping

scheme for stretched exponential forward modelling is based on the second order

backward derivative approximation. We follow the same sequence of steps as in

the backward Euler discretization, discretizing the time derivatives in eqs. (3.1a),
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(3.1b) and (3.12) with BDF2 approximations. Assuming a constant step-size, this

gives the semi-discrete system

3
2

bn+1−2bn +
1
2

bn−1 =−∆t∇× en+1 (3.28a)

∇×µ
−1bn+1−σ0en+1 = js

n+1− rn+1 (3.28b)
3
2

rn+1−2rn +
1
2

rn−1 + tβ−1
n+1 ∆tθ−1rn+1 =

ασ0(
3
2

en+1−2en +
1
2

en−1).

(3.28c)

As with the backward Euler scheme, eliminating explicit dependence on b and

discretizing in space leads to a system of linear algebraic equations for en+1 at each

time step in terms of fields at earlier times and the source current

(CT M f
µ−1C+

3
2

∆t−1Me
σ0(1−γα))en+1 =

3
2

∆t−1[sn+1−
4
3

sn +
1
3

sn−1 +Me
σ0(1−γα)(

4
3

en−
1
3

en−1)

−M1−γ(
4
3

rn−
1
3

rn−1)],

(3.29)

where ∆t is now a constant step-size and γ2 = (1+(2/3)tβ−1
n+1 ∆tθ−1)−1.

3.2.4 Implementation

These algorithms were implemented in the Julia programming language. My code

was designed to be compatible with jInv [80], a Julia software framework for partial

differential equation (PDE) constrained parameter estimation problems, which was

briefly described in section 2.1.1. In the context of this chapter, in which I am only

discussing forward modelling, this is a minor point but it will make it simple to

incorporate this simulation code into an inversion software package that will allow

one to invert for intrinsic IP parameters.

I verified the correctness of the code using the method of manufactured solu-

tions [82]. In this technique, one defines an electric field that meets the boundary

conditions of the problem, then substitute it into Maxwell’s equations and analyti-

cally calculates the magnetic flux density, residual current and source current that
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match the manufactured electric field such that Maxwell’s equations are satisfied.

Then these exact formulae are used to compute discretized initial electric field,

residual current and source currents. These values may be fed into the software to

compute the approximate electric field and residual currents at later times. The rate

of convergence of solutions in space and time can then be assessed by varying the

mesh cell and time-step sizes.

3.3 Synthetic modelling examples

3.3.1 Grounded source example

I will now illustrate the capabilities of stretched exponential modelling of coupled

electromagnetic induction and induced polarization (EMIP) effects using two syn-

thetic examples where both EM induction and IP effects are significant—a gradient

array survey and a coincident loop airborne time-domain electromagnetic (ATEM)

sounding. The gradient array survey earth model was a homogeneous halfspace

containing two anomalous bodies, one chargeable and the other conductive. The

ATEM sounding model consisted of a buried conductive block in a resistive half-

space with chargeable overburden.

First I consider the gradient array example. Gradient arrays allow for efficient

collection of easily interpretable direct current induced polarization (DCIP) data

over large areas but they have significant deficiencies when viewed from the DCIP

perspective. The major deficiencies are a lack of depth resolution and significant

EM coupling. The EMIP approach can significantly address these deficiencies.

The survey layout and model for our example is shown in fig. 3.4. A 2 km long

straight grounded wire is laid out over the survey area and an array of electric dipole

receivers parallel to the transmitter dipole are laid out in a grid covering a 500 ×
500 m rectangular area centred at the centre of the transmitter wire. The transmitter

current waveform is modelled as a step-off. In the transmitter on-time, galvanic DC

currents allow polarization to build up in the presence of chargeable bodies. When

the transmitter current is shut off, the relaxation of these polarizations, as well

as electromagnetic induction, will generate transient electric currents in the earth.

It can be useful to think of the EM induction aspect of an EMIP gradient array
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Figure 3.4: Gradient array example survey layout. a) Cartoon showing trans-
mitter, receiver array bounding box, and sample cartoon receiver. b)
Plan view layout of transmitter, receiver array and two block synthetic
model.

survey as being analogous to a time-domain CSAMT survey for long grounded

wire sources but near field effects can be important so the analogy is not exact.

Away from the transmitter electrodes, in our area of interest near the centre of the

wire, the primary magnetic field will be approximately solenoidal in the transmitter

on-time. Transmitter shutoff will induce currents to flow parallel to the direction

of the wire path.

The plan-view locations of the two anomalous blocks in the earth model are

shown, along with the transmitter wire path, in fig. 3.4b. Both blocks are 150 ×
150 × 75 m rectangular prisms buried 50 m below the earth’s surface. The left

hand block had the same conductivity as the background halfspace (σ∞ = 0.01),

chargeability η = 0.25, IP time constant τ = 0.5 s and stretched exponential decay

exponent β = 0.5. Recall that the stretched exponential parameter α is related

to η by the relation 1−α = 1/(1−η) and that the parameter θ is related to τ

by θ = τ(1− η). Recall also that chargeability is equivalent in the Cole-Cole

and stretched exponential models. The time constants and exponents play roughly

equivalent roles in both models but of course because the models are not fully

equivalent we cannot in general choose a set of stretched exponential parameters

that will lead to an electric field decay exactly equal to some Cole-Cole decay. With

those reminders of the roles of the parameters I move to the right hand block which

was one order of magnitude more conductive than the background (σ∞ = 0.1) and

was not chargeable. Air conductivity was set to 1×10−8 S/m.
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Figure 3.5: Visualization of OcTree mesh discretization of the conductivity
model.

The model was discretized on an OcTree mesh of 113772 cells, yielding a

linear system of 319653 unknowns to be solved to compute the electric field on

mesh edges at each time-step. Cubic cells with side length 25 m were used in the

core region of the mesh, including the area of interest and the transmitter wire path,

with cell size expanding away from the area of interest and transmitter. A vertical

cross section of the mesh showing cell size and conductivity in the y = 0 plane

is pictured in fig. 3.5. Starting from a DC initial electric field, the simulation ran

to a final time of 3.11 s after current shutoff, using 80 time-steps with 6 unique

step sizes ranging from 2.5×10−3 s to 0.1 s. Using Backward Euler time-stepping,

solving linear systems using the iterative hybrid direct algorithm described above,

this simulation had an average run-time of 620 s, including the time to solve the

DC problem for the initial electric field.

The inline component of the DC electric field is shown in fig. 3.6. The plot

shows a clear anomaly from the conductive block but only a small distortion of

the field contours due to the chargeable block. The maximum discrepancy in the

electric field between this model and an otherwise equal model with the chargeable

block removed is approximately 5%. The difficulty of distinguishing between the

IP and non-dispersive induction responses in the off-time electric field data depends
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Figure 3.6: DC inline electric field at the earth’s surface for two block ex-
ample model. The locations of the buried blocks are shown by black
squares.

on several factors including the depth to conductive targets, depth to chargeable tar-

gets, and the time scale of IP responses. In scenarios with very good conductors

and small IP time constants, traditional EM decoupling procedures may perform

poorly. The ability to fully model the coupled EMIP response in 3D should allow

for better isolation of the IP response. More generally, having such modelling ca-

pability allows inductively generated electric fields to be used as signal in grounded

source IP, not just noise. Early-time transient electric fields provide additional in-

formation on ground conductivity, which can then be used to improve recovery of

IP parameters [52].

The distinct characters of the decays of the electric fields near the conductive

and chargeable blocks in this example model are illustrated in fig. 3.7. It is difficult

to distinguish the IP response of the chargeable block at early times when induction

dominates. The stretched exponential and non-dispersive fields are nearly identi-

cal before 1× 10−2 s. After that the IP response appears clearly in the surface

electric field near the chargeable block, as shown in figs. 3.7b and 3.7c. By con-

trast, fig. 3.7d shows that the stretched exponential surface electric field over the

conductive block is almost identical to the non-dispersive field, as expected.
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Figure 3.7: In-line component of surface electric field for gradient array ex-
ample. a) Plan-view in-line field at 0.01 s after current shutoff. Left and
right black squares show the boundaries of the chargeable and conduc-
tive blocks, respectively. b) Plan view field at 0.14 s. c) Electric field
decays above the centre of the chargeable block, with stretched expo-
nential field in blue and corresponding non-dispersive field (η = 0) in
red. Dashed lines indicate negative values. d) Electric fields above the
centre of the conductive block, showing that the stretched exponential
and non-dispersive responses are almost identical.

3.3.2 Inductive source example

The following example illustrates the applicability of stretched exponential mod-

elling to the simulation of airborne inductive source induced polarization. The phe-

nomenon of negative transients in coincident and concentric loop EM systems has

been known to exist for a long time. Weidelt [99] showed that these sign reversals

could not occur with non-dispersive electrical conductivity and magnetic perme-

ability, suggesting that IP effects could be responsible. There has been renewed

interest in the phenomenon in recent years, as improvements in data acquisition
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Figure 3.8: Section view of block in a half-space with chargeable overbur-
den model. The overburden depth is 10 m and the block extends from
40-90 m depth with a plan view cross-section of 100×100 m. The back-
ground halfspace conductivity was 0.005 S/m and the conductivity of
the block was 0.1 S/m. The overburden had σ∞ = 0.01 S/m η = 0.3,
τ = 1×10−3 s and β = 0.8

have led to these signals appearing with increasing frequency in field data—see

e.g. [61]. I illustrate how negative transients can be modelled with stretched ex-

ponential polarization with a simple model of a single sounding of a coincident

horizontal loop ATEM transmitter with step off source over a resistive half-space

containing a conductive rectangular prism buried 40 m beneath the earth’s surface

and 10 m of chargeable overburden. The earth model is illustrated and the physical

property values are given in fig. 3.8. The transmitter was a square loop with 10 m

side length located 30 m above the surface, centred over the conductive block. This

choice of IP parameters is representative of the type of fine-grained near surface

material thought to be most commonly responsible for IP signals in ATEM data

[60]. In addition to smaller time-constants, these materials tend to have sharper

decays than typical ground IP targets, leading to β values closer to 1.

The effect of the chargeable overburden on the ATEM response of our example

model is illustrated in fig. 3.9. It shows the total EMIP responses alongside the

corresponding responses computed when neglecting the chargeable overburden.

We used the stretched exponential algorithm with backward Euler time stepping to

compute the transient electric field over the time interval [1× 10−5,0.002] s. The

vertical component of the magnetic flux density (dbz/dt) was then computed from
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Figure 3.9: Effect of chargeable overburden on ATEM response from buried
conductor. All plots show the vertical component of db/dt. The back-
ground halfspace response is shown in green in each plot. Dashed lines
indicate negative values. a) Block with no overburden. The response
with the conductive block at a depth of 40 m is shown in blue. The
magenta line shows the response obtained when the top of the block
is moved to a depth of 70 m. b) Stretched exponential response with
10 m of overburden (σ∞ = 0.005, η = 0.3, τ = 1× 10−3, β = 0.8) is
shown in black, along with the overburden free and background re-
sponses. c) Stretched exponential response with the top of the block
at 70 m in black, along with the overburden free and background re-
sponses. d) Stretched exponential response with chargeable overburden
and no conductive block in black, along with background EM response.
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the electric field values. When the chargeable overburden is neglected (fig. 3.9a)

the response from the block at 40 m depth is clearly distinguishable from the back-

ground response. The signal from the block remains but is much smaller when it

is lowered to 70 m depth. The EM induction signal from the shallower block is

strong enough and emerges early enough that both it and the IP response of the

overburden are distinguishable in the EMIP data—fig. 3.9b. The EMIP response

never changes sign due to the cancellation of the EM induction and IP signals but

the decay is clearly indicative of an IP response. It is important to note here that a

more subtle IP response could be difficult to distinguish from a resistive body with

3D geometry. I believe this is an important argument in favour of the use of 3D

methods when considering the presence of IP effects in ATEM data.

When the top of the block is moved to a depth of 70 m (fig. 3.9c), the response

of the conductor is completely masked by the IP response. However, as fig. 3.9d

shows, the IP response generated by the overburden is much larger and is mani-

fested in the data earlier in time without the presence of the block. Modelling the

full physics of an ATEM system with IP effects included allows for quantitative

simulations of the interactions of non-dispersive EM and IP responses. The ability

to model these effects in 3D is very useful in its own right and the key step toward

developing a 3D inversion algorithm for conductivity and IP parameters.

3.4 Conclusion
I have developed a novel computationally efficient forward modelling algorithm

for 3D time-domain electromagnetic modelling in the presence of chargeable ma-

terials, based on stretched exponential relaxation. The Cole-Cole model is still by

far the most common framework for modelling and classifying chargeable materi-

als. Stretched exponential relaxation is not equivalent to Cole-Cole relaxation but

it is capable of modelling a similar range of phenomena. It is a significant com-

fort to have shown that the two models do produce equivalent results at late times,

showing that they can definitely model the same phenomena if the appropriate

time interval is considered. This work also identified the Cole-Cole and stretched

exponential responses within a more general context. When electric current may

be represented as a convolution with the electric field, the two approaches simply
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imply different convolution kernels.

I applied stretched exponential modelling to two synthetic examples possess-

ing the key characteristics of two applied problems where both EM induction and

IP effects are important. In the case of grounded source IP surveys with significant

EM coupling, I believe that the ability to quantitatively simulate the transient EM

and IP behaviour of the surveys opens up exciting possibilities for significantly

increasing the amount of information about subsurface geology that they provide.

In the case of ATEM surveying, the importance of treating IP effects in the anal-

ysis of field data is increasingly clear. I have developed an algorithm capable of

efficiently modelling these effects. This algorithm forms the foundation of the

three-dimensional (3D) inversion algorithm presented in the next chapter, which

is to my knowledge the first algorithm to directly invert transient geophysical EM

data for intrinsic IP parameters.
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Chapter 4

Stretched exponential inversion

This chapter discusses my preliminary work into the inversion of transient elec-

tromagnetic data for stretched exponential parameters. I have developed routines

for computing the sensitivity of electromagnetic data to these parameters and per-

formed simple proof of concept synthetic inversions. These preliminary results are

encouraging but much more work needs to be done in order to understand how to

best extract induced polarization (IP) related information from transient electro-

magnetic (EM) data in the stretched exponential approach.

This is a multi-parameter inverse problem with a great deal of non-uniqueness.

How to best handle that non-uniqueness is an open question. The best workflow

is probably problem dependent. For example, should one invert for non-dispersive

conductivity and the other stretched exponential parameters simultaneously, or is it

necessary to have a good conductivity model before attempting to recover charge-

ability and the other parameters? Is it always possible to get a good conductivity

model before at all considering IP effects?

In some problems it is possible a priori to separate a transient EM decay into

three sections: an early time range where EM induction dominates, a late time

range where IP effects dominate and a middle section where the two effects occur

on similar scales and interact. In other problems this may not be possible and

simultaneous inversion for conductivity and IP parameters might be the only way

forward. In this chapter I focus on the former, simpler case. I demonstrate the

capabilities of stretched exponential inversion on the gradient array model problem
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Figure 4.1: Gradient array example survey layout. a) Cartoon showing trans-
mitter, receiver array bounding box, and sample cartoon receiver. b)
Plan view layout of transmitter, receiver array and two block synthetic
model.

encountered in chapter 3.

4.1 The gradient array example
Recall the synthetic gradient array survey from section 3.3.1. Two perpendicular

long grounded wire sources are positioned such that they both pass through the

centre point of an array of 25 m electric dipole receivers oriented parallel to the

transmitters that measure the direct current (DC) and transient voltages in the earth

due to the transmitters. Thus, for the transmitter oriented parallel to the x coor-

dinate axis only data from the x-oriented receivers were used. Similarly, only y

receivers were used for the y-axis oriented transmitter. The survey layout for the

x-oriented receiver is shown in fig. 4.1. The model consists of two 150 × 150

× 75 m blocks buried 50 m below the surface of a homogeneous half-space with

conductivity σ∞ = 0.01 S/m. The true conductivity model is shown in fig. 4.2. The

west block (left hand side of fig. 4.2a) has σ∞ = 0.018 S/m, chargeability η = 0.25,

time constant τ = 0.5 s and exponent β = 0.5. The east block is conductive but not

chargeable. It has σ∞ = 0.1 S/m.

As in the forward modelling example in chapter 3, both transmitters used step-

off waveforms to excite the earth. The initial DC voltages and transient voltages at

85 times ranging from 5×10−4-1.128 s were computed. Standard deviations of 5%

of the value plus a constant floor were assigned to each datum. The true noise-free
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Figure 4.2: Selected slices of true conductivity model. Left hand block had
σ∞ = 0.018 S/m and right block σ∞ = 0.1 S/m. Left block had η = 0.25,
β = 0.5 and τ = 0.5 s. Right block was not chargeable. a) z = −85 m
b) y = 75 m c) y =−75 m.

synthetic data were used in the inversions. I also committed the further “inverse

crime” of using the same mesh and time-stepping scheme in the inversions that was

used to generate the synthetic data. As this work represents just an initial proof of

concept for stretched exponential inversion, commission of the inverse crime was

deemed acceptable.

4.2 Inversion methodology
Recall that the stretched exponential forward modelling algorithm computes the

electric field on the cell edges of a computational mesh at a set of discrete times.

The synthetic voltages are computed by approximating the line integrals of the

electric fields over the receiver wire paths. In this example the receiver wire paths

were always straight line segments coinciding with mesh edges.

I seek to recover the non dispersive conductivity σ∞, the chargeability η , the

time constant τ and the exponent β from the DC and voltage data. The parameter

values are discretized onto the computational mesh, approximated as constant in

each cell. I seek to recover values of the parameters in all subsurface mesh cells. I

use the following four stage inversion procedure:

1. invert early time data, which is assumed to be negligibly effected by IP, for

σ∞
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2. Hold σ∞ fixed and invert for all three IP parameters simultaneously

3. Hold σ∞ and η fixed, invert for IP parameters τ and β simultaneously.

4. Refine IP parameter estimates by inverting for all of them (η , τ , β ) simulta-

neously

Stages 2-4 are initialized using the recovered models from the previous steps. Note

that DC data are included in the stage 1 inversion despite the fact that they are

affected by IP. However, even for DC, IP is a second order effect and it was judged

that for this initial inversion it was acceptable to invert the DC data alongside the

early off-time data for σ∞, ignoring chargeability.

At each stage the inverse problem is posed as a regularized least-squares pa-

rameter estimation problem, using Tikhonov regularization [93]. I seek the model

m that minimizes the following objective function subject to bound constraints on

the parameter values

minimize
m

Φ(m) =
1
2
‖W(F (m)−d)‖2

2 + γR(m)

subject to ml < m < mh,

(4.1)

where d is the observed data, W is a diagonal matrix holding the standard devi-

ations of the data, F is the forward modelling operator, R is the regularization

operator, and γ is the scalar regularization parameter that balances the weights of

the misfit and regularization terms in the objective function. For single physical

property inversions the regularization operator is the discretization of

‖Wi∇m‖2
2 (4.2)

where Wi is a weighting operator that allows smoothness to be enforced more

strongly in some regions of the model than others. The discrete regularization

operator is

R(m) = mT GT WiGm (4.3)

where G is a cell-centered discretization of the gradient operator. It approximates

the gradient of a cell-centre discretized scalar function on cell faces. Wi is an
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interface weighting matrix that disretizes Wi on cell faces. For multi-parameter

inversions the model is simply a concatenation of the models for each parameter.

The regularization operator is

Rmulti(m) = ∑
j

mT PT
j GT Wi( j)GP jm, (4.4)

where P j is a matrix that extracts the model for the jth parameter from the full

model and Wi( j) is the interface weighting matrix for the jth parameter.

The optimization problem eq. (4.1) was solved using the Gauss-Newton algo-

rithm with backtracking Armijo line search. I solved for the search direction using

the projected preconditioned conjugate gradient algorithm with loose stopping tol-

erance.

There are several ways in which this procedure could be improved but they are

beyond the scope of this thesis. For example, structural constraints such as cross-

gradient regularization (see e.g. [33]) could be imposed to penalize differences in

spatial structure between the different physical property models. Or in cases where

there is reason to believe that the IP signal in a transient EM dataset comes from

a geometrically simple subsurface body, the techniques of chapter 5 of this thesis

could be used.

4.3 Inversion results
First I performed the conductivity only inversion, inverting the DC data and tran-

sient data from 8 times ranging from 0.002-0.0055 s. Those times correspond to

the 5th to 12th steps of the forward modelling time-stepping. The first four steps

could not be used because they contained artefacts from the approximation of the

step-off waveform. In this synthetic example it was possible of course to know

exactly when IP effects start to become distinguishable in the data. In this exam-

ple I tried to choose a cutoff time just before IP effects could be clearly seen in the

data without comparing it to the synthetic data generated from the true conductivity

model without IP effects.

Previous work by my supervisor and I [10] has shown that the use of early time

transient data can greatly improve the depth resolution of gradient array surveys.
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However, in this work the focus is on studying IP and the interplay of EM and

IP effects. In order to allow simulations to run to late enough times to see the

IP effects overwhelm the EM effects without using a number of time steps that

would render simulation too computationally demanding, I chose not to model

early enough times to allow the conductivity inversion to recover the depths of

the blocks correctly without the use of interface weighting. No sensitivity depth

weighting was employed but the interface weights in the first subsurface layer of

the mesh were set to 100 (they were 1 everywhere else) to penalize structures in

the model being pushed to the surface. This worked very well. The recovered

conductivity model is shown in fig. 4.3. The horizontal locations, depths, and

− 300 − 200 − 100 0 100 200 300 400

x (m )

− 200

− 100

0

100

200

y
 (

m
)

10− 2

2 × 10− 2

3 × 10− 2

4 × 10− 2

6 × 10− 2

10− 1

�

(S
/m

)

(a)

− 300 − 200 − 100 0 100 200 300 400

x (m )

− 200

− 100

0

z
 (

m
)

(b)

− 300 − 200 − 100 0 100 200 300 400

x (m )

− 200

− 100

0

z
 (

m
)

(c)

Figure 4.3: Selected slices of recovered conductivity model from DC and
early off-time inversion. Thick black lines show true block boundaries.
True conductivities are 0.01 S/m for the background, 0.018 S/m for the
left block and 0.1 S/m for the right block. a) z = −85 m b) y = 75 m c)
y =−75 m.

relative conductivities of both blocks were recovered well. This inversion was run

to completion, meaning it was able to fit the data, according to the χ2 goodness

of fit criterion, stopping the inversion when the root mean squared (RMS) misfit

dropped below 1. The misfit convergence curve is shown in figure fig. 4.4

Next the inversion for η , τ , and β was performed with σ∞ held fixed to the

model recovered from the previous inversion. This inversion was haulted after 5

Gauss Newton iterations. At that point the inversion began to struggle to decrease

the data misfit and inspection of the models at each iteration showed that the inver-

sion had significantly improved the chargeability model but made only very small

68



0 2 4 6 8 10
iteration

0

1

2

3

4

5

ro
ot
 m

ea
n 
sq
ua

re
d 
er
ro
r

Figure 4.4: Misfit convergence curve for σ∞ inversion.

changes to the time constant and exponent models. I have not performed a sen-

sitivity analysis but I believe the data are much more sensitive to changes in η

than to the other IP parameters, especially at early iterations when, indeed, the τ

and β sensitivities depend on the chargeability model. The recovered chargeability

model from this inversion is shown in fig. 4.5. The RMS misfit was approximately
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Figure 4.5: Selected slices of recovered chargeability model from DC and
mid to late off-time data inversion. Thick black lines show true block
boundaries. Left hand block has η = 0.25. Right hand block is not
chargeable. a) z =−85 m b) y = 75 m c) y =−75 m.

3.8 when the inversion was stopped. So far the inversion has captured the location
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of the chargeable block well but underestimated its chargeability and depth extent.

Next I held both σ∞ and η fixed and inverted for the time parameters τ and β .

This inversion was able to fit the data, in the χ2 goodness of fit sense, however, in

doing so it created τ and β models with a great deal of spurious structure. The fi-

nal recovered models from this stage 3 inversion are shown in figs. 4.6 and 4.7 the
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Figure 4.6: Selected slices of recovered time constant model from late off-
time data inversion. Thick black lines show true block boundaries. Left
hand block has true τ = 0.5. Right hand block is not chargeable. a)
z =−85 m b) y = 75 m c) y =−75 m.
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Figure 4.7: Selected slices of recovered exponent model from late off-time
data inversion. Thick black lines show true block boundaries. Left hand
block has true β = 0.5. Right hand block is not chargeable. a) z =
−85 m b) y = 75 m c) y =−75 m.
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spurious structure is clearly seen. Instead of using this as the final model, the mod-

els from an earlier iteration of this inversion can be used to start another inversion

for all three IP parameters η , τ , and β . The early iterates from the stage 3 τ and

β inversion significantly improve on the results from the stage 2 inversion while

remaining relatively smooth. Using these early stage 3 iterates and the recovered

η model from the stage 2 inversion as starting models in a final inversion for all

three IP paramaters worked well. The recovered models from this final inversion

are shown in figs. 4.8 to 4.10
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Figure 4.8: Selected slices of recovered chargeability model from stage 4 mid
to late off-time data inversion. Thick black lines show true block bound-
aries. Left hand block has true η = 0.25. Right hand block is not charge-
able. a) z =−85 m b) y = 75 m c) y =−75 m.

The recovery of η is improved. The true depth extent is still not captured but

the planview geometry and chargeability of the recovered block are improved. The

time constant model is also improved. There are many artefacts outside the charge-

able region but this is not a concern. The recovered τ and β models should only be

interpreted in regions with non-neglible chargeability. These artefacts could likely

be significantly reduced by penalizing spatial inconsistencies between the η , τ , and

β models by a method such as cross-gradient. The β model contains artefacts on

the boundary of the chargeable region but has good recovery in the centre of the

block. I do not know the cause of these artefacts.

Images of the true and predicted data from the stage 4 inversion for the x-

directed receivers due to the x-directed transmitter for times 0.02 s and 0.17 s after
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Figure 4.9: Selected slices of recovered time constant model from stage 4
mid to late off-time data inversion. Thick black lines show true block
boundaries. Left hand block has true τ = 0.5. Right hand block is not
chargeable. a) z =−85 m b) y = 75 m c) y =−75 m.
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Figure 4.10: Selected slices of recovered exponent model from stage 4 mid to
late off-time data inversion. Thick black lines show true block bound-
aries. Left hand block has true β = 0.5. Right hand block is not charge-
able. a) z =−85 m b) y = 75 m c) y =−75 m.

transmitter shutoff are shown in figs. 4.11 and 4.12, respectively. The fit is quite

good at early times, as can be seen in fig. 4.11. The fit is not as tight at late times,

with the predicted data showing an anomaly that is geometrically equivalent to but

stronger than that seen in the true data. The observed and predicted voltage decays

at the centre of the chargeable block are shown in fig. 4.13.
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(b) Predicted data

Figure 4.11: Voltage data for the x-directed receivers due to the x-directed
transmitter at 0.02 s after source shutoff.
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(b) Predicted data

Figure 4.12: Voltage data for the x-directed receivers due to the x-directed
transmitter at 0.02 s after source shutoff.

4.4 Conclusions
More work needs to be done in order to improve the stretched exponential inversion

workflow but this chapter gives a simple proof of concept example showing the

potential of the technique. The ease with which chargeability information was

recovered from the transient EM data was encouraging, especially as this was the

first work to recover the intrinsic chargeability directly from transient EM data in

three-dimensional (3D). More work needs to be done to understand whether it is

possible to achieve better recovery of the time parameters τ and β .

A potential approach to reducing the non-uniqueness of the problem is to use

parametric methods. The next chapter develops a stochastic parametric inversion

algorithm. Although IP is not addressed, the work of the chapter lays the ground-

work for applying such an approach to stretched exponential inversion in the future.
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Figure 4.13: true and predicted voltage data above the centre of the charge-
able block from 0.02 s after source shutoff onward plotted on log scale.
Blue line shows observed data and red line shows predicted data.
Dashed lines indicate negative values.
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Chapter 5

Randomized background
stochastic inversion

5.1 Introduction
In many cases, the goal of inverse problems is to estimate the physical properties

of relatively simple objects that can be described by small numbers of parameters.

Unfortunately, to solve such problems it is often necessary to also estimate a po-

tentially large number of parameters that consist of the background to this model.

Such background can be viewed as nuisance parameters. The quality of these nui-

sance parameter estimates may then adversely affect the recovered estimates of the

parameters of interest.

In order to discretize the simple object and estimate its properties, in this paper,

we take the view of parametric level-set methods. These methods fall under the

general setting of inverse shape reconstruction methods, which seek to estimate

the position and shape of an object embedded in some background medium from

indirect measurements such as geophysical or medical imaging data. Level set

methods have been a popular approach to shape reconstruction inverse problems.

See [19] for a survey of early work on the subject and, e.g., [50, 73] for examples

of more recent work. In inverse level set methods, the boundary of the object

of interest is represented by the zero level-set of some function. The level-set

function may be represented and manipulated directly, in which case it must be
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represented cell-wise over the computational domain [19]. This is a quite flexible

approach but creates a high-dimensional parameter space to optimize over. This

can lead to the inverse problem becoming highly ill-posed, requiring methods such

as regularization of the level-set function to address the ill-posedness [28].

Alternatively, the level set function can be represented parametrically, using

some sort of basis function expansion or geometric shape to represent the object of

interest. For example, Aghasi et al. [1] used radial basis functions to reconstruct

general 2D shapes. In our approach, we represent the object of interest as a skewed

Gaussian ellipsoid. This is based on the method of McMillan et al. [64], who used

Gaussian ellipsoids to represent high contrast subsurface bodies in electromagnetic

geophysical inversions.

In the case of geophysical imaging, by which we are primarily motivated, the

background medium in which the object of interest is hosted is usually heteroge-

neous, and for an accurate reconstruction of the object, good prior knowledge of

the background is necessary. Typically, the object of interest exhibits a high con-

trast with the background but its response cannot be completely decoupled from

the background response. Therefore, incorrect background estimation will intro-

duce error into the estimate of the target object. A small amount of work has been

done on quantification of uncertainties in shape reconstruction (see e.g. [21, 50])

but to our knowledge no work has specifically examined or tried to mitigate the

effect of uncertainty in background estimation.

There are important practical applications in which it is reasonable to assume

that one might have some reliable but imperfect background information based on

data other than that used in the shape reconstruction problem. An example from

geophysical imaging is time-lapse inversion of hydraulic fractures in the earth’s

subsurface. The physical properties of the background rocks before fracturing may

be imaged by electromagnetic or seismic geophysical surveying. Then, after in-

jection of conductive fluid into the earth during the hydraulic fracturing process it

is possible to estimate the volume of rock effectively fractured by electromagnetic

imaging, modelling the fractured zone as a thin conductive rectangular prism em-

bedded in the previously estimated heterogeneous background medium [48]. In

both these examples there will be uncertainty in the estimate of the background

used in the shape reconstruction.
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In shape reconstruction with uncertain background information, the parameters

describing the background model are effectively nuisance parameters. They are

not of direct interest but the accuracy of their estimation affects the accuracy of the

shape reconstruction. To our knowledge, there has been very little work done in

general on estimating large space nuisance parameters in inverse problems. The

one notable example of which we are aware, which is very different in character

from the present contribution, is [5]. They use variable projection to eliminate

tuning parameters from regularized least squares inverse problems. Their technique

only applies when the number of nuisance parameters is very small, relative to

the number of parameters of interest. We are interested in the opposite regime,

where the object of interest is described by a small number of parameters and the

background is a cell by cell discretization of a continuous function onto some sort

of computational mesh, making the number of nuisance parameters very large.

In this paper we present a stochastic optimization based method for improving

the quality of shape recovery in parametric level-set shape reconstruction problems

in the presence of uncertainty in the background parameters. In section 5.2 we will

describe the method. In section 5.3 we present a simple linear inverse problem that

we use as a first application. This example illustrates the properties of our algo-

rithm and examine the relative strengths and weaknesses of the two optimization

techniques we propose for its solution. Section 5.4 discusses an application to a

non-linear three-dimensional inverse problem, before concluding and summarizing

the paper.

5.2 Method
In general, we are concerned with the inverse problem of estimating the location,

shape, and material properties of a homogeneous object embedded in a hetero-

geneous background medium in two-dimensional (2D) or three-dimensional (3D)

space from a noisy set of indirect observations d ∈ Rd . We assume that the data

are sensitive to some physical property θ of the material being probed. The data

are related to θ through the forward problem

d = F (θ)+ ε, (5.1)
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where ε is additive noise and F is the forward modelling operator, which is typi-

cally a functional of the solution of a partial differential equation (PDE).

In level-set shape reconstruction methods, the boundary of the object of interest

is represented by the zero level-set of a function τ(x). The overall physical property

model can then be written

θ(x) = θ0(x)+H(τ(x))(θ1−θ0(x)) , (5.2)

where H is the Heaviside step function θ1 is the value of θ inside the object of

interest and θ0 is the heterogeneous background physical property model. In tra-

ditional level-set methods, the level-set function is discretized onto a grid and the

inverse problem attempts to reconstruct it directly.

In parametric methods, the level-set function is represented with a low dimen-

sional parametrization. For example, in the application problem in section 5.3 of

this paper we model the object of interest as an ellipse, which can be described by

its centre position, radii, and angle of orientation. The level set function for this

model can be written

τ(x) = 1− (x−x0)
T M(x−x0), (5.3)

where x0 is the the location of the centre of the ellipse and M is a rotation and

scaling matrix that depends on the radii of the ellipse and its angle of rotation

about the horizontal axis of the mesh.

The goal of the parametric inverse problem is to estimate the shape and location

parameters that describe the object of interest as well as the value of the diagnostic

physical property inside the object. It should be noted here that in practice, in both

traditional and parametric level-set methods, the Heaviside function in eq. (5.2) is

replaced by a smooth approximation in order to facilitate optimization. This will

be discussed further in the application sections.

We formulate the inverse problem as the least squares optimization problem

minimize
m

Φ(m) =
1
2
‖W(F (m)−d)‖2

2

subject to ml < m < mh.

(5.4)
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We seek the parametric model m that minimizes the discrepancy between mea-

sured data and simulated data computed by solving the forward problem—subject

to bound constraints on the parameter values. W in eq. (5.4) is a diagonal ma-

trix containing the inverse standard deviations of the data. We assume that our

parametrization of the level-set function is sufficiently simple that it will have a

regularizing effect and that therefore explicit regularization will not be required.

This is a well known and well studied approach—see e.g. [1, 58, 64, 83]. The

optimization problem eq. (5.4) can be solved by standard techniques. We have

had success in solving such problems with the projected Gauss-Newton method,

solving for the search direction using the preconditioned conjugate gradient (PCG)

algorithm with large stopping tolerance.

Of course, perfect knowledge of the background is unlikely. To account for

uncertainty in knowledge of the background, we model it as a random field. Then,

since the objective function in eq. (5.4) is a function of the background model, we

treat it as a random variable. This recasts the problem of estimating the model pa-

rameters of interest m as a stochastic optimization problem. Rather than minimiz-

ing the objective function for a fixed background, we seek the m that minimizes the

expected value of the objective function with respect to the stochastic background

model.

Let the background physical property model be a random field θ0(x,ω), where

ω is an element of the sample space Ω of a probability space (Ω,F,P). For fixed ω

(i.e. a realization of the random field), θ0 is a deterministic function of space. We

can write the expected value of our now random least squares objective function as

a Lebesgue integral with respect to the probability measure P

E [Φ(m)] =
∫

Φ(m)dP(θ0). (5.5)

We assume that P is continuous and that we can efficiently compute realizations

of the background. Having defined the expectation we can define our stochastic

shape-reconstruction problem

minimize
m

E [Φ(m)]

subject to ml < m < mh.
(5.6)
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Stochastic optimization has been widely used in operations research for per-

forming optimization under uncertainty in the formulation of or input to optimiza-

tion problems—see e.g. [27, 95]. To our knowledge, it has not been used for the

solution of inverse problems. A version of stochastic optimization has been used

to reduce the computational complexity of solving large scale inverse problems in-

volving many PDEs—e.g. [42, 78]. We are not aware of its use in improving the

quality of the solution for an inverse problem.

The high-dimensional integral in the expectation eq. (5.5) cannot be evaluated

analytically for most problems and so it must be approximated. We use the sam-

ple average approximation (SAA) to estimate this expectation and form a tractable

optimization problem. The SAA approximates the expectation using a sample av-

erage [86],

E[Φ(m)]≈ En[Φ(m)] =
1
n

n

∑
i=1

Φ(m,θ
(i)
0 ), (5.7)

where Φ(m,θ
(i)
0 ) denotes the misfit function evaluated with respect to a particular

realization of the background model θ
(i)
0 . Applying this approximation to eq. (5.6)

gives the optimization problem

minimize
m

En[Φ(m)] =
1
n

N

∑
i=1

Φ(m,θ
(i)
0 ). (5.8)

Intuitively, the misfit function is now a sample average of the individual misfits

computed with different realizations of the background. The variance in the es-

timate of the parameters of interest will decrease as the number of background

samples increases.

Let m∗n be the minimizer of the SAA problem eq. (5.8) and m∗ the minimizer

of the true problem. The theory of stochastic programming tells us [86] that m∗n
converges in probability to m∗ such that

‖m∗n−m∗‖= O(1/
√

n). (5.9)

Despite the slow theoretical convergence rate, we have found that in practice we

can improve results in shape reconstruction problems using a number of samples

that is computationally tractable.
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Given a set of background samples {θ (i)
0 }, eq. (5.8) may be solved using meth-

ods of deterministic optimization. We have used the Gauss-Newton (GN) and ac-

celerated mini-batch stochastic gradient descent (SGD) algorithms. In the next

section we will analyze the performance of these two optimization approaches on

a simple linear inverse problem. We note that, computationally, each background

sample requires separate forward problem, gradient, and possibly Hessian vector

product evaluations at each iteration of the optimization procedure but that the

computations for each background are trivially parallel. Looking ahead, we have

found that given sufficient computing resources, the GN approach provides an effi-

cient and robust solution while SGD can still give good results while using limited

computational resources.

5.2.1 Computing Background Samples

Before turning to an analysis of the performance of the SAA approach on exam-

ple problems, we consider the problem of choosing background model probability

distributions and generating sample background models. Ideally the distributions

would be determined empirically, based on real examples from past experiments.

This is not typically possible in geophysical imaging. As an alternative, we model

the background as a Gaussian random field (GRF) with mean and covariance func-

tions that encode our prior knowledge of the background. The stochastic opti-

mization methods used in this paper do not depend on the background distribution

being Gaussian. We use GRFs in our examples because of their flexibility and the

simplicity of sampling from them.

We use a truncated Karhunen-Loève expansion (KLE) to approximately sam-

ple from GRFs. The KLE provides a way to represent a random field via a spec-

tral expansion of its covariance function [35]. Consider a Gaussian random field

m0(x,ω) with mean m0 and covariance function κ(x,y), where x ∈ D ⊆ Rs is the

spatial variable and ω is an element of the sample space in some probability space

(Ω,F,P). The KLE of m0 is

m0(x,ϑ) = m0 +
∞

∑
n=0

ξn(ω)
√

λnϕn(x), (5.10)
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where the λn and ϕn are the eigenvalues and eigenfunctions of the covariance func-

tion and the ξn(ω) are normally distributed random variables. For covariance func-

tion κ(x,y), the eigenvalues and eigenfunctions solve the eigenvalue problem∫
Ω

κ(x,y)ϕn(y)dy = λnϕn(x). (5.11)

In practice, except for special covariance functions, this must be solved approxi-

mately. We use the Nÿstrom method [14] to approximate the KLE eigenvalues and

eigenfunctions. This method approximates the integral eq. (5.11) by a quadrature

rule. This leads to an nλ × nλ matrix eigenvalue problem that gives the first nλ

eigenvalues and the values of the corresponding eigenfunctions at the quadrature

points. The eigenfunctions can then be evaluated at points of interest by interpo-

lation. See [14] for a detailed description. For smaller problems the quadrature

points may be evenly distributed over the domain and the eigenfunctions evalu-

ated for each cell in the computational domain. However, for larger 3D problems,

distribution of quadrature points over the full domain becomes prohibitively expen-

sive. We address this problem in the discussion of our non-linear 3D application

problem in section 5.4.

5.2.2 Implementation

The software required to perform the numerical experiments in the remainder of

this paper was developed in the Julia programming language [15], using the jInv

framework [80]. jInv is a set of open source Julia software packages designed to

simplify the process of building software for PDE constrained parameter estima-

tion problems by providing modular building block routines commonly needed in

these problems, including parallelized Gauss-Newton optimization and tools for fi-

nite volume PDE discretization. We used these building blocks to develop routines

to solve our specific applications problems. To perform the Karhunen-Loève basis

function computations we used the open source Julia package GaussianRandom-

Fields [77], modified to our needs.
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Transmitter 

hole

Receiver

hole

Figure 5.1: Cartoon schematic of straight ray tomography experiment show-
ing straight ray paths from the transmitters to the receivers.

5.3 Application to a Simple Model Problem
We use two-dimensional (2D) straight ray cross-hole seismic tomography as an

example problem that is computationally simple enough to permit extensive exper-

imentation. Straight ray tomography is a linearization of seismic tomography in

which seismic waves (pressure waves moving through the earth’s subsurface) are

assumed to propagate in straight lines from the source of an excitation to a receiver

point [18]. Transmitters are placed in a borehole in the earth and receivers in a sep-

arate borehole. The experiment then measures the times required for the signal to

propagate from each transmitter to each receiver. The speed of wave propagation

depends on the material properties of the propagation medium, allowing seismic

tomography to be used as an imaging method. See fig. 5.1 for an illustration of a

typical survey setup.

The straight-ray tomography forward problem is

t = As. (5.12)

The data t are the travel times between each source and receiver pair. s is the

inverse velocity, or slowness of each mesh cell, and each entry of A, ai j, gives

the distance travelled by the straight ray through cell j along the path connecting

transmitter-receiver pair i.
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We attempt to recover an elliptical anomaly embedded in a heterogeneous

background from travel time data. Our synthetic experiment is performed on a

unit domain in R2, with 50 transmitters spaced evenly along the left edge of the

domain and 50 receivers spaced evenly along the right edge.

The background slowness model is described by a GRF with mean and covari-

ance based on the geological scenario of a horizontally layered earth with seismic

wave velocity increasing with depth—a scenario commonly encountered in seis-

mic imaging applications [66]. The mean slowness model is composed of five

homogeneous layers. It is shown in fig. 5.2a. The covariance function is
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Figure 5.2: True model used for straight ray tomography inversions. The
mean model a) consists of homogeneous horizontal layers. The ran-
dom perturbation shown in b) is added to the mean model to form c),
used as the background in the true model shown in d).

κ(x,y) = σ exp
(
−(x−y)T A(x−y)

)
, (5.13)
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with

A =

(
l−1
x 0

0 l−1
y

)
, (5.14)

for characteristic length scales lx and ly. σ is the standard deviation, which is

constant, giving the overall scale of fluctuations from the mean background. In

this example we use σ = 1, lx = 0.3 and ly = 0.1, encoding our assumption that the

slowness should vary more smoothly in the horizontal direction than the vertical.

The slowness model is completed by adding a homogeneous ellipse to the back-

ground model. The boundary of the ellipse is given by the parametric level-set

function

τ(x) = 1− (x−x0)
T M(x−x0), (5.15)

where x0 is the the location of the centre of the ellipse and M is a rotation and scal-

ing matrix that depends on the radii of the ellipse and its angle of rotation about the

horizontal axis of the mesh. For more details on the level-set parametrization, see

[64]. In order to use gradient based optimization techniques, the slowness model

must be differentiable with respect ellipse parameters across the entire domain. To

achieve this we use a smooth approximation to the Heaviside function to describe

the transition from the ellipse to the background medium. The total slowness any-

where in the domain is given (for fixed background slowness model s0) by

s(x,s0) = s0 +
1
2
(1+ tanh(aτ(x)))(se− s0(x)), (5.16)

where se is the slowness inside the ellipse and a is a scaling factor that controls the

sharpness of the transition between the ellipse and the background.

The model used to generate synthetic data for our inversion consisted of an

ellipse in the centre of the domain embedded in a randomly chosen slowness model

from the background GRF. We discretized the domain onto a 100× 100 regular

grid of square cells. A 176 term KLE was used to compute a sample from the

zero mean GRF with covariance eq. (5.13). This was then added to the mean

background to generate a sample from the background model GRF. The zero mean

perturbation and resulting background sample are shown in figs. 5.2b and 5.2c,

respectively. To this background model we added an ellipse with an anomalously
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high slowness of 8 s/m. The ellipse was centred at the centre of the domain with an

angle of 30◦ from vertical and radii of 0.1 m and 0.2 m. This total model is shown in

fig. 5.2d. In the rest of this section this will be referred to as the true model. Using

a random sample from the background GRF, rather than the mean background as

the true model in our inversion study implies that the sample backgrounds used

during inversion are being drawn from a distribution with the correct covariance

function but wrong mean. In practice both the mean and covariance could only be

approximately known. We have not attempted to assess the success of our method

when the background covariance function is only approximately known.

Generally, the accuracy of the background model mean and covariance func-

tions required for our SAA technique to be effective in practice will depend on

specific characteristics of the application problem, and in particular, on how well

separated the material properties of the object of interest are from the background.

When the vast majority of the signal in the data comes from the object of interest,

then adequate shape reconstruction might be possible without particularly precise

characterization of the background. On the opposite end of the spectrum, if the

background generates signals similar to that of the object of interest, then our ap-

proach will likely fail and shape reconstruction will only be possible with a very

accurate description of the background. It is in the middle ground where we believe

our method can be most useful.

5.3.1 SAA inversion

We conducted several numerical experiments to study the behaviour of our method.

All these experiments attempted to fit the same synthetic data, which was gener-

ated by applying the straight ray tomography forward modelling operator to the

true model and then adding artificial independent Gaussian noise to each mea-

surement. The added noise on each datum had standard deviation equal to 1% of

its magnitude. We attempted to recover the orientation angle, centre position and

slowness of the anomalous ellipse. For simplicity we did not attempt to recover the

radii of the ellipse. They were fixed to their true values. The starting guesses and

bounds on the active inversion parameters were the same in all inversions. They

are listed in table 5.1.
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parameter starting guess lower bound upper bound
φ 1.5 0 90
x 0.2 0.1 0.9
y 0.4 0.1 0.9
s 4 0.01 15

Table 5.1: Starting guesses and parameter bounds for straight ray tomography
inversion parameters. φ is the ellipse orientation angle in , x and y are
the horizontal and vertical coordinates of the centre position, and s the
slowness inside the ellipse.

Before studying the effectiveness of the SAA on the straight ray example prob-

lem, we wanted to characterize the variability of results in single background inver-

sions caused by uncertainty in background estimation. Assuming our background

model random field accurately captures the uncertainty in our knowledge of the

background, this can be done by conducting many inversions, each using a single

random background. We performed 100 such inversions. For each we solved the

deterministic optimization problem eq. (5.4) using the projected Gauss-Newton al-

gorithm with backtracking Armijo line-search. Inversions could end after attaining

the desired data fit as determined by a χ2 statistic, when the magnitude of the gra-

dient was reduced below a threshold value relative to its initial magnitude, or when

the line search failed to find a step that reduced the objective function. Results

from all these categories were included in assessing the variance in the recovered

parameters as a function of the background. The results are summarized in fig. 5.3,

which shows histograms and kernel density estimates of the recovered values of

each inversion parameter. There were a wide range of results. Excellent recovery

was achieved for a few sample backgrounds but the variance in results was large

and many inversions achieved very poor recovery of the anomalous ellipse. Ori-

entation angle was particularly poorly resolved, with the angle being pushed to its

lower bound being the mode result. This seems to show that the angle is poorly re-

solved by this particular straight ray tomography survey, rather than to give insight

into the effect of uncertainty in the background model. Overall, these results show

that the level of uncertainty in our knowledge of the background slowness model is

too high for parametric inversion using a fixed background to be reliably effective
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Figure 5.3: Results of 100 independent single background inversions. The
recovered values for each inversion parameter are plotted as histograms
with accompanying kernel density estimates. The red vertical lines
show the true parameter values. Note that the estimated densities may
have support outside the parameter bounds. They are included in order
to give general visual impressions of the spread of inversion results and
these effects are not of concern.
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ns 1 10 100
φ 25.2 64.0 88.8
x 0.38 0.50 0.51
y 0.51 0.53 0.54
s 6.96 7.97 8.36

(a) sample mean

ns 1 10 100
φ 28.2 31.2 8.29
x 0.17 0.051 0.0091
y 0.16 0.040 0.0073
s 3.03 1.11 0.286

(b) sample standard deviation

Table 5.2: Marginal statistics of SAA inversion results. The sample means of
the recovered values of each parameter are shown for the 1, 10, and 100
background inversion experiments in a), with the corresponding sample
standard deviations shown in b). Recall that the true parameter values are
φ = 30◦, x = 0.5, y = 0.5, and s = 4. See table 5.1 for parameter bounds
and initial guesses.

for this particular problem.

To show the effect of the SAA approach in improving ellipse recovery in the

presence of uncertainty in background estimation, we performed repeated multiple

background SAA inversions and studied the variability of the inversion results. For

each of two SAA sample sizes ns = 10,100 we performed 100 inversions, with ns

new independent background models sampled from the background GRF. Kernel

density plots showing the range of recovered parameter values for the SAA and

single background inversions are plotted together in fig. 5.4. It is clear from these

results that the SAA approach did not help recovery of the orientation angle—in

line with our expectations—but that it did a great deal to reduce the variance in the

recovered values of the other parameters. The density plots also show that there

are small but distinct biases in the distributions of recovered values. This stems

from the fact that we don’t know the true background model distribution and are

thus not drawing our sample backgrounds from the correct distribution. Thus as the

SAA sample size is increased we see the sample means of the recovered parameters

converging to values slightly different than the true values.

The sample means and standard deviations of the recovered parameter values

for each SAA sample size are shown in table 5.2. The values in the table show

the O(1/
√

ns) convergence in standard deviation expected from the SAA. Overall

these statistics show that a single SAA inversion with a large enough sample size

can be expected to give much better parameter recovery than a single one back-
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Figure 5.4: Kernel density plots showing inversion results for single back-
ground, 10 background SAA, and 100 background SAA inversions. 100
background angle results are not shown because they took the upper
bound value of 90◦ for all but two of these inversions rendering the
corresponding kernel density plot meaningless. The vertical axes of the
plots were clipped in order to show the single and 10 background results
at reasonable scales.
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ground inversion.

5.3.2 Optimization by stochastic gradient descent

A major downside of the SAA method described in this paper, when using tra-

ditional deterministic optimization methods, is that the computational cost grows

linearly with the number of samples ns, while the parameter estimates converge

only at a rate of O(1/
√

ns). Each term in the SAA objective function requires

separate forward modelling, gradient and hessian computations. When large scale

parallel computing resources are available, a large number of terms can be handled

in parallel, allowing the approach to remain efficient. But when such resources

are not available, the computational cost per iteration becomes prohibitive as the

number of samples increases.

In order to gain the statistical benefit of using a large number of samples in

the SAA technique without incurring a prohibitively large computational cost, we

turn to stochastic gradient methods. These algorithms converge much more slowly

than the Gauss-Newton method but the per-iteration cost is drastically reduced and

they can perform SAA inversions with large numbers of background samples when

only modest computational resources are available since only a small number of

background models are accessed at each iteration.

Stochastic gradient descent (SGD) and related algorithms such as Polyak’s mo-

mentum method [72], have been used in stochastic programming for a long time

[86]. Recently, these methods, along with other variants, have gained great pop-

ularity in the machine learning community due to their ability to work with small

subsets of large datasets and their surprising performance on difficult non-convex

machine learning optimization problems—see e.g. [17, 57]. We are interested in

SGD and related methods because of their ability to use information from a large

number of sample background models without needing to process many of these

models at each iteration.

We use the ADAM accelerated stochastic gradient descent algorithm [55]. The

ADAM method combines ideas from momentum methods and gradient descent

with adaptive step size control. The method is shown in algorithm 2. The model

is updated by an exponentially weighted average of past gradients, with the indi-
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Algorithm 2 The ADAM method, algorithm presentation adapted from algorithm
1 of [55]

Choose hyperparameters α , β1, β2, ε .
Choose initial model m0 (Abuse of notation, do not confuse with background
model)
Initialize v0 = 0, w0 = 0, k = 0
Draw a set Ξ = {ξi} of ns samples from the background model distribution
while not converged do

Compute a random permutation of the samples and divide into mini-batches
for j in mini-batches do

k← k+1
g← Φ[m,Ξ( j)] (gradient of objective function w.r.t. samples in mini-

batch j).
vk← (1−β t

1)
−1(β1vk−1 +(1−β1)g)

wk← (1−β t
2)
−1(β2wk−1 +(1−β2)(g◦g))

mk←mk−1−αvk/(
√

wk + ε)
end for

end while
return mk

vidual components scaled by an exponentially weighted average of the magnitudes

of past gradients. After reviewing several accelerated gradient descent algorithms,

we chose ADAM because of its proven performance on many difficult large-scale

problems and the fact that in our experience it seems to perform well with less

hyperparameter tuning than other related methods. In order to achieve satisfactory

performance it was still necessary to tune the step-size. After some experimen-

tation, we settled on a value of α = 0.002, which we used in the experiments

discussed below. We set the other parameters to the default values recommended

in [55]. These are β1 = 0.9, β2 = 0.99, and ε = 1×10−8.

At each iteration of the optimization, the approximate gradient of the SAA ob-

jective function is computed using a subset of the available background samples,

called a mini-batch. We studied the performance of the ADAM method in solving

the SAA optimization problem eq. (5.8) for the straight ray tomography problem

by studying the variability of the recovery of ellipsoid parameters obtained with

independent sets of background samples, as we did with GN. We studied the per-
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ns 100 500
φ 24.1 26.3
x 0.49 0.50
y 0.51 0.52
s 9.82 9.77

(a) sample mean

ns 100 500
φ 1.10 0.515
x 0.0068 0.0038
y 0.0077 0.0038
s 0.288 0.139

(b) sample standard deviation

Table 5.3: Marginal statistics of SAA inversion results using the ADAM op-
timization algorithm. Recall that the true parameter values are φ = 30◦,
x = 0.5, y = 0.5, and s = 4. See table 5.1 for parameter bounds and initial
guesses.

formance of ADAM using SAA sample sizes of ns = 100,500, with mini-batch

sizes of 1 and 10. We performed 100 inversions in each of these configurations.

The optimizations generally converged faster with the larger mini-batch size, as

expected. The parameter recovery was equivalent in both cases. The summary

statistics of the results (computed from the 1 mini-batch runs) are shown in ta-

ble 5.3. Kernel density estimates for each parameter value, for both SAA sample

sizes are plotted in fig. 5.5. The standard deviations of the ellipsoid position and

slowness from the 100 background inversions was very close to what was observed

in the 100 background GN experiments. Unexpectedly, the orientation angle was

much better resolved by the ADAM inversions. The biases of the x and y posi-

tion variables were similar to the GN results while the ADAM inversions tended to

overestimate the slowness more than the GN inversions.

We cannot definitively say why the biases in the ADAM results were different

from the GN biases. It may be because the ADAM algorithm is better able to escape

from local optima and saddle surfaces, or that because of its much smaller step

sizes and the scaling of the problem, ADAM is able to better explore the interior

of the parameter space and find reasonable values for the position and slowness

parameters without quickly pushing the angle to its upper bound value.

5.4 Application to non-linear 3D problem
We illustrate the application of our method to a larger scale non-linear problem

using another example from geophysics, direct current resistivity (DCR) imaging.
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Figure 5.5: Kernel density plots of inversion results for 100 background and
500 background ADAM inversions with mini-batch size 1. Horizontal
axis limits are the same as in fig. 5.4
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In DCR imaging, a steady electric current is injected into the ground and resulting

electrical potential differences due to electric currents flowing in the ground are

measured at a small number of locations on the earth’s surface. These voltages can

be used to estimate the electrical conductivity (inverse of resistivity) of the earth’s

subsurface. Mathematically, DCR surveys are governed by the elliptic boundary

value problem

∇ · (θ∇φ) =−∇ · js ∈ (Ω⊂ R3) (5.17)

∇φ · n̂ ∈ ∂Ω1 (5.18)

φ = 0 ∈ ∂Ω2 (5.19)

where φ is the electrical potential in the earth, θ the conductivity, here assumed

to be a scalar function of space, and js, the electric current driving the experi-

ment, which is divergence free except at a finite number of isolated points where

the source of current is connected to the ground. ∂Ω1 denotes the portion of the

domain boundary that represents the surface of the earth and n̂ is the unit vector

normal to ∂Ω. ∂Ω2 is the rest of the domain boundary. The Dirichlet conditions

model the fact that the potential tends toward zero far from sources of current.

In order to approximately meet this condition in a finite domain, we must make

the domain large enough that the non-surface boundaries are indeed far from any

sources of current. We discretize eq. (5.19) on locally refined rectilinear meshes

called OcTrees (see e.g. [45]), which makes it simple to enlarge the domain with-

out significantly increasing the computational cost of solving the boundary value

problem.

The potential difference measurements are linear functionals of the potential

φ , a measurement being simply the difference in the potential between two lo-

cations on the earth’s surface. The goal of this example problem is to use these

measurements to characterize a plate-like highly conductive body embedded in a

heterogeneous vertically layered background medium. We model the conductive

body as a rectangular prism. The prism is incorporated with the background con-

ductivity model using the parametric level-set approach. Similarly to the previous
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example the overall conductivity model is

θ(x) = θ0(x)+ H̃(x)(θp−θ0(x)), (5.20)

where θ0 is the heterogeneous background conductivity model, θp is the conduc-

tivity of the prism, and H̃ is a smooth approximation to an indicator function that

takes value 1 inside the prism and 0 outside. The indicator function is a prod-

uct of one-dimensional (1D) indicator functions in the three Cartesian coordinate

directions

H̃(x) = σx(R(x−x0))σy(R(x−x0))σz(R(x−x0)), (5.21)

where x0 is the position of the centre of the prism and R is a rotation matrix that

transforms x− x0 to a coordinate frame whose axes are the principal axes of the

prism. The 1D indicator function for coordinate i is

σi(r) =
1

1+ exp(−(ri +hi)/ai)
− 1

1+ exp(−(ri−hi)/ai)
(5.22)

where ri is the i component of r, hi is the side length of the prism in the i direction

and ai the scaling factor that controls the sharpness of the prism boundary transition

in the i direction.

The background conductivity θ0 is modelled as a log-normal random field. The

mean of the underlying GRF is constant in the y direction and piecewise constant in

the x and z directions. It is illustrated in fig. 5.6 by a slice in the x-z plane showing

the core region of the model. The covariance function of log(θ0) is

κ(x,y) = σ(x)σ(y)exp
(
−(x−y)T A(x−y)

)
, (5.23)

where

A =

l−1
x 0 0

0 l−1
y 0

0 0 l−1
z

 , (5.24)

with lx = ly = 2.5lz. The standard deviation σ(x) is piecewise constant, being 50%

of the mean value in each constant region of the mean model.

We take approximate samples of the log(θ0) GRF by using the Karhunen-
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Figure 5.6: Mean background conductivity in the x-z plane at y = 0 in the
core region of the mesh.

Loève expansion. In order to make the computation of the Karhunen-Loève eigen-

functions tractable and to make sampling efficient, we sample the background on

a subset of the full computational domain. We use a large enough volume such

that the lack of randomization outside it does not significantly effect the data. We

then simply take the exponential of these GRF samples to get samples from the

background random field θ0.

The 3D conductivity model used to generate synthetic data for our experiment

(which we’ll call the true model below) was taken to be a thin dipping rectangular

prism embedded in a random sample from the background field. It is illustrated by

orthogonal 2D slices in fig. 5.7.

With our computational resources, using the Gauss-Newton SAA inversion

technique with many sample backgrounds was computationally intractable for this

problem. However, we found that the stochastic gradient technique introduced in

the previous section worked well. As in the last section we performed a set of

inversions using single random samples from the background distribution. Due

to the computational cost, we did not perform a series of SAA inversions. We

performed a single SAA inversion using the ADAM stochastic optimization algo-

rithm, with 400 background models and a mini-batch size of 4. This mini-batch

size was chosen simply because this was the number of model realizations that we

could process concurrently.

In this case the anomalous parametric body was better separated from the back-

ground than in the 2D example. Because of this, the single background DCR inver-
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(c) Slice through model at z =−60 m

Figure 5.7: True model slices
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sions gave better results than in the 2D tomography case. However, there was still

a significant variability in the results. This is illustrated in fig. 5.8, which shows

the recovered parameter values for the single background and SAA inversions. The

single background inversions were able to somewhat reliably recover the position

of the anomalous block but showed much larger variability in the recovery of the

other parameters. None of the inversions were able to recover the thickness (z ex-

tent) well, suggesting that the data may not be very sensitive to this parameter. The

single background inversions were able to reduce misfit by tweaking the extents of

the block and varying its orientation angle but they struggled to capture its highly

conductive nature. In most cases they increased the signal from the block only by

increasing its thickness, and not by increasing the conductivity. The SAA inversion

still pushed the thickness to its upper bound but, perhaps because it could not find

descent directions by fitting small signals from background features, it was bet-

ter able to capture the essential features of the anomalous block, leading to good

recovery of its position, orientation, and conductivity.

5.5 Conclusions
In parametric shape reconstructions problems, estimating the properties of the

background medium can be a major stumbling block to accurate reconstruction.

We have shown that the effect of uncertainty in the background properties can be

mitigated by the use of stochastic optimization methods. This can be thought of

as a means to improve the shape recovery possible given a specified characteriza-

tion of the background or as a justification to limit the effort one might expend on

achieving a very accurate representation of the background.

The efficiency of this method could likely be improved in future. In this work

we used ADAM, a first order stochastic optimization method, to make our approach

tractable for large-scale problems. There may be an opportunity to use Stochastic

Newton methods to improve the efficiency of optimization.
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Figure 5.8: Results from single background and SAA ADAM inversions of
DC data. Blue dots show the recovered values of each parameter from
the 20 single background inversions and the stars show the parameter
values recovered by the SAA inversion. In each plot, the vertical axis
limits are the parameter bounds, the dashed black line shows the initial
guess and the red line the true value of the parameter.
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Chapter 6

Conclusions

This thesis has focused on the development of computational methods related

to forward modelling and inversion of time-domain geophysical electromagnetic

(EM) data in the presence of induced polarization effects. The work led to new,

more efficient numerical methods for time discretization of the quasi-static Maxwell

equations, a new forward modelling algorithm for simulating coupled EM induc-

tion and induced polarization (IP) effects, and a corresponding inversion algorithm

for recovering three-dimensional (3D) conductivity and IP parameter earth models

from transient EM data. The final main chapter concerned stochastic parametric

inversion. It did not address IP directly but contributed a novel inversion algorithm

that is well suited for application to IP inversion problems in the future.

This work was motivated by interest in induced polarization in the geophysical

community and by a lack of appropriate computational tools for the investigation

of coupled EM induction and IP effects. The first attempts to model these coupled

effects in 3D directly in the time-domain have emerged only in the last five years,

in the work of Marchant et al. [63] and Commer et al. [25]. This work sought to

improve on the computational efficiency of these methods and to develop a purely

time-domain EM and IP forward modelling algorithm scalable to large industrial

problems that is amenable to use in inversion for IP parameters.

Efficient modelling of coupled EM induction and IP effects clearly requires

efficient modelling of electromagnetic induction. Therefore, before addressing

IP, Chapter 2 of the thesis examined the discretization in time of the quasi-static
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Maxwell equations. Time-discretization in geophysical electromagnetics has tra-

ditionally used quite simple methods. As a parabolic problem, solutions tend to

display simple smoothly decaying behaviour in time but short time-scale effects

makes the problem very stiff. In order to maintain stability one is forced to use dis-

cretization methods that possess the property of stiff decay. In addition to stability,

these methods have the advantage that they can use large time-steps to recover the

late time behaviour of a solution without resolving the details of its early time be-

haviour. This key property allowed the development of the parallel in time forward

modelling algorithm discussed in chapter 2. This simple modification eliminates

the bottleneck in speeding up forward modelling caused by the inherently sequen-

tial nature of time-stepping. A key difference between the parallel time-stepping

approach and lower level optimizations such as parallelization of the solution of the

linear systems at each time-step is its scalability. The tests performed in chapter 2

showed that the approach could scale to multiple nodes of a computer cluster and

achieve significantly faster forward modelling times than traditional methods.

Chapter 3 detailed the development of the coupled EM and IP forward mod-

elling algorithm based on stretched exponential relaxation. The algorithm was im-

plemented using finite volume spatial discretization on OcTree meshes. Backward

Euler and second order backward differentiation formula (BDF2) time-stepping

schemes were examined. Using the stretched exponential relaxation to model the

IP effect was a departure from the Cole-Cole model that has become the de-facto

standard model of IP in the geophysical community. These models are both phe-

nomenological. The analysis of chapter 3 showed that they are not fully equivalent

but can be used to model similar phenomena and are equivalent in some cases.

The examples in chapter 3 showed that the stretched exponential model is capable

of simulating electromagnetic fields qualitatively similar to those observed in the

field by practicing geophysicists. However, the ability of the stretched exponential

approach to model real data remains untested. This is an important area for fu-

ture work. The stretched exponential forward modelling algorithm and the parallel

time-stepping algorithm described in chapter 2 were published in [11].

Ultimately, the usefulness of the stretched exponential approach should be

judged by its ability to generate useful earth models that fit experimental transient

EM data through the process of geophysical inversion. Chapter 4 showed how
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stretched exponential modelling could be used in an inversion algorithm to recover

intrinsic IP parameters from grounded source transient EM data. The work was

preliminary and tested only on a simple synthetic example. It leaves several open

questions on how to best extract information on the IP properties of the earth from

transient EM data. Some of these questions can be addressed by further synthetic

inversion studies, such as the question of if the non-uniqueness of the inversion

can be mitigated through regularization that couples the three IP parameters? The

circumstances, if any, under which conductivity and chargeability can be recovered

simultaneously, without a good starting conductivity model could also be investi-

gated in synthetic studies? However, any such synthetic studies should be coupled

with applications to field data.

A further avenue for mitigating the non-uniqueness in the IP inverse problem

is to use parametric methods, which pose the inverse problem as that of recovering

a small number of parameters that characterize a homogeneous body embedded

in some background medium. This can be particularly useful in the common case

where there is a priori reason to believe that the IP signal observed in a geophysical

data-set is the result of a relatively homogeneous compact body. This scenario was

explored in chapter 5 of the thesis, through the development of a stochastic para-

metric level-set inversion algorithm. In this class of methods, the domain of inves-

tigation into the homogeneous body of interest and a heterogeneous background

medium that is held fixed in the inversion. The work in this thesis made two main

contributions to this problem. It showed that better recovery of the homogeneous

object of interest could be achieved by addressing the uncertainty in the model of

the background medium. This was done by modelling the background as a ran-

dom field and posing the inverse problem as a stochastic programming problem.

The initial implementation of this approach was quite computationally intensive.

It was shown that the algorithm could be adapted to make it scalable to large, in-

dustrial scale problems by employing stochastic gradient descent in the solution of

the stochastic programming problem. The work in chapter 5 has been submitted

for publication in the SIAM/ASA Journal on Uncertainty Quantification.

The stochastic parametric level-set inversion approach could be used to help

the stretched exponential inverse problem in multiple ways that could be explored

in future work. One potential use is to model the earth conductivity as part of the
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background model when it is not possible to get a precise estimate of the conduc-

tivity before inverting for IP parameters. This would hopefully reduce the quality

of the starting conductivity model needed to produce good models of the IP param-

eters. One could also use the stochastic approach to model a possibly polarizable

background medium that has not been well characterized, when a compact conduc-

tive target is of interest.

Overall the problem of inverting transient EM data for IP parameters is still

new and under explored. This thesis has developed computational methods that

can now be used to investigate the recovery of IP information from real data. IP

effects seem to be showing up more commonly in recent inductive source EM

data and whether the target of interest in a particular survey is polarizable or if

a conductive target is simply masked by IP signals from background media, it is

import to understand how the presence polarizable bodies is manifest in EM data

and to incorporate this understanding into the modelling and inversion tools that

are used to analyze the data. The study of IP in grounded source electrical data is

more established but there is potential for much more information to be extracted

from such data through the use of modelling and inversion tools, such as those

developed in this thesis, that fully account for the behaviour of these data in time.
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