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Abstract

The extraction of hydrocarbons from low-permeability formations is commonly achieved

through hydraulic fracturing. In a hydraulic fracturing operation, fluid and particles,

called proppant (commonly sand) are injected to create fracture pathways and to keep

those pathways open so that hydrocarbons can flow from the reservoir to the wellbore.

One of the key unknowns in hydraulic fracturing operations is the distribution and extent

of proppant within the reservoir. If the electrical conductivity of the injected materials

is distinct from the host rock, then electromagnetic geophysical methods can be used.

In order for electromagnetics to be a viable imaging technique for this application, we

must be able to: (a) collect data that are sensitive to the injected materials, and (b) have

a method for estimating a representative model of the injected materials from those data

through an inversion process. Numerical modelling is an essential tool for assessing

feasibility of electromagnetics and for developing a suitable inversion procedure for ex-

tracting meaningful information from the collected data.

A complicating factor of using electromagnetics in reservoir settings is that steel-

cased wells are commonly present. Steel has vastly different electrical and magnetic

properties than the surrounding rock and therefore significantly alters the behavior of

electromagnetic fields and fluxes. The success of electromagnetic methods for imaging

subsurface injections, therefore, heavily relies on our ability to understand and simulate
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the physical behavior of fields and fluxes in these settings.

Using hydraulic fracturing as a motivating application, this thesis examines aspects

of both the imaging problem for subsurface injections as well as the fundamental be-

havior of electromagnetic fields and fluxes in settings with steel-cased wells. I present

a strategy for estimating the electrical conductivity of a fractured volume of rock and

incorporate this into the inverse problem. I also develop a numerical approach for ac-

curately simulating electromagnetic surveys in settings with steel-cased wells. Using

this software, I examine aspects of the fundamental physics, including how the mag-

netic properties of a pipe complicate the behavior of the fields and fluxes, and how this

impacts measured data.

All of the software developed during the course of this research is open-source.
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Lay Summary

Hydraulic fracturing is used for producing hydrocarbons from low-permeability reser-

voirs. Fluid and proppant (commonly sand) are injected to create fractures and to keep

those fracture pathways open. One of the unknowns in this process is the distribution

of the injected materials. If the electrical conductivity of the injected materials is dis-

tinct from the reservoir rock, electromagnetic geophysical data, which are sensitive to

the distribution of those materials, can be collected. Through an inversion process, a

3D model of the injected materials can be estimated from those data. The presence of

steel-cased wells complicates this procedure because steel has vastly different electrical

and magnetic properties than the reservoir rock. As a result, it significantly alters the

behavior of the electromagnetic fields. This thesis examines aspects of the fundamental

physics of electromagnetics in settings with steel-cased wells and as well as strategies

for estimating the distribution of injected materials from electromagnetic data.
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Preface

The research I conducted for this dissertation was completed at the Geophysical Inver-

sion Facility at the University of British Columbia under the supervision of Dr. Douglas

Oldenburg. During my time as a PhD student, I also completed two internships, the first

with the Schlumberger Electromagnetics Imaging group, under the advisement of Dr.

Michael Wilt, and the second at Schlumberger Doll Research, under Dr. Dzevat Omer-

agic. These internships informed my understanding of hydraulic fracturing and industry

practices for electromagnetic imaging. The research presented in this thesis has resulted

in three peer-reviewed publications, seven conference proceedings and several auxiliary

works.

Chapter 2 presents an approach for constructing a physical property model of a frac-

tured volume of rock. Dr. Wilt had the initial idea to use effective medium theory

to estimate the coarse-scale conductivity of a fractured volume of rock. I developed the

two-step workflow, the algorithm used to solve for effective conductivity, and performed

all numerical simulations in this chapter. Dr. Oldenburg advised on all of these devel-

opments. Earlier versions of this work were presented at three conferences (Heagy and

Oldenburg, 2013; Heagy et al., 2014a; Wilt et al., 2014) and included in the patent Wilt

et al. (2015).

Chapter 3 discusses a finite volume approach for simulating Maxwells equations on
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cylindrical meshes. This work has been submitted to a peer-reviewed journal and is

available on arXiv (Heagy and Oldenburg, 2018b). Preliminary versions of this work

were included in two conference abstracts (Heagy et al., 2015, 2017b). I implemented

the software within the SimPEG framework and the code-review was conducted by Dr.

Rowan Cockett. Dr. Oldenburg advised on the software development, testing, and con-

tent of the chapter. I performed the numerical simulations that comprise the examples in

this chapter. Much of the numerical work in this chapter is supported by course material

and instruction from Dr. Eldad Haber and Dr. Uri Ascher (Haber, 2014; Ascher, 2008).

Chapter 4 discusses aspects of the fundamental physics of DC resistivity with steel-

cased wells and demonstrates survey design considerations. This work was submitted to

a peer-reviewed journal and is available on arXiv (Heagy and Oldenburg, 2018a). I con-

ducted all of the numerical experiments in this chapter with advisement from Dr. Old-

enburg. The application of DC resistivity to the casing integrity problem was prompted

by conversations with Dr. Wilt.

Chapters 5 explores the physics of electromagnetics in settings with steel-cased

wells. I conducted all of the experiments in this chapter with advisement from Dr.

Oldenburg. Earlier versions of this work were included in (Heagy et al., 2015, 2017b).

Chapter 6 discusses the inverse problem for imaging a fractured volume of rock. I

developed the idea of using effective medium theory in the inversion, implemented the

necessary software components and performed the numerical experiments in this chap-

ter, all with advisement from Dr. Oldenburg. An early version of the idea of using

effective medium theory to invert for fracture concentration was presented in a confer-

ence publication (Heagy et al., 2014b). Dr. Cockett contributed to the development of

examples in the conference publication.

Appendix B and Appendix C contain details relevant to Chapters 2 and 6. I per-
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formed both derivations with advisement from Dr. Oldenburg. The derivation in B was

inspired by a question from Dr. Frank Morrison.

Appendix D describes the SimPEG electromagnetics module which is the backbone

for the numerical experiments conducted in this thesis. This work was published in

Computers & Geosciences (Heagy et al., 2017a) and was conducted collaboratively

with Dr. Cockett, Dr. Seogi Kang, and Mr. Gudni Rosenkjaer with advisement from

Dr. Oldenburg. I led the development and implementation of the forward-simulation

framework as well as the drafting of the manuscript. Dr. Kang performed the inversion

of the Bookpurnong data as described in Section D.5.2. All authors contributed edits to

the text.

Appendix E provides an overview of the GeoSci.xyz project (https://geosci.xyz)

which is a collaborative effort to develop educational resources for the geosciences.

This effort has been led by myself, Dr. Oldenburg, Dr. Kang, and Dr. Cockett, and has

benefitted from a community of contributors. Notably, Mr. Dominique Fournier, Mr.

Devin Cowan, Mr. Thibaut Astic, Dr. Sarah Devriese, Mr. Michael Mitchell, and Dr.

Dianne Mitchenson, have invested significant efforts in contributing content.

Software development has been a critical part of this work. In particular, the re-

search conducted in this thesis builds upon and contributes to the open-source SimPEG

ecosystem, described in Cockett et al. (2015), of which I am a co-author. Excerpts of

the background information on inversion in Section 1.6 are adapted from Cockett et al.

(2015). My personal contribution to SimPEG exceeds 100,000 lines of code. In addi-

tion, I help maintain SimPEG and lead community development efforts by responding to

code-usage questions and conducting code-reviews. The research in this thesis benefits

from the efforts of all of those who are involved in the SimPEG community. Notably,

Dr. Cockett and Dr. Kang have made substantial contributions to the architecture and
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functionality of SimPEG that have been used to conduct the research in this thesis; they

have also reviewed and provided input on much of the code that I have written.

The research in this thesis makes use of tools in the scientific Python ecosystem in-

cluding Jupyter, Numpy, SciPy, and Matplotlib (Perez et al., 2015; van der Walt et al.,

2011; Jones et al., 2001; Hunter, 2007) and relies upon the global community of con-

tributors who develop and maintain these open-source resources.
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Figure 2.10 Setup for the crosswell electromagnetic simulation. Ten fractures,
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Figure 3.6 (a) Current along a well for 5 different wellbore lengths. The x-axis

is depth normalized by the length of the well. The black dashed line

shows the short-well approximation (equation 45 in Kaufman and

Wightman (1993)) for a 200 m long well. The black dash-dot line

shows the long-well approximation (equation 53 in Kaufman and

Wightman (1993)) for a 4000 m well. (b) Charge per unit length

along the well for 5 different wellbore lengths. . . . . . . . . . . . 82

xxii



Figure 3.7 Field strength ratio (FSR), the ratio of the measured vertical mag-
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Figure 3.12 Normalized secondary field (NSF) through time. In the time-domain,
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netic flux at the receiver and the whole-space response and then tak-

ing the ratio with the whole-space magnetic flux prior to shutting off

the transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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Figure 4.5 Radial electric field as the depth of the flaw along a 1km long well is
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the depth indicated on the legend. The black line shows the radial
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the secondary radial electric field as a percentage of the primary. . . 111
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end. The solid lines indicate the response of the flawed well and the
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(b), the secondary radial electric field is plotted and in (c), we show
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(b), the secondary radial electric field is plotted (with respect to an
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Figure 4.10 Radial electric field as the conductivity of the casing is varied for a

1 km well with a 10 m flaw at 500 m depth. The positive electrode

is connected to the top of the casing, the negative electrode is posi-

tioned 500 m away and data are measured along a line 90◦ from the

source electrodes. In (a), we show the total electric field for three

different casing conductivities, each indicated on the legend. The

solid lines indicate the response of the flawed well and the dashed

lines indicate the response of the intact well (the primary). In (b),

the secondary radial electric field is plotted and in (c), we show the

secondary radial electric field as a percentage of the primary. . . . . 118
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positive electrode is connected to the top of the casing, the negative

electrode is positioned 500 m away and data are measured along
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solid lines flawed wells in which the entire circumference of the well

has been compromised. In (b), the secondary radial electric field is
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Figure 4.12 Electrode locations to be compared. The top casing electrode (blue),

centered electrode (green, 500 m depth), and downhole electrode

(red, 500 m depth) are connected to the casing. The surface elec-

trode (orange) is offset from the well by 0.1 m. The remaining elec-

trodes are positioned along the axis of the casing. Panel (a) shows

the entire length of the casing, while (b) zooms in to the bottom of

the casing to show the separation between the electrodes beneath the
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Figure 4.13 Total current density along a vertical line offset (a) 25 m, (b) 50 m
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tom). The positive electrode is positioned in the casing at the 912.5

m depth. The casing is shown by the black line that extends to 1 km
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Figure 4.15 Cross section showing: (a) electrical conductivity, (b) current den-

sity, (c) charge density, and (d) electric field for a DC resistivity

experiment with a conductive target (top) and a resistive target (bot-

tom). The positive electrode is positioned at 912.5 m depth. No

casing is included in this simulation. Note that the colorbars for the

charge density (c) and electric field (d) are different than those used

in Figure 4.14. For the resistive target, the colorbar is saturated, the

charge density over the resistive target is on the order of 10−13 C/m3. 130

Figure 4.16 Radial electric field at the surface as the conductivity of a cylindri-

cal target, in contact with the well, is varied. The target has a radius

of 25 m and extends in depth from 900 m to 925 m. The return

electrode is on the surface, 500 m from the well and data are mea-

sured along a line perpendicular to the source. The panels on the

left show (a) the total electric field, (b) the secondary electric field

with respect to a primary that does not include the target, and (c) the

secondary electric field as a percentage of the primary for a survey

in which the positive electrode is positioned downhole at 912.5 m

depth. The panels on the right similarly show (d) the total electric

field, (e) the secondary electric field, and (f) the secondary electric

field as a percentage of the primary for a top-casing experiment. . . 131
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Figure 4.17 Cross section showing: (a) electrical conductivity, (b) current den-
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experiment with a conductive target (top) and a resistive target (bot-

tom) which is not in contact with the well. The positive electrode is

positioned in the casing at the 912.5 m depth. The casing is shown
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target, which is not contact with the well, is varied. The target has
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with respect to a primary that does not include the target, and (c) the

secondary electric field as a percentage of the primary for a survey

in which the positive electrode is positioned downhole at 912.5 m

depth. The panels on the right similarly show (d) the total electric
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Figure 4.19 Depth slice showing the primary electric field due to a downhole

electrode and a return electrode located on the surface at x =-500

m, y =0 m. The red line indicates the azimuth of the source. We

examine the 3 different target azimuths shown by the white outlines.

The solid line indicates the target inline with the source, the dashed

is 90◦ from the source line, and the dotted line is 180◦ from the

source line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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depth, and (b) a top-casing electrode. The return electrode is posi-

tioned on the surface 500 m from the well. Each line color indicates

a different target-conductivity. The different line styles correspond

to different target azimuths relative to the plane of the source elec-

trodes and correspond to those show in Figure 4.19. The solid line

indicates a target inline with the source, the dashed is 90◦ from the

source, and the dotted line is 180◦ from the source. Offset is calcu-

lated from the center of the well to the edge of the target closest to
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Figure 4.21 (a) Sum of the primary and secondary radial electric field due to a

dipolar target with moment of 38 Am centered 50 m from the well,

either calculated with the casing (blue) or simply a dipole in a half-

space (orange). (b) Secondary radial electric field due to a dipolar

target in a halfspace with casing (blue) and without casing (orange).

Secondary radial electric field as a percentage of the primary. The

target is along a line 90◦ from the source electrodes; this is the same

line along which we measure data at the surface. . . . . . . . . . . 141

Figure 4.22 Currents (top row) and charges (bottom row) along the length of a

hollow steel-cased well (solid lines), solid cylinder with conductiv-

ity equal to that of the steel-cased well (dashed-lines), and a solid

cylinder with a conductivity such that the product of the conductiv-

ity and the cross sectional area of the cylinder is equal to that of the

hollow-pipe (dotted lines). Each of the line-colors corresponds to a

different casing length, as indicated in the legend. In (a), we show

the vertical current in the casing, (b) shows the difference from the

true, hollow-cased well in the vertical current within the casing, and

(c) shows that difference as a percentage of the true currents. In (d),

we show the charge per unit length along the casing, (e) shows the

difference from the true, hollow-cased well and (f) shows that dif-

ferences as a percentage of the true charge distribution. The x-axis

on all plots is depth normalized by the length of the casing. . . . . 144
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Figure 4.23 Radial electric field measured at the surface for a model of a hol-

low steel-cased well (solid lines), a solid cylinder with conductivity

equal to that of the steel-cased well (dashed-lines), and a solid cylin-

der with a conductivity such that the product of the conductivity and

the cross sectional area of the cylinder is equal to that of the hollow-

pipe (dotted lines). Each of the line-colors corresponds to a different

casing length, as indicated in the legend. In (a), we show the total

radial electric field, (b) shows the difference in electric field from

that due to the true, hollow-cased well, and (c) shows that difference

as a percentage of the true electric fields. The x-axis on all plots is

distance from the well normalized by the length of the casing. . . . 146

Figure 4.24 Three realizations of a 2 km long casing in a layered background,

where the conductivity of the layers is assigned randomly. Each

layer is 50 m thick, and the mean conductivity of the background

is 0.1 S/m. The color of the title corresponds to the plots of the

currents and charges in Figure 4.25 . . . . . . . . . . . . . . . . . 147

Figure 4.25 (a) Total vertical current through the casing for the three layered-

earth models shown in Figure 4.24. The solid lines indicate the re-

sponse of the true, hollow steel cased-well and the dotted lines indi-

cate the response of a solid cylinder having the same cross-sectional

conductance as the hollow well. (b) Difference between the currents

along the casing in the solid well approximation and the true, hollow

well. (c) Charge per unit length for each of the models. (d) Differ-

ence in charge per unit length between the true model of the casing

and the approximation which preserves cross-sectional conductance. 148
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Figure 4.26 Currents (top row) and charges (bottom row) along the length of a

steel cased well. The “true” hollow-cased well is simulated on a 3D

cylindrical mesh and has 4 cells across the width of the casing thick-

ness (black line). The colored lines correspond to the currents and

charges computed along the well represented on a cartesian mesh

with cell widths shown in the legend. The finest vertical discretiza-

tion is 2.5 m in all simulations. To represent the hollow cased well

on the cartesian mesh, the cells intersected by the casing are as-

signed a conductivity that preserves the product of the conductivity

and cross-sectional area of the well. In (a), we show the vertical

current in the casing, (b) shows the difference from the true, hollow-

cased well in the vertical current within the casing, and (c) shows

that difference as a percentage of the true currents. In (d), we show

the charge per unit length along the casing, (e) shows the difference

from the true, hollow-cased well and (e) shows that differences as a

percentage of the true charge distribution. . . . . . . . . . . . . . . 149

Figure 5.1 Current density for a time domain experiment over a 10−2 S/m half-

space. The positive electrode is on the surface where the well-head

will be and the return electrode is at x = 1000 m. Each row corre-

sponds to different time, as indicated in the plots in panel (c). Panel

(a) shows a cross section through the half-space along the same line

as the source-wire. Panels (b) and (c) show depth-slices of the cur-

rents at 54 m and 801 m depth. . . . . . . . . . . . . . . . . . . . 158
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Figure 5.2 Current density for a top-casing time domain EM experiment with

a conductive well (5×106 S/m). (a) Cross section in the immediate

vicinity of the well. (b) Cross section through the formation. (c – d)

depth-slices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 5.3 Difference in current density for a time domain experiment which

includes a conductive steel-cased well (as in Figure 5.2) and an ex-
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Figure 5.4 Simulated electric field at the surface of the earth at (a) 0.01 ms and

(b) 5 ms after shut-off for the halfspace model. (c) Radial electric

field data measured along the survey line shown in white in (a) and

(b) at 0.01 ms (blue) and 5 ms (green). (d) Radial electric field as a

function of time at 300 m along the survey line (shown in the red dot

in (a)). The red dots in (c) correspond to the data observed at 300

m offset and the blue and green dots in (d) correspond to the 0.01

ms and 5 ms data. Similar information is shown in (e), (f), (g) and

(h) for the model with the conductive casing. The difference in the

radial electric field data (casing minus halfspace) is shown in (i), (j),
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Figure 5.5 Sketch of the plan-view geometry of the early-time galvanic cur-

rents (left) and image currents (right) in a time-domain EM experi-

ment over a half-space. Through time, both current systems diffuse

downwards and outwards as they decay. The wire follows a straight

line between the negative and positive electrodes. The green dashed

line shows where we are measuring the radial electric field data.

Prior to shut-off, current in the wire flows from the negative to the

positive electrode. In the earth, the galvanic currents are dipolar in

nature and flow from the positive to the negative electrode. Along

the survey-line, the radial component of the galvanic currents al-

ways points outwards. Immediately after shut-off, image currents

are induced in the earth. They are oriented in the same direction as

the original current in the wire and are directed away from the nega-

tive electrode towards the positive. Along the survey-line, the radial

component of the image currents is always pointed inwards. . . . . 165

Figure 5.6 Simulated db/dt at (a) 0.01 ms and (b) 5 ms after shut-off for the

halfspace model. (c) Tangential db/dt measured along the white

line in (a) and (b) at 0.01 ms (blue) and 5 ms (green). (d) Tangential

db/dt as a function of time at 300 m along the survey line (shown

in the red dot in (a)). Similar information is shown in (e), (f), (g)

and (h) for the model with the conductive casing. The difference

in the db/dt data (casing minus halfspace) is shown in (i), (j), (k)

and (l). The difference is also shown as a percentage of the halfspace

solution at 0.01 ms and 5 ms in (m) and through time at 300 m offset
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Figure 5.7 Current density for a top-casing time domain EM experiment over a

10−2 S/m half-space and a 1 km-long, conductive, permeable steel-

cased well (5×106 S/m, 100µ0). . . . . . . . . . . . . . . . . . . 171

Figure 5.8 Difference in current density for a time domain experiment which

includes a conductive, permeable steel-cased well (as in Figure 5.7)

and an experiment over a conductive well (as in Figure 5.2). . . . . 172

Figure 5.9 Sketch demonstrating how a vertical circulation of current can arise

inside of a permeable casing in a top-casing TDEM experiment. A

source current is applied and (a) currents flow downwards through

the pipe. (b) Currents generate rotational magnetic fields accord-

ing to Ampere’s law. (c) Magnetic flux is concentrated in the per-

meable pipe according to the constitutive relation between~b and~h.

(d) The magnetic flux varies with time after shut-off, and the time-

varying magnetic flux creates rotational electric fields according to

Faraday’s law. (e) Currents associated with those electric fields are

concentrated in conductive regions of the model in accordance with

Ohm’s law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
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Chapter 1

Introduction

The purpose of computing is insight, not numbers.

— Richard W. Hamming (1962)
Numerical Methods for Scientists and Engineers (Preface)

1.1 Motivation

Exploration and development of unconventional resources such as shale gas formations

has increased significantly over the past decades. The combination of horizontal drilling

and hydraulic fracturing are key technologies for extracting hydrocarbons from shale

and low permeability, “tight” reservoirs. As a byproduct of fracturing, wastewater, if not

recycled, must be disposed of. In many cases this is achieved by injecting the wastewater

into the subsurface through an injection well. Similarly, with recognition of the hazard

that carbon-dioxide poses as a contributor to global warming, efforts are being made

to capture and store CO2 in the subsurface. In each of these scenarios, there are both
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environmental and economic motivations for characterizing the distribution of materials

injected into the subsurface.

Electrical conductivity is a potentially diagnostic physical property in each of these

application; the conductivity of the injected material is often distinct from the host rock

it is being injected into. Electrical and electromagnetic geophysical techniques therefore

have the potential of being viable methods for estimating the geometry of injected ma-

terials. To focus the research questions addressed in this thesis, I take the application of

hydraulic fracturing as the primary motivating context, keeping in mind the connections

and similarities with other subsurface injections. In particular, reservoir settings often

have steel-cased wells which complicate the electrical and electromagnetic responses.

In the sections that follow, I provide background and context on hydraulic fracturing

and the questions I aim to address using electrical and electromagnetic (EM) methods,

and discuss the challenges introduced when attempting to use electrical and electro-

magnetic methods in settings with steel-cased wells. At the end of this introductory

chapter, I briefly introduce fundamental concepts of electromagnetism and geophysical

inverse problems which are the foundation for my research and are applicable to all of

the chapters in the thesis.

1.2 Hydraulic Fracturing

Hydraulic fracturing is used to extract hydrocarbons from tight (low-permeability) and

shale formations where oil and gas will not easily flow. In such settings, hydraulic

fracturing is used to create pathways for the hydrocarbons to flow (Figure 1.1). The

process of inducing a fracture involves sealing off a section of the well and pumping

fluid into that section under high pressure until the rock fails and cracks open up in the

direction of the minimum principal stress. Typically, once the rock has fractured, sand
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or ceramic particles, referred to as proppant, are pumped into the formation to keep the

newly created pathways open. Many of the wells drilled in the past two decades are

horizontal wells, and typically 15 to 30 fracture stages (in some cases up to 60) are

performed along the length of the well (Maxwell, 2014).

The extent of the fractures, complexity of the fractures, and distribution of proppant

and fluid within these fractures are key factors that determine the available pathways for

oil or gas to flow to the well, and thus, are important for the resulting production of the

resource (Brannon and Starks, 2008; Cipolla et al., 2009). One of the industry terms

used to try to quantify the extent of the fractures within the reservoir is the “Stimulated

Reservoir Volume” (SRV). Estimates of the SRV are used to make engineering decisions

on the spacing between wells and completion design such as the number and spacing

between fracture stages along the length of a well (Palisch et al., 2016). Hoversten et al.

(2015) estimate that a 5% improvement in the characterization of the SRV for a 1 billion

barrel field translates to over 0.5 billion U.S. dollars over 24 years with oil at US$50 per

barrel. Typically, an analysis to estimate the SRV is conducted using microseismic and

/ or tiltmeter data. Microseismic is sensitive to acoustic events generated as the fracture

propagates through the reservoir (c.f. Mayerhofer et al. (2010); Cipolla et al. (2009);

Maxwell et al. (2002); Warpinski (1996)), while tiltmeters are used to characterize the

deformation of the rock due to the presence of a fracture or a change in the stress dis-

tribution (Mayerhofer et al., 2010; Wright et al., 1998). Though both techniques are

valuable for estimating fracture geometry, complexity, and orientation, they provide no

mechanism for delineating the extent of the proppant within the fractures; at most, they

are a proxy for the extent of the fluid (Palisch et al., 2016). Two of the key factors in

fracture performance are the fracture area and the hydraulic conductivity (Cipolla and

Wallace, 2014), both of these are controlled by the distribution of proppant. Therefore,
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Figure 1.1: Conventional reservoirs contain oil and gas that have migrated up-
wards under pressure until they are trapped by a cap rock (left), while non-
conventional tight or shale oil and gas reservoirs contain hydrocarbons that
are trapped in low permeability formations (right).

in order to assess how effectively the fracture treatment has stimulated the reservoir and

how efficiently resources, such as water, have been used to create the fracture, we need

a method to delineate the extent of the proppant and fluid within the reservoir.

To accomplish this task, I propose to use EM geophysical techniques. For EM to

be a viable method for imaging the distribution of proppant and fluid within a fractured

volume of rock, we require that: (1) the fractured volume of rock have physical proper-

ties which are distinct from the background, host rock, (2) the survey must be sensitive

to this contrast, and (3) once the data have been collected, they must be interpreted or

inverted in a meaningful manner. Note that this is a time-lapse problem; that is, by in-

ducing a fracture, the physical properties of the reservoir have been altered. In order to

characterize such a change, we must view the imaging problem as a time-lapse one, and

collect data to provide us with a before and an after data-view of the reservoir.

Variations in subsurface electrical conductivity have been used as a diagnostic phys-
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ical property in sedimentary settings for characterizing geologic formations, and the

properties and distribution of fluids within those formations. Hydrocarbons are much

more resistive than saline formation fluids. In enhanced oil recovery projects, fluids

are injected into the formation, which may be less resistive than the hydrocarbons they

replace. These contrasts have been the target of cross-well, surface-to-borehole and

borehole-to-surface electromagnetic (EM) methods for reservoir monitoring and char-

acterization applications (cf. Bevc and Morrison (1991); Wilt et al. (1995); Marsala

et al. (2008, 2011, 2014)).

In the case of hydraulic fracturing, the physical properties of the fractured volume

of the reservoir depend upon the properties of the injected fluid and proppant particles.

Saline water may be used, as is often the case when recycled water is used, and elec-

trically conductive proppant may be manufactured and injected (Cannan et al., 2014;

Vengosh et al., 2014; King, 2010). One or both of these may be used to create a phys-

ical property contrast between the host reservoir rock and the fractured volume of the

reservoir. This contrast is what we aim to excite using an electromagnetic survey.

Using additives to make a hydraulic fracture a geophysical target is not a new idea.

Byerlee and Johnston (1976) suggested using magnetic particles and a magnetic survey

to estimate fracture orientation at distances larger than can be determined by tracers and

well logs. To create a fracture with a significant magnetic susceptibility, they suggested

using finely crushed magnetite suspended in the fracturing fluid or iron shot, spherical

particles of iron which do not crush easily and have a high magnetic susceptibility.

They treated the fracture as a plate with a known magnetic susceptibility and collected

measurements before and after the fracture operation; measurements of the horizontal

magnetic field inside of the injection borehole are used to indicate the orientation of the

fracture and surface measurements are used to estimate the fracture geometry. Using an
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analytic model for the magnetic response of a circular disc in a uniform inducing field,

they demonstrated the potential of this technique for simple analog models of two field

sites: an engineered geothermal project at Los Alamos, where fractures are induced to

circulate fluid through a dry geothermal reservoir and a hydraulic fracture operation for

a tight-gas reservoir at Rio Blanco.

Similarly, Bartel et al. (1976) suggest using electrically conductive fracturing fluid

and measuring electric potentials at the surface in a direct current (DC) resistivity ex-

periment where one electrode is connected to the injection well and a return electrode is

connected to a distant well casing. Potential electrodes are arranged in two concentric

rings centered about the injection well with potential differences being measured be-

tween electrodes along the same azimuth in the inner and outer rings. Variations in the

amplitude of the potential difference with azimuth are used to estimate the orientation

of the fracture and to detect asymmetry (e.g. if the fracture extends further one side

of the well than the other). Field tests were performed at two sites and demonstrated

detectability of fractures in an experiment in the Wattenburg field for fractures at depths

of ∼2200 m depth. The source electrode was connected to the casing and centered at

the depth of the induced fracture (see also Smith et al. (1978)).

Since these initial developments in the late 70’s, there have been significant im-

provements in data quality as well as our ability to model and invert electrical and elec-

tromagnetic data in 3D. In conjunction, there have been advancements in fracture oper-

ations and imaging techniques such as the use of microseismic, tiltmeters, and pressure-

transient analysis to characterize hydraulic fracture. As a result, the questions being

asked are more detailed. How complex is the fracture? Is it a simple planar fracture or

an extensive network? What is the extent of the propped volume of rock?

To assess if EM can provide insights for helping answer these questions, we need
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to be able to perform 3D numerical simulations of EM for fractured reservoirs. This

prompts a question to be examined in the thesis:

• How do we construct a physical property model of a fractured volume of rock that

can be used in numerical simulations?

1.3 Challenges to electromagnetics with steel-cased
boreholes

Hydraulic fracture operations are typically conducted in steel cased wells. These wells

presents several significant challenges for modelling and inverting EM geophysical data.

Most wells are cased with carbon steel, which has both a large electrical conductivity (∼

5.5×106 S/m) and magnetic permeability (> 50µ0) (Wu and Habashy, 1994). This is a

large contrast compared to typical geologic settings, which typically have conductivities

less than 1 S/m and permeabilities similar to that of free space, µ0. As a result, the casing

will have a significant impact on the behavior of the EM fields and fluxes. The properties

of the casing, in particular, magnetic permeability, as well as casing thickness, can vary

along the length of the well. They also depend on the quality of the steel and the state

of corrosion; this adds another level of complexity to the situation. Well logging tools,

such as that described by Brill et al. (2012) have been developed to characterize these

variations.

Not only does casing introduce a large, variable, physical property contrast, its ge-

ometry and scale add to the difficulty. Well casing is cylindrical in shape, typically ∼1

cm in thickness, 10− 20 cm in diameter, and may extend several kilometers in depth,

while the geologic structures we aim to characterize with the geophysical survey have

three dimensional variations in electrical conductivity on the scale of hundreds of meters

to kilometers. Approaches tailored to accurately modelling the impact of the casing in
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simple 1D geologic settings may be geometrically incompatible or computationally pro-

hibitive to use when reservoir-scale, three-dimensional geologic structures and targets

are included in the conductivity model.

In much of the early literature, the casing was viewed as a nuisance which distorts

the EM signals of interest. Distortion of surface DC resistivity and induced polarization

(IP) data, primarily in hydrocarbon settings, was examined in Wait (1983); Holladay and

West (1984); Johnston et al. (1987) and later extended to grounded source EM and IP

in Wait and Williams (1985); Williams and Wait (1985); Johnston et al. (1992). Also in

hydrocarbon applications, well-logging in the presence of steel cased boreholes is mo-

tivation for examining the behavior of electromagnetic fields and fluxes in the vicinity

of casing. Initial work focussed on DC resistivity with Kaufman (1990); Schenkel and

Morrison (1990); Kaufman and Wightman (1993); Schenkel and Morrison (1994), and

inductive source frequency domain experiments with Augustin et al. (1989a). Kaufman

(1990) derives an analytical solution for the electric field at DC in an experiment where

an electrode is positioned along the axis of an infinite-length well. The mathematical so-

lutions presented show how, and under what conditions, horizontal currents leak into the

formation outside the well. Moreover, Kaufman (1990) showed, based upon asymptotic

analysis, which fields to measure inside the well so that information about the formation

resistivity could be obtained. This analysis is extended to include finite-length wells in

Kaufman and Wightman (1993). Schenkel and Morrison (1994) show the importance of

considering the length of the casing in borehole resistivity measurements, and demon-

strate the feasibility of cross-well DC resistivity. They also show that the presence of a

steel casing can improve sensitivity to a target adjacent to the well. In frequency domain

EM, Augustin et al. (1989a) consider a loop-loop experiment, where a large loop is po-

sitioned on the surface of the earth and a magnetic field receiver is within the borehole.
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Magnetic permeability is included in the analysis and a “casing correction”, effectively a

filter due to the casing on inductive-source data, is introduced. This work was built upon

for considering cross-well frequency domain EM experiments (Uchida et al., 1991; Wilt

et al., 1996).

For larger scale geophysical surveys, steel cased wells have been used as “extended

electrodes.” Rocroi and Koulikov (1985) used a pair of well casings as current elec-

trodes for reservoir characterization in hydrocarbon applications. In near-surface set-

tings Ramirez et al. (1996); Rucker et al. (2010); Rucker (2012) considered the use

of monitoring wells as current and potential electrodes for a DC experiment aimed at

imaging nuclear waste beneath a leaking storage tank. Similarly, Ronczka et al. (2015)

considers the use of groundwater wells for monitoring a saltwater intrusion and investi-

gates numerical strategies for simulating casings as long electrodes. Imaging hydraulic

fractures has been a motivator for a number of studies at DC or EM, among them Weiss

et al. (2016); Hoversten et al. (2017). Some of these have suggested the use of casings

that include resistive gaps so that currents may be injected in a segment of the well and

potentials measured across the other gaps along the well (Nekut, 1995; Zhang et al.,

2018).

There has also been an increase in interest in examining the use of electrical or

electromagnetic methods deployed on the surface to non-invasively look for flaws or

breaks in the casing. Wilt et al. (2018b) introduces the idea of using electrical or elec-

tromagnetic methods for casing integrity which is further expanded upon in Wilt et al.

(2018a). They show that low-frequency electromagnetic methods are sensitive to vari-

ations in wellbore length and demonstrate that their numerical simulations agree with

field data collected over two different wellbores at the Containment and Monitoring In-

stitute (CaMI) field site in southern Alberta, Canada. This work provides motivation for
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further delving into the physics and assessing under which circumstances we can expect

to detect a flaw along a wellbore using electrical or electromagnetic methods.

As computing resources increased, our ability to forward-simulate more complex

scenarios has improved. However, the large physical property contrasts and disparate

length scales introduced when a steel cased well is included in a model still present

computational challenges. Even the DC problem, which is relatively computationally

light, has posed challenges; those are exacerbated when solving the full Maxwell equa-

tions in the frequency (FDEM) or time domain (TDEM) and can become crippling for

an inversion. For models where the source and borehole are axisymmetric, cylindri-

cal symmetry may be exploited to reduce the dimensionality, and thus the number of

unknowns, in the problem (e.g. Pardo and Torres-Verdin (2013); Heagy et al. (2015)).

To reduce computational load in a 3D simulation, a number of authors have em-

ployed simplifying assumptions. Several authors replaced the steel-cased well with a

solid borehole, either with the same conductivity as the hollow-cased well (e.g. Um

et al. (2015); Puzyrev et al. (2017)) or preserving the cross sectional conductance (e.g.

Swidinsky et al. (2013); Kohnke et al. (2017)), so that a coarser discretization may

be used; Haber et al. (2016) similarly replaces the borehole with a coarser conductiv-

ity structure and adopts an OcTree discretization to locally refine the mesh around the

casing. Yang et al. (2016a) uses a circuit model and introduces circuit components to

account for the steel cased well in a 3D DC resistivity experiment. Also for DC resistiv-

ity, Weiss (2017) develops a hierarchical finite element approach in which conductivity

values can be defined on edges, facets, and volumes on the mesh. In doing so, mul-

tiple thin boreholes, which may be deviated or horizontal, can be accurately modelled

in a DC experiment. Another approach has been to replace the well with an “equiva-

lent source”, for example, a collection of representative dipoles, inspired from Cuevas
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(2014b), or with linear charge distributions for a DC problem (Weiss et al., 2016). For

the frequency domain electromagnetic problem, a method of moments approach, which

replaces the casing with a series of current dipoles, has been taken in Kohnke et al.

(2017).

For 3D survey geometries, only a handful of forward simulations which explicitly

discretize the casing have been demonstrated, and they have been achieved at signifi-

cant computational cost. Recent examples, including Commer et al. (2015); Um et al.

(2015); Puzyrev et al. (2017), perform time and frequency domain simulations with

finely-discretized boreholes; they required the equivalent of days of compute-time for a

single forward simulation to complete. While these codes will undoubtedly see improve-

ments in efficiency, there remains a need to accurately discretize the casing at modest

computational cost both to serve as tool which these codes can compare against as well

as a need for researchers to be able to interact with and explore the behavior of the cur-

rents, charges, electric and magnetic fields and fluxes to develop an understanding of the

physics in these high-contrast settings.

There are a host of research questions to be explored in the context of highly con-

ductive, permeable, steel cased wells in electromagnetic applications. This thesis is con-

cerned with developing an understanding of the physics of electromagnetics in settings

with steel cased wells. In order to delve into the physics, we must have a mechanism for

simulating Maxwell’s equations which raises the question:

• How do we develop a numerical approach that allows us to sufficiently discretize

the steel casing so that we can not only simulate DC and EM data, but also explore

the finer details of the currents, charges, electric and magnetic fields?

Assuming a numerical strategy can be developed, we can then begin to explore ques-

tions about the physics. At the DC limit,
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• How do the currents, charges and electric fields behave in settings with steel cased

wells? What are the implications for survey design?

• Are there physical insights which, when incorporated into numerical algorithms,

reduce the computational cost of simulations with steel-cased wells?

Finally, electromagnetic experiments introduce the complication of time-variation in

the fields and fluxes as well as the additional concern of variable magnetic permeability

in the model. Though the influence of the magnetic permeability of steel-casings has

been explored for inductive source EM (e.g. where the source is a circular loop or

magnetic dipole) (Wu and Habashy, 1994), the influence of magnetic permeability on

grounded-source EM surveys (e.g. where two electrodes are used to inject current into

the earth, similar to a DC resistivity experiment) is relatively unexplored. This prompts

questions like:

• How do the fields and fluxes behave in an EM experiment which includes a steel-

cased well?

• What impact does magnetic permeability have on the behavior of the fields and

fluxes? How important is it to consider in numerical simulations?

These questions will serve as motivation for three chapters on steel-cased wells in

the thesis.

1.4 Research motivation and thesis structure

The common theme throughout the thesis is the motivation to image subsurface injec-

tions – specifically proppant and fluid injected during a hydraulic fracturing operation.

To this end, I consider three main topics that comprise five chapters in the thesis:
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• Building a physical property model for a fractured volume of rock (Chapter 2)

• Developing a physical understanding of electrical and electromagnetic methods

when steel-cased wells are present (Chapter 3, 4, and 5)

• Formulating and solving the inverse problem for a fractured volume of rock (Chap-

ter 6)

Each of these topics is discussed in further detail below.

The research chapters in this thesis make use of fundamental knowledge that needs to

be presented. Rather than insert that introductory material into the individual chapters,

they are included at the end of this chapter. The background elements pertain to:

• Electromagnetic geophysics: introducing Maxwell’s equations and EM geophys-

ical surveys

• Geophysical inversions: formulating the inverse problem

These are successively presented in Sections 1.5 and 1.6 after I have introduced the

research material in this thesis.

1.4.1 Homogenization strategy for hydraulic fractures

Chapter 2 develops a strategy for estimating a bulk conductivity of a fractured volume of

rock. I break the problem into two steps, first estimating the effective conductivity of a

mixture of electrically conductive proppant and fluid and second, estimating the conduc-

tivity of a fractured volume of rock where the fractures are filled with the proppant-fluid

mixture. Having constructed a physical property model for a modest-sized fracture op-

eration, I then demonstrate feasibility of detecting EM signal sensitive to the fracture

using a well-established cross-well EM survey. At this stage, I neglect the influence of
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steel-cased wells. The aim of this chapter is to provide a reasonable estimate for the

conductivity of a fractured volume of rock; future lab studies may provide an improved

relationship between the conductivity of the proppant, fluid, host rock and their relative

concentrations.

The homogenization strategy taken in this chapter is based on established methods

in effective medium theory (Bruggeman, 1935) which have previously been consid-

ered for fractured rocks (Berryman and Hoversten, 2013). The main contributions of

this chapter are: algorithmic improvements to the effective conductivity calculation pre-

sented by Berryman and Hoversten (2013), and the discussion of the two-stage workflow

which allows various proppant-fluid mixtures to be considered (e.g. a fully conductive

proppant-pack, mixture of standard sand or ceramic proppant and conductive proppant).

1.4.2 Steel casings

The intention in this thesis is to advance our understanding of the physics of EM in set-

tings with steel-cased wells. This understanding can then be used to develop appropriate

approximations in order to reduce computational cost, and to help calibrate our expecta-

tions of the results of more advanced numerical techniques. To this end, I consider three

topics, each corresponding to one chapter in the thesis, to advancing our physical under-

standing. This thesis does not contend with the challenge of efficiently simulating the

DC or EM equations for settings with deviated or horizontal wells, nor do I consider set-

tings with multiple wells or surface infrastructure. In a field survey, these complexities

will need to be considered.

Chapters 3, 4, and 5 contend with some of the challenges of performing DC and

EM surveys in settings with steel-cased wells. In Chapter 3, I present a mimetic finite

volume implementation for simulating Maxwell’s equations at DC, in frequency and

14



in time, on cylindrically symmetric and 3D cylindrical meshes (which include an az-

imuthal discretization). Although cylindrically symmetric meshes are common in EM

modelling, cylindrical meshes which include an azimuthal discretization are not. A

cylindrical mesh conforms to the geometry of a vertical borehole and thus, can greatly

reduce the size of the mesh, and resultant cost of the computation, while still allowing

for significant refinement in the vicinity of the borehole. The purpose of this imple-

mentation is to facilitate investigation into the physical behavior of EM fields and fluxes

in this high-contrast setting. I consider two forms of validation: numerical validation

and validation of the physical behavior. For numerical validation, I compare results of

a forward simulation with independently developed codes (Haber et al., 2007; Commer

et al., 2015; Yang et al., 2016a). For validation of the physical behavior, I compare fea-

tures of the simulated currents, charges, and electric fields to the behavior expected from

the asymptotic analysis in Kaufman (1990); Kaufman and Wightman (1993) at DC, and

similarly, compare the behavior of the magnetic fields and fluxes in the presence of

conductive and permeable pipes with the lab studies and analytical work contained in

Augustin et al. (1989a) for inductive source frequency-domain electromagnetics.

Chapter 4 focuses on developing an understanding of the physics of casings in a DC

resistivity experiment. I start by considering the related application of casing integrity.

In a casing integrity experiment, the aim is to detect a flaw or break in the casing which

might be due to corrosion or failure under mechanical stresses. Wellbore integrity sur-

veys are typically conducted with wireline tools, but more recently, Wilt et al. (2018b)

introduced the idea of conducting a survey from the surface. This application provides

the opportunity to build a physical understanding about the behavior of the currents,

charges, and electric fields in a DC experiment with casing. I investigate factors that in-

fluence the feasibility of detecting a flaw, including the conductivity of the background
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and casing, depth to the flaw, and impact on the signal if the whole circumference or

only a portion of the circumference of the casing is compromised. I also consider the

location of the return electrode and its impact on the measured data. Many of the con-

cepts developed in this section inform survey design elements in the next section, which

considers DC resistivity survey for a conductive or resistive target adjacent to the well.

I look at survey design elements, including the impact of the source electrode location

on the resultant currents over the depth-interval of interest, and consider the impact of

parameters such as the conductivity of the target and whether the target is electrically

connected to the casing or not. The final topic in this chapter considers approximations

to the steel-cased well in order to reduce the computational cost of the forward model.

There is discrepancy among current literature as to whether the contrast between the

background and the casing is the important quantity to conserve (e.g. Um et al. (2015))

or if the product of the conductivity and the cross-sectional area of the casing should

be preserved (e.g. Swidinsky et al. (2013)). I compare both approaches to resolve this

question, demonstrate that the product of the cross-sectional area of the casing and its

conductivity is the important quantity to preserve in DC resistivity experiments, and

discuss implications of choosing an incorrect approximation.

Chapter 5 explores important aspects of electromagnetics in settings with steel cased

well. I begin by demonstrating the behavior of currents through time in time-domain

EM simulation with a conductive well. The geometry of the currents through time is

rather complex, even in this seemingly simple experiment. Building from this, I then

consider magnetic permeability and demonstrate how permeability alters the behavior

of the currents and in turn, discuss the impact permeability can have on data measured at

the surface. Finally, I revisit approaches for approximating steel cased wells developed

at DC and explore some of the subtleties that arise in EM experiments.
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1.4.3 Inversions for subsurface injections

Chapter 6 returns to the application of hydraulic fracturing and examines the inverse

problem for a fractured volume of rock. Using a DC resistivity experiment, I explore

both voxel-based and parametric strategies for extracting information about the frac-

tured volume of rock. These inversions demonstrate some of the challenges caused by

steel cased wells and their influence on the sensitivity. Finally, I show how effective

medium theory can be incorporated into the inversion and frame the inverse problem

as an inversion for fracture concentration. This alters the sensitivity and provides the

opportunity to incorporate a constraint on the volume of injected proppant and fluid.

1.4.4 Appendices

The thesis additionally includes 5 Appendices. Appendix A provides a listing of the

source code used to perform all of the examples shown in the thesis. Following this,

there are two technical appendices, Appendix B and C, which support content in Chap-

ters 2 and 6, respectively. Appendix D describes the open-source software used in this

thesis to simulate and invert Maxwell’s equations. The final appendix, Appendix E, dis-

cusses how the open-source software development practices adopted in this thesis and

the broader SimPEG community are similarly used for the development of interactive

educational resources for geophysics in the GeoSci.xyz project (https://geosci.xyz).

1.4.5 A note on reproducibility and dissemination

Although simulating and inverting data in settings with steel-cased wells has practical

applications, within the realm of geophysics, and even within EM geophysics, it is a

narrow topic. The value in focussing on specific applications is that each application

has its own subtleties and tangible details that must be worked through. In their own
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right, the discoveries that are made by working through these details are of value to

the application-at-hand. However, this does not have to be the limit of their impact. If

you choose to take the perspective that the problem-at-hand is an instance of a larger

class of research questions, this allows you to view the methods and software needed

to make incremental scientific discoveries as reusable components. It is then worth

the investment of effort to develop and refactor these pieces so that they are modular

building blocks that fit into a larger framework and are of use to a broader community.

This is the perspective I have sought to take as I conducted the research described in this

thesis.

The simulations and inversions build on and contribute to the SimPEG framework,

which is described in Cockett et al. (2015); Heagy et al. (2017a); Cockett (2017). Sim-

PEG is written in python and is open-source, licensed under the permissive MIT license.

Source code for all of the examples shown are also openly licensed and are available on

GitHub as a combination of python scripts and Jupyter notebooks. Each chapter has a

corresponding code-repository; Appendix A provides a summary of where these can be

accessed. My intention in providing all of the source-code is to be transparent about

the work completed; in addition, I hope these developments are of use and value to the

broader geophysics community.

1.5 Background: Electromagnetic geophysics

Before moving into the research content of the thesis, I will provide a brief overview of

the governing equations in electromagnetics and recommend Ward and Hohmann (1988)

and GeoSci.xyz (2018) for more in-depth discussion on the physics. For an overview of

how to numerically solve Maxwell’s equations, I refer the reader to Haber and Ruthotto

(2018).
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1.5.1 Governing equations

The equations which govern the physics of EM are Maxwell’s equations:

∇×~e =−∂~b
∂ t

∇×~h− ∂ ~d
∂ t

= ~j

(1.1)

where~e is the electric field (V/m),~b is the magnetic flux density (T),~h is the magnetic

field (A/m), ~d is the electric displacement (C/m2), ~j is the current density (A/m2). The

first equation is Faraday’s law; it describes how a time-varying magnetic flux gener-

ates rotational electric fields. The second equation is the Ampere-Maxwell equation

(Maxwell’s contribution was the addition of the displacement current term, ∂ ~d/∂ t). It

describes how currents generate rotating magnetic fields.

It is sometimes also convenient to consider Maxwell’s equations in the frequency

domain. Following Ward and Hohmann (1988), I use the eiωt Fourier transform conven-

tion, namely,

F(ω) =
∫

∞

−∞

f (t)e−iωtdt

f (t) =
∫

∞

−∞

F(ω)e−iωtdω

(1.2)

where capital letters denote functions expressed in the frequency domain and lower-

case letters denote functions expressed in the time-domain. In the frequency domain,

Maxwell’s equations are given by

∇×~E =−iω~B

∇× ~H− iω~D = ~J
(1.3)
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These partial differential equations are coupled through the constitutive relations

which relate the fields and fluxes through physical properties:

~J = σ~E

~B = µ~H

~D = ε~E

(1.4)

where σ is electrical conductivity (S/m), µ is magnetic permeability (H/m), and ε is the

dielectric permittivity (F/m). Electrical conductivity varies over many orders of magni-

tude; two examples on the extreme ends are the conductivity of air,∼ 10−8 S/m, and the

conductivity of steel, ∼ 106 S/m. The reciprocal of electrical conductivity is resistivity

(ρ = 1/σ ), which has units of Ωm. Throughout the thesis, resistivity and conductivity

will be used interchangeably. The value of magnetic permeability is often taken to be

that of free-space, µ0 = 4π × 10−7 H/m, in geophysical electromagnetic applications,

as the permeability of most earth-materials ranges from 1-10 µ0 (Telford et al., 1990).

The permeability of steel, however, is ∼ 100µ0; thus, for settings with steel-cased wells

the simplifying assumption that µ = µ0 cannot necessarily be justified. The value of

dielectric permittivity varies between the free-space value of ε0 = 8.85×10−12 F/m and

the dielectric permittivity of water, 80ε0 (Telford et al., 1990). Variations in dielectric

permittivity are relevant at high frequencies, such as those used in ground penetrating

radar (GPR) surveys (> 105 Hz), but in most geophysical electromagnetic surveys, late-

time or low frequencies are employed as the high-frequency signals attenuate rapidly in

conductive earth-materials. As such, the quasi-static approximation, which neglects dis-

placement currents (the ∂ ~d/∂ t-term in equation 1.1 and the iω~D term in equation 1.3),

is commonly adopted, and will be used throughout the thesis. Under the quasi-static
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assumption, Maxwell’s equations are given by:

∇×~e =−∂~b
∂ t

∇×~h = ~j
(1.5)

in time, and:

∇×~E =−iω~B

∇× ~H = ~J
(1.6)

in frequency.

In the electrostatic limit, the time-derivative terms vanish. Taking the divergence of

Ampere’s law, and recognizing that the electric field~e is curl-free and can therefore be

expressed as the gradient of a scalar potential φ , gives us the governing equations for

the DC resistivity problem:

∇ ·~j = I (δ (~r−~rs+)−δ (~r−~rs−))

~e =−∇φ

(1.7)

Here ~j is the current density, I is the magnitude of the source current, and~rs+ and~rs−

are the location of the positive and negative source electrodes, respectively. The electric

field and the current density are related through Ohm’s law (the first equation in equation

1.4), which we can invoke to reduce the two first-order partial differential equations in

equation 1.7 to a single, second order equation in φ :

∇ ·σ∇φ =−I (δ (~r−~rs+)−δ (~r−~rs−)) (1.8)
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This Poisson equation can be solved for the electric potential, φ , from which values

of the currents and electric fields can be directly computed. In addition to considering

the current density and electric fields, I will also present results in terms of charges

throughout the thesis. The charge density is related to the electric field through

∇ ·~e =
ρ f

ε0
(1.9)

1.5.2 Geophysical surveys

To generate data, we require that a source be used to excite a response and that receivers

measure the resultant fields and/or fluxes. Sources can be natural, plane-wave sources, as

in the case of the magnetotelluric method, or they can be controlled, man-made sources.

Broadly speaking, two categories of controlled sources exist: inductive sources and

grounded sources. Inductive sources consist of a loop of wire through which a time-

varying current is passed, this in turn generates time-varying magnetic fields which act

as the source fields, as shown in an airborne EM example in Figure 1.3. The time-

varying magnetic field created by these systems induces currents in the conductive earth

which, in turn, create secondary magnetic fields which can be measured at or above

the surface. Within reservoir settings, cross-well EM is a commonly applied inductive

source survey (Wilt et al., 1995).

Grounded sources require an electrical connection between the source and the earth.

Two electrodes are positioned on, or in, the ground, the positive electrode injects cur-

rent and a return electrode is a current-sink, as shown in Figure 1.4. In the electrostatic

limit, a grounded-source experiment is simply a DC resistivity experiment. Galvanic

currents flow through the earth and cause charges to build up at conductivity interfaces,

generating electric potentials which can be measured at the surface or within boreholes.
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Figure 1.2: The choice of whether to solve the EM equations in the time-domain
(TDEM) or the frequency domain (FDEM) depends upon the transmitter
waveform; a step-off-type waveform (left) lends itself to a solution approach
in the time domain and a harmonic signal (right) is typically addressed in the
frequency domain.

Figure 1.3: Time-domain inductive source experiment. (Left) a steady-state cur-
rent is passed through the transmitter loop, generating a primary magnetic
field. (Right) This current is shut-off, causing a change in magnetic flux.
The changing magnetic flux induces secondary currents in conductors, which
in turn create secondary magnetic fields that can be measured at receivers
above, on, or within the earth.
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Figure 1.4: (Left) Direct current resistivity experiment in which a steady-state cur-
rent is injected into the earth, and (Right) a grounded source electromagnetic
experiment which uses a time-varying source current.

Electromagnetics introduces a time-varying component. The time-varying current flow-

ing through the wire generates a time-varying primary magnetic field. This induces

vortex currents in conductive structures within the earth. Receivers can measure electric

fields, magnetic flux, or time-variations in the magnetic flux or some combination of

these.

Two things are needed to generate data that are sensitive to a target or structure

of interest. First, the source must be capable of getting EM energy to the target to

excite a response, and second, the response must reach the receivers with sufficient

amplitude to be measurable. A measurable signal is one which is (a) above the noise

floor of the receivers, and (b) comprises a significant percentage of the primary (that is,

the response with no target present). Numerical simulation of Maxwell’s equations is

a critical component for assessing feasibility of detecting a target, and is an essential

element of the inverse problem in which we aim to estimate a model from measured

data. Within the thesis, I discuss the machinery used to perform numerical simulations

in Chapter 3 and in Appendix D.
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1.6 Background: Geophysical Inversions

Once data have been collected, an inverse problem can be formulated. The goal of the

inversion is to extract information about the subsurface from the data. Formulating, im-

plementing and solving the inverse problem can be viewed as a workflow consisting of

inputs, implementation, and evaluation, as shown in Figure 1.5. The inputs are com-

posed of the data, the governing equations, and prior knowledge or assumptions about

the setting. In the case of the fracturing problem, this may include well-log resistivity

measurements which provide information about the background, knowledge of where

the fracture was initiated, and the volumes of proppant and fluid pumped to create the

fracture. The implementation consists of two broad categories: the forward simulation

and the inversion. The forward simulation is the means by which we solve the governing

equations given a model, and the inversion components evaluate and update this model.

I consider a gradient based approach, which updates the model through an optimization

routine. The output of this implementation is a model, which, prior to interpretation,

must be evaluated. This requires considering, and often re-assessing, the choices and

assumptions made in both the input and implementation stages (c.f. Oldenburg and Li

(2005); Haber (2014); Cockett et al. (2015)).

1.6.1 Formulating and solving the inverse problem

In this section, I provide a brief overview of geophysical inversions, adapted from Cock-

ett et al. (2015); for more detail and examples, the reader is referred to Oldenburg and

Li (2005); Cockett et al. (2015) as well as Appendix D for details specific to forward

and inverse modelling in electromagnetics.

The aim of a geophysical inversion is to use the collected data to extract information
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Figure 1.5: Overview of a geophysical inversion workflow. Adapted from Cockett
et al. (2015).

about the subsurface. In a given survey, a datum can be written as

Fi[m]+ εi = di (1.10)

where F [·] is the forward simulation operator; for an electromagnetic problem, it sim-

ulates Maxwell’s equations given a source and samples the relevant fields and fluxes

at the receiver locations. The physical properties of the subsurface are captured by the

variable m, which I refer to as the inversion model. The noise is described by εi, and

di is the observed datum. A survey usually includes multiple sources and receivers, re-

sulting in the observed data dobs = [d1, ...,dN ] and some estimate of their uncertainties

– often assumed to be Gaussian. If the noise is Gaussian, then an appropriate measure

of the data misfit is the l2-norm of the difference between the predicted data obtained
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through a forward simulation and the observed data, namely

φd(m) =
1
2
‖Wd(F [m]−dobs)‖2 (1.11)

Wd is a diagonal matrix whose elements are equal to Wdii = 1/εi where εi is an esti-

mated standard deviation of the ith datum. Ideally, the noise model should also capture

deficiencies in the ability of the forward simulation to accurately describe the physics. A

common choice in geophysical inversions is to assign a εi = f loor+%|di|. Percentages

are generally required when there is a large dynamic range of the data. A percentage

alone can cause great difficulty for the inversion if a particular datum acquires a value

close to zero, and therefore we include a floor.

In addition to a metric that evaluates the size of the misfit, it is also required that we

have a tolerance, φ∗d ; models satisfying φd(m)≤ φ∗d are considered to adequately fit the

data (Parker, 1994). If the data errors are Gaussian and we have assigned the correct

standard deviations, then the expected value of φ∗d ∼ N/2, where N is the number of

data. Note that the division by 2 is because the statement of the data misfit includes the

factor of 1/2 to simplify derivatives. When describing the “data-fit” of an inversion, it is

common to quote a χ-factor, which is defined as

φ
inv
d = χφ

∗
d (1.12)

Where φ inv
d is the final data-misfit in the inversion. Finding a model that has a misfit

substantially lower than this will result in a solution that has excessive and erroneous

structure, that is, we are fitting the noise. Finding a model that has a misfit substantially

larger than this will yield a model that is missing structure that could have been extracted

from the data (see Oldenburg and Li (2005) for a tutorial).
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The goal of an inversion is to estimate the earth-model, m from the data. In reality,

the physical property distribution of the subsurface is complex and estimating this model

from a finite number of data is an ill-posed problem, meaning no unique model explains

the data. Thus, in order to obtain a meaningful model from the data, assumptions and

additional information must be included. There are several mechanisms by which this

can be achieved. One of the most common is to include consideration of a model regu-

larization, φm in the inverse problem. This norm can penalize variation from a reference

model, spatial derivatives of the model, or some combination of these. For example, the

Tikhonov-style regularization function (Tikhonov and Arsenin, 1977) can be expressed

as

φm(m) =
αs

2
‖Ws(m−mref)‖2 +

αx

2
‖Wxm‖2 +

αy

2
‖Wym‖2 +

αz

2
‖Wzm‖2 (1.13)

The first term is referred to as the “smallness” and penalizes difference between the

inversion model and a reference model mref. The matrix Ws is a diagonal matrix; in

the simplest case it is the identity matrix. The remaining three terms are the first-order

smoothness in the x, y, and z directions; the matrices Wx, Wy and Wz approximate the

first order spatial derivatives in each direction. The α parameters weight the relative

contribution of each term to the regularization. Their values should consider the length-

scales in the problem (c.f. Oldenburg and Li (2005)); for a typical 3D problem αx =

αy = αz = 1 and αs is generally chosen to be several orders of magnitude smaller than

the smoothness weights.

To define the inverse problem, I take a deterministic approach to the inversion and

treat it as an optimization problem. Additional strong constraints on the model such as

upper and lower bounds (mu, ml) are also considered. The general form of the objective
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function I use combines the data misfit and regularization with a trade-off parameter, β ,

between them, giving a problem of the form

minimize
m

φ(m) = φd(m)+βφm(m)

such that φd ≤ φ
∗
d , ml ≤m≤mu

(1.14)

Since the value of β is not known a priori, the above optimization problem can be solved

at many values of β to produce a trade-off, or Tikhonov, curve (cf. Parker (1994)). An

optimum value, β ∗, can be found so that solving equation 1.14 with β ∗ produces a model

with misfit φ∗d . One approach to finding the value of β ∗ is to use cooling techniques

where the β is progressively reduced from some high value and the process stopped

when the tolerance is reached.

The optimization problem posed in equation 1.14 is non-linear for DC resistivity and

electromagnetic forward simulations requiring that iterative optimization techniques be

employed (c.f. Nocedal and Wright (1999)). Gradient-based techniques are commonly

employed. In particular, Gauss-Newton methods are effective in geophysical inversions.

To ease notation, I consider a more compact description of the model regularization, and

write our objective function as

φ(m) =
1
2
‖Wd(F [m]−dobs)‖2 +

β

2
‖Wmm‖2 (1.15)

Note that if mref = 0 and Wm = [αsW>s ,αxW>x ,αyW>
y ,αzW>z ]>, then the regularization

is equivalent to that stated in equation 1.13. The gradient is given by

g(m) = J[m]>W>d Wd(F [m]−dobs)+βW>
mWm(m) (1.16)
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where J[m] is the sensitivity or Jacobian. The components J[m]i j specify how the ith

datum changes with respect to the jth model parameter,

J[m] =
dF [m]

dm
(1.17)

I discuss the derivation of the sensitivity for time and frequency domain electromagnetic

problems in depth in Appendix D.

At the kth iteration, beginning with a model mk, we search for a perturbation δm that

reduces the objective function. Linearizing the forward simulation by Taylor expansion,

F [mk +δm]' F [mk]+J[mk]δm+O(δm)2 (1.18)

and setting the gradient equal to zero yields the standard Gauss-Newton equations

to be solved for the perturbation δm:

(J[mk]>W>d WdJ[mk]+βW>mWm)δm =−g(mk) (1.19)

The updated model is given by

mk+1 = mk + γδm (1.20)

where γ ∈ (0,1] is a coefficient that can be found by a line search. Setting γ = 1 is the

default and a line search is necessary if φ(mk+1)≥ φ(mk).

The iterative optimization process is continued until a suitable stopping criterion is

reached. Completion of this iterative process yields a minimization for particular value

of the trade-off parameter, β . If we are invoking a cooling schedule, and if the desired
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misfit tolerance is not yet achieved, β is reduced and the iterative numerical optimization

procedure is repeated.

The forward simulation, computation of the sensitivities, and inversion machinery

that I use throughout this thesis are implemented in the open source software package,

SimPEG (Cockett et al., 2015; Heagy et al., 2017a).
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Chapter 2

A physical property model for a

fractured volume of rock

2.1 Introduction

For electromagnetic methods to be sensitive to a propped, fractured volume of rock,

the fractured volume of rock must have physical properties which are distinct from the

background, host rock. For EM methods, this means the electrical conductivity, mag-

netic permeability, or dielectric permittivity of the fractured rock must be distinct. Di-

electric permittivity only plays a significant role when the frequency of the source is

sufficiently high, in the hundreds of kilohertz to megahertz range, as is used in ground

penetrating radar. Over the length-scales we need to consider for imaging fractures,

hundreds to thousands of meters, attenuation of the EM signals due to skin depth effects

make GPR impractical. Thus, we will work at lower frequencies, in the quasi-static

regime of Maxwell’s equations, and concern ourselves only with magnetic permeability

and electrical conductivity. The materials traditionally used as proppant, typically sand
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and ceramics, tend to have similar physical properties to the reservoir that they are being

pumped into, making it difficult to detect them on the scale of the reservoir. However, if

the proppant were made electrically conductive or magnetically permeable, for instance

by coating it with graphite or including magnetite particles, it may create a sufficient

physical property contrast that can be imaged using EM.

2.1.1 Proppant selection

To make the proppant electromagnetically distinct from the host rock, either the mag-

netic permeability or the electrical conductivity of the proppant could be targeted. Za-

wadzki and Bogacki (2016) provides an overview of possible magnetic proppants and

highlights some practical considerations for the choice of material. For any proppant or

additive, the constraints include: the mechanical strength of the particles must be able to

withstand the pressure of the closing fracture without crushing and clogging the fracture

pathways; the material should not be toxic or reactive; and the price-point should be

reasonable since high volumes are needed. Zawadzki and Bogacki (2016) also provide

a general classification of material types that could be considered: feedstock material,

materials that are mixed with conventional proppant or replace conventional proppant,

could include magnetite or steel particles. Both have a significant magnetic perme-

ability, however, magnetite crushes easily, and although steel has significant mechani-

cal strength, it is challenging to manufacture particles that are small enough (typically

< 2mm in diameter). They also consider ferrofluids, which contain microscopic fer-

romagnetic particles in suspension, and magnetic nanoparticles. Both are sufficiently

small and remain in suspension so clogging is less of a concern. However, the cost of

either material is quite significant and steps must be taken to reduce the environmental

hazard posed. This is particularly important for nanoparticles as they tend to be much
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more reactive than particles of the same material but larger in size (Zawadzki and Bo-

gacki, 2016). Continuing advances in nanotechnology has prompted some authors, e.g.

(Rahmani et al., 2014), to pursue analysis of the use of magnetic markers for mapping

hydraulic fractures using electromagnetic techniques.

Magnetic permeability of common materials tends to vary over an order of magni-

tude (Telford et al., 1990), while electrical conductivity of common materials can vary

over > 8 orders of magnitude. Comparatively, there are many more materials that are

electrically conductive than there are with a significant magnetic permeability. Materials

such as coke breeze, a hardened graphite coating applied to conventional proppants, have

been considered by numerous authors, as have a range of manufactured electrically con-

ductive proppants (Pardo and Torres-Verdin, 2013; Hoversten et al., 2015; Weiss et al.,

2015; Labrecque et al., 2016; Hu et al., 2018). For these reasons, I focus on electrically

conductive proppants and treat the fractured region of the reservoir as an electrically

conductive geophysical target.

2.1.2 Numerical Modelling

Numerical modelling is a critical component for assessing the feasibility of detecting a

fractured volume of rock with an electromagnetic survey. To run a simulation, we need

to discretize the modelling domain and represent the electrical conductivity of the earth

on the simulation mesh. It is important to consider the large range of scales at play when

considering fractures. The proppant which fills the fractures is micro-to-millimeters in

diameter. The fractures are millimeters thick and we are aiming to characterize a re-

gion of the reservoir which extends hundreds of meters from the injection point at the

well, tens to hundreds of meters in height, and tens of meters along the length of the

well-bore. Furthermore, the numerical simulation domain must extend far enough to
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Figure 2.1: Fracture complexity, from simple planar fractures on the left to com-
plex fracture networks on the right. The blue dot is the injection point in a
horizontal well. After Cipolla et al. (2008a).

satisfy boundary conditions (typically that the fields have sufficiently decayed). This

problem is exacerbated when one considers an inversion, where many forward simula-

tions must be performed. We cannot expect a method to be capable of imaging both

such a substantial volume of the subsurface while also having the resolution on the scale

of the proppant particles. Thus, we require a characterization of the bulk impact of the

conductive proppant within a fractured volume of rock. How we construct such a bulk

physical property model depends on the geometry and complexity of the induced frac-

tures, for instance, different approaches should be considered if the fracture is a simple

planar fracture versus a complex fracture network, as depicted in Figure 2.1 (c.f. Cipolla

et al. (2008b)).

To overcome these challenges, there are several approaches that may be taken; the

appropriate choice will depend upon both the fracture complexity and the purpose of the

simulation. If the fine-scale geometry of the fractures is defined, for example in a feasi-

bility study built from a synthetic fracture model, then numerical upscaling (Durlofsky,

2003; Caudillo-Mata et al., 2014; Caudillo-mata et al., 2016) or multiscale techniques

(Haber and Ruthotto, 2018) can be employed. In general, though, the fine-scale fracture

geometry is not known; only a handful of studies have “ground-truthed” the geometry

of an induced fracture by mining the fractured region (Cipolla et al., 2008a). Further-
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more, in an inversion, we cannot expect to resolve individual fractures. Rather, the aim

is to characterize the bulk impact due to electrically conductive fractures in a conductive

medium. To estimate a bulk conductivity, effective medium theory is one approach that

can be taken (c.f. Torquato (2002); Milton (2002); Berryman and Hoversten (2013)).

These methods assume that the composite material is composed of a collection of ran-

domly distributed spheres or ellipsoids (which may be preferentially aligned). The esti-

mated conductivity depends upon the conductivity of each of the materials, their shape,

and volume in the composite material. Looking forward to the inverse problem, these

methods have the added benefit that they provide a conduit for incorporating a-priori in-

formation such as expected primary-fracture orientation, and volumes of proppant and

fluid.

In this work, I adopt an effective medium theory approach. I take into account the

conductivity of the host rock, the fracturing fluid and the proppant. The main simpli-

fying assumption I employ is on the geometry of the fractures: I assume that they are

composed of a collection of ellipsoidal cracks which may be preferentially or randomly

aligned. The derivation I present follows similar derivations presented in the literature

(in particular, Torquato (2002)), here I include details for preferentially aligned fractures

resulting in a fully anisotropic conductivity.

2.1.3 Chapter overview

The purpose of this chapter is twofold: (1) I develop a workflow for estimating the

physical properties of a fractured volume of rock containing proppant and fluid that

have distinct electromagnetic properties from the host and (2) I assess if, using a com-

mercially available electromagnetic survey, we can detect the anomaly introduced by

the fracture in the data. All of the computations shown in this chapter are open-source
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and available as Jupyter notebooks (see Appendix A).

2.2 Homogenization workflow using effective medium
theory

In this approach, I treat the fractures as being composed of a collection of preferentially

(or randomly) oriented ellipsoidal cracks and based on the density of cracks within a

given volume of rock, construct an anisotropic description of the coarse-scale conduc-

tivity.

Effective medium approximations range from applying simple harmonic or arith-

metic averaging of conductivity values, for example when constructing a representative

voxel conductivity model from well-log measurements, to more involved analytic or

empirical relationships such as Archie’s law (Archie, 1942), which is commonly ap-

plied for estimating the conductivity of a fluid-filled rock. Although discovered em-

pirically, the simplest version of Archie’s law is one example of a differential effective

medium approximation which can be derived analytically. It assumes a background

matrix, and uses an incremental approach to constructing a homogenized conductivity

(c.f. Torquato (2002); Milton (2002)). However, for describing a fractured volume of

rock, differential effective medium approximations are not appropriate as they assume

that the rock-matrix is always connected (Torquato, 2002); in the composite material we

are considering, a single computational voxel may be intersected by a fracture, mean-

ing the rock matrix is not connected. The Maxwell-approximation (Maxwell, 1873) is

yet another effective-medium approximation. It again makes a distinction between the

background and the included phases, and assumes no interaction between inclusions.

I opt to consider self-consistent effective medium theory (SCEMT, also sometimes

referred to as the Coherent Potential Approximation, CPS, or Bruggeman mixing). This
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is an effective medium approach which makes no distinction between background and

included phases (e.g. see Torquato (2002)). Berryman and Hoversten (2013) similarly

suggest using self-consistent effective medium theory for fractured rocks where the frac-

tures are filled with fluid.

Milton (1985) demonstrated the physical realizability of SCEMT; he showed that

SCEMT is asymptotically the exact solution for the effective conductivity for fractal-

like composites that are self-similar at many scales. Physical realizability means that

the estimates given by SCEMT will always be within the Hashin-Shtrikman bounds

(Torquato, 2002); at a minimum, this provides confidence that the conductivity estimates

it provides are physically within a reasonable realm.

I construct the physical property model for a fractured volume of rock in two steps,

as shown in Figure 2.2. Given the conductivity of the fluid and proppant particles, I

estimate the effective conductivity, σ2, of a mixture of proppant and fluid. Next, I treat

the fracture as consisting of a collection of ellipsoidal cracks filled with the proppant-

fluid mixture. The ellipsoidal cracks may be preferentially aligned in a single or multiple

directions or they may be randomly oriented. In both cases, I use the self-consistent

effective medium theory, originally due to Bruggeman (1935) and further developed by

Landauer (1952, 1978). In the following sections, I develop the theory and demonstrate

its application for computing the effective conductivity of a proppant-fluid mixture as

well as a fractured volume of rock.

2.2.1 Summary of self-consistent effective medium theory

Chapter 18 of Torquato (2002) provides an overview of effective medium theory ap-

proaches. The discussion presented in this section follows their presentation, but ad-

ditionally considers preferentially aligned cracks, resulting in an anisotropic effective
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Figure 2.2: Constructing a physical property model for a fractured volume of rock
using effective medium theory. The electrical conductivity of the proppant
fluid mixture is given by σ2, the conductivity of the background reservoir
rock by σ1. Using effective medium theory, the coarse-scale anisotropic
conductivity, Σ∗ describing the fractured volume of rock is computed.

conductivity. Berryman and Hoversten (2013) present a similar overview but introduces

several simplifying assumptions tailored for estimating the effective conductivity of a

naturally fractured rock where the fractures are a relatively small concentration with

respect to the host rock. Here, I avoid such assumptions and work with the general for-

mulation with the aim of being suitable for calculating both the effective conductivity

of a proppant-fluid mixture as well as arbitrarily oriented fractures, each at potentially

high concentrations.

Each material, or phase, in the composite is assumed to be made up of spherical or

ellipsoidal particles with a known aspect ratio. Starting from the solution for a sphere

or an ellipsoid in a uniform electric field, the effective conductivity of a heterogeneous

medium is chosen to be the conductivity for which the average perturbation to the elec-

tric field – the difference between the electric field in the homogenized medium and the
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true conductivity model – is zero. That is,

N

∑
j=1

ϕ j
(
Σ
∗−σ jI

)
R( j,∗) = 0 (2.1)

where N is the number of different phases of materials, ϕ j is the volume fraction of the

j-th phase, and σ j is the electrical conductivity of the j-th phase. Σ∗ is the 3×3 effective

conductivity tensor, and I is the 3× 3 identity matrix. The matrix R( j,∗) is the electric

field concentration tensor, and depends both on the shape of the inclusions (ie. proppant

particles or cracks composing a fracture) and conductivity of the j-th phase, as well as

the effective conductivity Σ∗.

For spherical particles, the electric field concentration tensor R( j,∗) reduces to a

scalar, namely,

R( j,∗) =

[
I+

1
3

Σ
∗−1(σ jI−Σ

∗)

]−1

(2.2)

The resultant effective conductivity expression in 2.1 then reduces to a scalar equation.

If instead ellipsoidal inclusions are considered, the electric field concentration tensor

is given by

R( j,∗) =
[
I+AΣ

∗−1(σ jI−Σ
∗)
]−1

(2.3)

Where A is the de-polarization tensor. For simplicity, I will assume that we are working

with spheroids, either oblate (pancake-like) or prolate (needle-like) spheroids which

have two semi-axes that are equal. The general solution for spheroids with three distinct

semi-axes is presented in chapter 17 of Torquato (2002) and additionally discussed in

Berryman and Hoversten (2013). For a spheroid with semi-axes a1 = a2 = a and a3 = b
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that is aligned so that a3 lies along the z-axis, the depolarization tensor is given by

A =


Q

Q

1−2Q

 (2.4)

For prolate spheroids, with aspect ratio α = b/a > 1, Q is given by

Q =
1
2

(
1+

1
α2−1

[
1− 1

2χb
ln
(

1+χb

1−χb

)])
(2.5)

and for oblate spheroids (α = b/a < 1),

Q =
1
2

(
1+

1
α2−1

[
1− 1

χa
tan−1 (χa)

])
(2.6)

with

χ
2
a =−χ

2
b =

1
α2 −1 (2.7)

For preferentially aligned spheroids, the matrix A can be rotated as to align with the

spheroidal axis using standard coordinate rotations. If the spheroids are randomly ori-

ented, then we replace R( j,∗) with 1/3trace(R( j,∗)) in equation 2.1, and the effective

conductivity expression reduces to a scalar equation. Note, that for spherical inclusions,

Q = 1/3 and thus A reduces to a scalar equal to 1/3, showing that 2.3 is consistent with

2.2.

To solve for the effective conductivity, which is an implicit expression for Σ∗, we

rearrange equation 2.1 to

Σ
∗

N

∑
j=0

ϕ jR( j,∗) =
N

∑
j=0

ϕ jσ jR( j,∗) (2.8)
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and solve

Σ
∗ =

N

∑
j=0

ϕ jσ jR( j,∗)

(
N

∑
j=0

ϕ jR( j,∗)

)−1

(2.9)

using fixed-point iteration as R( j,∗) depends on Σ∗. Gradient-based optimization tech-

niques could additionally be considered to speed-up convergence, but as this is a simple

3×3 matrix equation and the fixed-point iteration is sufficiently fast for the problems I

consider. Note that the matrix inverse in 2.9 is a 3×3 matrix inverse and thus is cheap to

explicitly compute. The fixed-point iteration is performed until the recovered effective

conductivity converges within a predefined tolerance. Berryman and Hoversten (2013)

similarly use a fixed-point iteration to solve for the effective conductivity, however in

their formulation, they isolate Σ∗ by pulling out the first term in the summation in 2.1,

leading to an update of the form

Σ
∗ = σ0I− 1

ϕ0
R(0,∗)−1 N

∑
j=1

ϕ j(Σ
∗−σ jI)R( j,∗)

This is equivalent to equation 10 in Berryman and Hoversten (2013) with the sim-

plifications that R( j,∗) is replaced by R( j,0) under the assumption that the fractures com-

pose a small volume fraction of the fractured rock. In practice, this approach is suitable

for low concentrations of included phases, but can cause instability in the algorithm at

higher concentrations (it is possible for updates to be negative, and therefore unphysi-

cal); the authors noted challenges with algorithm convergence when the concentration

of inclusions exceeded 0.2.

In the following sections, I use this formulation to estimate the effective conductivity

of a range of proppant-fluid mixtures as well as for a fractured volume of rock.
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2.2.2 Step 1: Effective conductivity of a proppant-fluid mixture

In general, an induced fracture will be filled with two types or phases of material: prop-

pant and fluid. Often this mixture is referred to as a slurry. There are two principal types

of mixtures I will consider, one where all of the proppant is conductive, and the second

when there is a conductive filler added to a conventional proppant.

I start by considering the case of a proppant with uniform conductivity, for instance

if a conductive proppant, or coated proppant were used. I assume the conductivity of

the proppant is known; Appendix B includes a derivation for an effective conductivity

of two concentric spheres for the scenario where the conductivity of a proppant particle

and its coating are known independently.

For spherical proppant particles, the tensor-values in equation 2.1 reduces to a scalar-

valued equation, and the resulting effective conductivity is isotropic. In Figure 2.3, I

show the effective conductivity found using equations 2.1 and 2.2 for a proppant-fluid

mixture as the concentration of proppant in the mixture (ϕ) is varied. The conductivity

of the fluid is 3 S/m (similar to that of sea-water), and the proppant conductivity is varied

logarithmically from 10 S/m to 105 S/m. For example, coke-breeze, a graphite based

material has conductivities ∼ 3000 S/m, and other authors have considered the use of

contrast agents that reach conductivities of 105 S/m Weiss et al. (2016) and 106 S/m

Pardo and Torres-Verdin (2013), which are similar to the conductivity of steel.

When the volume fraction of proppant is less than 1/3, the conductivity of the fluid

is the dominant control on the resulting effective conductivity. Above a volume fraction

of 1/3, the conductivity of the proppant is the primary contributor to the effective con-

ductivity. The threshold between these behaviors is the percolation threshold. Below

it, the concentration of conductive material is low enough that it is quite likely discon-

nected, above 1/3, the concentration is high enough to start forming connected, elec-
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Figure 2.3: Effective conductivity of a proppant-fluid mixture for five different
proppant conductivities, each indicated in the legend. Panel (a) shows the
conductivity on a linear scale, and panel (b) uses a log-scale for the conduc-
tivity. Both panels use a linear scale for the volume fraction of the proppant
(ϕ). The conductivity of the fluid is 3 S/m, similar to the conductivity of
sea-water.

trically conductive pathways, causing a large jump in the effective conductivity of the

system. Although proppant typically composes 10% to 20% of the injected slurry, some

of the injected fluid leaks off into the surrounding geologic formation leaving proppant

concentration that can be 50% in the fractures Novotny (1977); Hoversten et al. (2015).

The conductivity of the fluid also changes the resultant effective conductivity of the

mixture. In Figure 2.4, I compare the effective conductivity for a mixture of conductive

proppant (panel (a): 103 S/m, panel (b): 104 S/m) and four different fluid conductivities,

ranging from 0.3 S/m to 300 S/m, as indicated in the legend. Although the conductivity
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Figure 2.4: Impact of the conductivity of the fluid on the effective conductivity of a
proppant-fluid mixture. Panels (a) and (c) show the effective conductivity for
mixtures with a 103 S/m proppant and panels (b) and (d) show the effective
conductivity for mixtures with a 104 S/m proppant. The conductivity of the
fluid is indicated by the legend.

of the fluid makes a significant difference at low proppant concentrations, above the

percolation threshold of 33%, the curves start to converge, particularly when the contrast

between the conductivity of the proppant and the fluid exceeds 3 orders of magnitude.

Thus, if the proppant can be made sufficiently conductive, its conductivity will be the

controlling factor on the effective conductivity of the slurry that remains in the fractures.

The previous examples considered a 2-phase mixture in which all of the proppant

was electrically conductive, however, depending on the setting and the cost to man-

ufacture conductive proppant, it may be mixed in with conventional, resistive prop-

pant. To examine this, I consider a proppant-fluid mixture composed of three materials,
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fluid (3 S/m), conventional, resistive proppant (10−6 S/m) and conductive proppant (105

S/m). The effective conductivities of proppant-fluid mixtures for five different proppant

blends, where the relative concentration of the conductive proppant is varied from 0%

to 100% of the proppant phase, are shown in Figure 2.5. Again, we see the impacts

of the percolation threshold; when the conductive proppant composes less than 1/3 of

the proppant pack, the effective conductivity is dominated by the resistive proppant.

When the conductive proppant composes more than 1/3 of the proppant pack, we see

that with increasing proppant concentration, the effective conductivity of the mixture is

dominated by the conductive proppant. However, the percolation threshold for each of

these mixtures is different. This is because it is the volume-fraction of the conductive

proppant in the three-phase mixture, not the ratio of proppant to fluid, that determines

when connected, electrically conductive pathways may be formed.

Another factor influencing the effective conductivity of a mixture is the shape of

the materials. For the previous examples, the proppant was assumed to be composed

of spherical particles. If elongated, conductive particles were included, we expect that

connected, conductive pathways would form at lower concentrations. For instance, con-

sider a 3 phase proppant mixture consisting of fluid (3 S/m), resistive, spherical proppant

(10−6 S/m), and elongated, electrically conductive proppant (105 S/m). Assume that the

ratio of conductive to resistive proppant is 0.25 (below the percolation threshold for

spherical particles). If the elongated particles (prolate spheroids) are randomly oriented,

then the resulting effective conductivity is isotropic, meaning it is independent of the

directions of the inducing field and resulting current. The conductivity predicted by ef-

fective medium theory for mixtures with five different aspect ratios is shown in figure

2.6. The aspect ratio of the conductive particles influences the concentration at which

we observe percolation. The more elongated the particles, the lower the concentration
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Figure 2.5: Effective conductivity of a 3-phase proppant-fluid mixture consisting
of resistive proppant (10−6 S/m), conductive proppant (105 S/m) and saline
fluid (3 S/m). The legend indicates the percentage of conductive proppant in
the proppant mixture and the x-axis is the volume fraction of proppant in the
proppant-fluid mixture.

at which percolation occurs.

In summary, there are several approaches that can be taken to create an electrically

conductive proppant-fluid mixture. Spherical proppant particles which are themselves

electrically conductive or coated with a conductive material can comprise the entire

proppant pack. If conductive proppant is mixed with a conventional, resistive sand or

ceramic particles, then at least 1/3 of the proppant mixture needs to be comprised of

electrically conductive particles to create a conductive mixture. This ratio can be re-

duced if elongated particles, such as metallic strips, are used in the proppant mixture.
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Figure 2.6: Effective conductivity of a 3-phase proppant-fluid mixture consisting
of resistive proppant (10−6 S/m), conductive proppant (105 S/m) and saline
fluid (3 S/m). The proppant mixture contains 25% conductive proppant and
75% resistive proppant. The legend indicates the aspect ratio of the elongated
conductive proppant filler (prolate spheroids).

2.2.3 Step 2: Effective conductivity of fractured volume of rock

The next step is to estimate the effective conductivity of a fractured volume of rock.

I again employ self-consistent effective medium theory as described in section 2.2.1

and consider the induced fractures to be composed of spheroidal cracks. Based on the

analysis in the previous section, I consider a proppant-fluid mixture that has a conduc-

tivity of 2500 S/m. This could be achieved with spherical proppant particles having a

conductivity of 104 S/m in a 50/50 mixture with water of 3 S/m (see Figure 2.3). Sim-

ilar conductivities could be achieved with elongated particles mixed with conventional
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proppant as shown in Figure 2.6. Lab measurements conducted by Zhang et al. (2016)

showed that a proppant-fluid mixture composed of petroleum coke particles and seawa-

ter which fills the pore-spaces reached a conductivity of ∼ 1000 S/m at 37.6% porosity.

With further increase in confining pressure (thus reducing porosity and increasing the

concentration of proppant), the observed conductivities range from 3000− 5000 S/m.

These results provide further confidence that conductivities > 1000 S/m for the mixture

filling the hydraulic fractures are attainable.

For the following example, I will assume that the conductivity of the host-rock is

0.1 S/m. There are two scenarios I will consider. In the first, I assume the cracks are

preferentially aligned, with the thin dimension of the oblate spheroid oriented along the

x-axis, as shown in Figure 2.7. In this case, the recovered effective conductivity will be

anisotropic, described by a diagonal matrix with entries σy = σz ≥ σx :

Σ
∗ =


σx

σy

σz

 (2.10)

Note that arbitrary, non-axes aligned, orientations can be considered; all that is required

is that the depolarization tensor described in 2.4 is rotated to the desired orientation.

To estimate the effective conductivity of a fractured volume of rock, we must also

specify the aspect ratio of the cracks. In estimating this, assume a fractal-like approxi-

mation, where the aspect ratio of the fracture is representative of the aspect ratio of the

cracks that compose it. For example, if the fracture extends 50m laterally and has a

width on the order of millimeters, then the aspect ratio is on the order of 10−5. In Figure

2.8, I have plotted the diagonal elements of the effective conductivity for five different

aspect ratios, indicated in the legend, as a function of the volume fraction of conductive
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Figure 2.7: Oblate spheroid with normal along the x-axis. The y and z semi-axes
are equal, and aspect ratio is α = b/a < 1.

fractures in the rock volume sampled. Panel (a) shows the full range from 0 ≤ ϕ ≤ 1

and panel (b) zooms in to lower concentrations (0 ≤ ϕ ≤ 0.01) which are more repre-

sentative of a fractured rock volume, on the scale that we will consider for numerical

modelling (e.g. if 10 fractures, each with 3mm width intersect a 10m × 10m × 10m

cell, then ϕ = 0.003). In each of the plots, I have also included the upper and lower

Wiener bounds (see equation 21.14 in Torquato (2002); originally attributed to Wiener

(1912)):

σ
+
W =

N

∑
j=0

ϕ jσ j

σ
−
W =

(
N

∑
j=0

ϕ j

σ j

)−1 (2.11)

in the black dashed lines; these can be understood as similar to parallel and series circuit
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approximations to the conductivity. In the black dash-dot lines are the upper and lower

Hashin-Shtrikman bounds for 2-phase anisotropic media in the black dash-dot (see equa-

tions 21.25 and 21.26 in Torquato (2002), which is the anisotropic generalization of the

isotropic bounds derived by Hashin and Shtrikman (1962)):

σ
+
HS = σ

+
W I+(σ1−σ0)

2Ã ·
[

σ1I+
σ1−σ0

ϕ0
Ã
]−1

σ
−
HS = σ

+
W I+(σ1−σ0)

2Ã ·
[

σ0I+
σ0−σ1

ϕ1
Ã
]−1 (2.12)

For σ1 ≥ σ0 and

Ã =−ϕ0ϕ1A1 (2.13)

where A1 is the depolarization tensor for the ellipsoidal cracks given by equation 2.4.

For the bounds shown in the plot, the smallest aspect ratio, 10−5 was used to calculate

the depolarization tensor. For the very significant aspect ratios used here, the Hashin-

Shtrikman bounds are nearly identical to the Wiener bounds. Each component of the

recovered effective conductivity should fall within these bounds.

For aspect ratios less than 10−3, we see very little distinction between the estimate of

σy,z and σx; the difference between the recovered effective conductivities for the aspect

ratios of 10−4 and 10−5 is less than 1% for all values of ϕ . This indicates that for suf-

ficiently thin cracks, the exact aspect ratio is not critical for estimating a representative

conductivity of the fractured rock.

At the concentrations we expect to be observing in a hydraulic fracturing scenario

(Figure 2.8b), we see that the effective conductivity along the normal of the fractures

coincides with the lower bounds and remains nearly identical to the conductivity of the

host rock for all aspect ratios shown, as may be expected. For the components of the

conductivity along the cracks (σy,z), the effective conductivity mimics the behavior of
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Figure 2.8: Effective, anisotropic conductivity for a fractured rock with spheroidal
cracks whose normal is oriented along the x-axis for five different aspect ra-
tios, indicated by the legend. The black dashed lines show the upper and
lower Wiener Bounds, which are identical to the volume-weighted arith-
metic and harmonic averages of the conductivity of the rock (0.1 S/m)
and proppant-fluid mixture (2500 S/m). The black dash-dot lines are the
anisotropic Hashin-Shtrikman upper and lower bounds computed using an
aspect ratio of 10−5 in equation 2.12. Note that the upper-bound coencides
with σy,z for small aspect ratios (e.g. the blue line). Panels (a) and (c) show
the full range 0 ≤ ϕ ≤ 1, and panels (b) and (d) zoom in to 0 ≤ ϕ ≤ 0.005.
Note that in (b), any curve that deviates from the lower bound is the σy,z
component; all σx values lie on the lower bound for the concentration range
shown.
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the upper bounds. These components of the conductivity are similar to the behavior

expected from a parallel-circuit approximation.

For settings where planar fractures are expected, a single orientation of the inclu-

sions produces similar behavior to what would be expected if we performed simple

series-and-parallel circuit approximations to the components perpendicular to and along

the fracture. However, if more complex fracture networks are expected, it may be more

appropriate to assume the cracks are randomly oriented. In this case, an isotropic con-

ductivity describes the fractured volume of rock. Using the same aspect ratios shown in

Figure 2.8 above, I compute the isotropic effective conductivity as a function of volume

fraction of fractures in Figure 2.9. For reference, the conductivity along the fractures,

σy,z from Figure 2.8, is plotted in semi-transparent lines. As in the previous figure, panel

(a) shows the full range from 0≤ ϕ ≤ 1 and panel (b) zooms in to lower concentrations:

0≤ ϕ ≤ 0.01.

Again, we see that for aspect ratios smaller than 10−3 there is little difference be-

tween the estimated effective conductivity of the fractured rock volume. The estimate

of the effective conductivity largely follows the behavior of the upper bounds, while the

magnitude of the effective conductivity is slightly reduced as compared to the compo-

nent of the conductivity along the fractures in the anisotropic case. If we consider a

10 m × 10 m × 10 m computational cell with fractures having an aspect ratio of 10−5

and composing 0.3% of the total volume (e.g. 10 fractures, each with 3 mm width), we

obtain σy = σz = 5.2 S/m, σx = 0.1 S/m for the case where the cracks are preferentially

aligned while for the case where the cracks are randomly oriented, we obtain σ∗ = 3.5

S/m.

Due to the large contrast between the conductive fractures and the host rock, the

conductivity of the background has marginal effect on σy,z in the anisotropic example
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Figure 2.9: Effective, isotropic conductivity for a fractured rock with randomly
oriented spheroidal cracks for five different aspect ratios, indicated by the
legend. The black dashed lines show the upper and lower Wiener Bounds,
which are identical the volume-weighted arithmetic and harmonic averages
of the conductivity of the rock (0.1 S/m) and proppant-fluid mixture (2500
S/m).The black dash-dot lines are the isotropic Hashin-Shtrikman upper and
lower bounds. The semi-transparent dotted lines show σy,z from Figure 2.8
Panels (a) and (c) shows the full range 0 ≤ ϕ ≤ 1, and panels (b) and (d)
zooms in to 0≤ ϕ ≤ 0.01.

or on σ∗. If we consider the example with ϕ = 0.003, as before, and instead use a

background conductivity of 0.01 S/m, the effective anisotropic conductivity is σy =

σz = 5.1 S/m, σx = 0.01 S/m and for the isotropic case σ∗ = 3.4 S/m. However, if the

background is made more conductive and the contrast between the conductive fractures

and the host reduced, we do see some impact. Setting the background to 1 S/m for this

same example, we obtain σy = σz = 6.4 S/m, σx = 1 S/m for the anisotropic case and
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σ∗ = 4.7 S/m for the isotropic case.

2.2.4 Summary

To construct an approximate conductivity model of a fractured volume of rock, I use

a two step process: first, I estimate the effective conductivity of a mixture of proppant

and fluid that fills the fractures and second, I estimate the effective conductivity of a

fractured volume of rock.

In the section that follows, I will compare numerical simulations of a crosswell elec-

tromagnetic survey for both anisotropic and isotropic conductivity models of a fractured

volume of rock, representing planar and complex fracture networks, respectively.

2.3 Feasibility of EM for detecting fractures

I now examine the feasibility of detecting a conductive, fractured region of a reservoir

with an electromagnetic survey. The purpose of this section is to demonstrate detectabil-

ity for a simple model of a fracture with existing electromagnetic imaging techniques.

The survey I consider is a frequency-domain crosswell electromagnetic survey. In a

crosswell EM survey a transmitter coil, which produces a time-varying magnetic field at

a single frequency is positioned inside of one well. Time-varying magnetic fields induce

time-varying currents in the earth whose distribution and magnitude depends upon the

conductivity of the earth. These currents in turn generate secondary magnetic fields. In a

second well, an array of receiver induction coils, which measure the time rate-of-change

of the magnetic flux (db/dt, in units of volts), are positioned. The measured voltages

can be converted to magnetic field values. To conduct a survey, the position of the re-

ceivers is fixed and the transmitter is moved at a fixed rate along the borehole (typically

3-5 meters per minute). The receivers are repositioned, and the process repeated (Wilt
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et al., 1995). Both the transmitter and receivers are oriented along the axis of the bore-

hole; for vertical wells, this means the transmitter is a vertical magnetic dipole, and the

receivers measure the z-component of the magnetic field. Since its development, cross-

well surveys have been used for a range of reservoir imaging problems for enhanced

oil recovery including monitoring steam injections (Wilt et al., 1997) and water floods

(Wilt et al., 2012), including a survey conducted in a pair of horizontal wells (Marsala

et al., 2015; Marsala* et al., 2015). In this section, I consider a crosswell survey and

examine the feasibility of detecting signal due to a fractured volume of rock.

The setup I use is shown in Figure 2.10; a crosswell EM survey conducted in a

pair of horizontal wells that are spaced 500 m apart, as shown in Figure 2.10. The

transmitter is oriented along the x-axis and positioned in the same well as where the

fracture stimulation was performed; the receivers are in the offset well and measure the

real and imaginary parts of the x-component of the magnetic field. In the numerical

modelling, I assume that the wells are sufficiently deep so that the background can

be treated as a whole-space. I do not consider steel-cased boreholes in this example

and instead assume that the boreholes are open-holes or cased with fibreglass casing

as in Wilt et al. (2012). The additional complications due to steel cased wells will be

discussed in the following three chapters.

Most hydraulic fracture operations involve injecting ∼800 m3 to 4000 m3 (5000 to

25000 bbls) of proppant-fluid slurry into the reservoir rock, with the proppant compris-

ing 10% to 20% of this mixture (Hoversten et al., 2015). In this example, I consider a

fracture that is on the lower-end, with an 800 m3 slurry comprised of 15% proppant by

volume. A significant portion of the fluid typically leaks off into the surrounding forma-

tion (Novotny, 1977), so I will assume that the final mixture filling the cracks contains

50% fluid and 50% proppant. This gives a total fracture volume of 240 m3. To distribute
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Figure 2.10: Setup for the crosswell electromagnetic simulation. Ten fractures,
each with 3 mm thickness and 50 m radius are spaced over a 10 m interval
along the injection well. The dipole transmitter is positioned inside of the
injection well and oriented along the x-axis. Receivers are located in an
offset well and measure the real and imaginary parts of the x-component of
the magnetic field.

this volume, I assume that 10 fractures, each with 3 mm width are positioned within a 10

m interval along the well. Conserving volume and assuming circular fractures gives us a

50 m radius for each of the 10 fractures; I work with circular fractures that are centered

along the borehole, as the resultant model is cylindrically symmetric. This significantly

reduces the computational cost of the simulation.

For the physical properties, I treat the background as a whole-space with a conduc-

tivity of 0.1 S/m. Within the fractures, I use a two-phase proppant-fluid mixture, where

all of the proppant is assumed to be spherical particles as in Figure 2.3. I use a prop-

pant conductivity of 104 S/m and a fluid conductivity of 3 S/m; in a 50-50 mixture, the
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effective conductivity computed using SCEMT, is 2500 S/m. To estimate the effective

conductivity of the fractured volume of rock, I consider two scenarios: (1) the fractures

are preferentially aligned and I estimate an anisotropic effective conductivity as in Fig-

ure 2.8; and (2) the fractures are sufficiently complex that I can approximate them as a

collection of randomly oriented cracks, as in Figure 2.9. I estimate a single conductivity

for the 10 m wide cylinder with 50 m radius that encloses the fractures. Within this

region, the fractures comprise 0.3% of the total volume. To estimate the aspect ratio, I

assume that the shape of the large fracture, with 3 mm width and 50 m radius (100 m di-

ameter) is representative of the shape of the cracks that comprise it, thus the aspect ratio

is 3×10−5. The estimated effective conductivity for the anisotropic case is σy = σz = 5

S/m parallel to the fractures and σx = 0.1 S/m perpendicular to the fractures. For the

second scenario, with randomly oriented cracks, the estimated isotropic conductivity is

3 S/m.

In terms of survey parameters, the dipole-moment of the transmitter is 5000 Am2

and I use a transmitter frequency of 100 Hz, consistent with values stated in Wilt et al.

(1995); Wilt (2003). For a signal to be detectable, we require that: (a) the secondary

signal, that is, the difference between the data measured with and without the fractures

present, be above the noise floor of the receivers, and (b) that the secondary signal com-

prises a significant percentage of the primary (model without the fractures). Marsala*

et al. (2015) demonstrated noise levels of 0.5×10−5 nT and 0.5% repeatability between

data profiles for a cross-well survey conducted between two open-hole horizontal wells,

citing that “this was the lowest noise ever recorded with a crosswell EM system.” Using

this as an upper-bound on our expectations, I adopt a more conservative noise level of

1× 10−4 nT and select a percent-threshold of 5%. Thus, I consider signal above 10−4

nT and comprising > 5% of the primary as detectable.

58



Figure 2.11 shows the simulated secondary magnetic field data computed for (a) the

anisotropic model and (b) the isotropic model at 100 Hz. The top row shows the real

component and the bottom row shows the imaginary component. The x-axis shows the

transmitter location relative to the center of the fracture, the y-axis shows the receiver

location, and the color indicates the secondary magnetic field with respect to a 0.1 S/m

whole-space. Regions of the plot which are colored, and are not covered by the semi-

transparent overlay, indicate signal which is both above the noise floor and comprises a

significant percentage of the primary.

As might be expected, when the transmitter and receiver are centered with the frac-

ture, the secondary signal reaches its maximum amplitude in both the real and imag-

inary components. The anisotropic model produces stronger signals; the geometry of

the survey is perfectly coupled to the radial components of the conductivity (σy and

σz) as the resultant currents and electric fields are purely azimuthal in orientation. An

isotropic simulation using σ = 5 S/m produces identical results to the anisotropic model

for this survey geometry. Interestingly, the region over which data is measurable differs

between the real and imaginary components. The real component is measurable over

a larger range of transmitter positions, while the imaginary component is measurable

over a larger range of receiver locations. The partition of EM energy into the real and

imaginary components is a function of the conductivity of the medium as well as the

frequency. For example, if I increase the frequency to 200 Hz, the amplitude of the

imaginary component is larger than the real, and it is measurable over a larger set of

source-receiver combinations, as shown in Figure 2.12.

For the simple setup shown here, there are a significant number of data that can be

collected in a cross-well survey which are sensitive to both the anisotropic and isotropic

fracture models. In both the 100 Hz and 200 Hz surveys, the extent over which either or
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Figure 2.11: Simulated secondary magnetic field data for: (a) the anisotropic frac-
ture model and (b) the isotropic fracture model, in a crosswell survey con-
ducted at 100Hz. The top row shows the real component and the bottom
row shows the imaginary component of the measured magnetic flux (nT).
In all plots, the x-axis shows the transmitter location relative to the center of
the fracture, the y-axis shows the receiver location, and the color indicates
the secondary magnetic flux with respect to a 0.1 S/m whole-space. Values
beneath the noise floor of 10−4 nT have been masked and display as white.
To display the signal as a percentage of the primary, we have included a
semi-transparent overlay between 0% and 5%; low percentage values plot
as darker greys.
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Figure 2.12: Simulated secondary magnetic field data for: (a) the anisotropic frac-
ture model and (b) the isotropic fracture model, in a crosswell survey con-
ducted at 200Hz. The top row shows the real component and the bottom
row shows the imaginary component of the measured magnetic flux (nT),
similar to Figure 2.11
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both of the real and imaginary components of the data are above the noise floor and com-

prise a significant percentage of the primary field spanned ∼100 m for the transmitter

location and > 800 m for the receiver locations. These results provide confidence that

EM is a potentially diagnostic tool for characterizing the propped region of a reservoir.

Naturally, the success, or not, of EM in a given setting will depend upon the background

conductivity, volume and conductivity of the proppant and fluid, as well as noise con-

ditions in the field. Thus, forward modelling tailored to the setting is required to assess

feasibility.

2.4 Conclusion

The large range of scales involved in describing a propped, fractured volume of rock

as a geophysical target for an electromagnetic survey poses a challenge for performing

numerical simulations. I approached this problem by using effective medium theory

to estimate the electrical conductivity of a fracture volume of rock in two steps. First,

I estimated the conductivity of a slurry containing proppant and fluid. I demonstrated

several approaches for creating an electrically conductive slurry, including using con-

ductive particles (or particles coated with a conductive material) as the proppant or in-

cluding conductive particles, which might be elongated to enhance the conductivity at

lower concentrations. General agreement with the values published in the laboratory

experiment by Zhang et al. (2016) gives confidence that the estimates produced using

effective medium theory are representative of the conductivities that can be achieved; a

more rigorous comparison would require control on the conductivity of each of the con-

stituents. In the second step, I estimated the effective conductivity of a fractured volume

of rock by assuming that the fracture is composed of a collection of ellipsoidal cracks.

These cracks may be preferentially oriented, if simple planar fractures are expected, or
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randomly oriented if a more complex fracture network is anticipated.

Using this approach, I developed isotropic and anisotropic electrical conductivity

models considering proppant and fluid volumes that are representative of current hy-

draulic fracture operations and simulated a crosswell EM survey. In this example, the

fractured volume was detectable if I assume noise estimates that have demonstrated to

be achievable in horizontal wells for a waterflood monitoring experiment. This pro-

vides evidence that EM has the potential to be a suitable method for characterizing the

propped region of a hydraulically fractured reservoir.

The examples examined here neglect the effects of steel-cased well on EM signals.

In the vast majority of settings where hydraulic fracturing is conducted, the wells are

cased with steel, and therefore, this complication needs to be addressed. For induction

problems, the concern is attenuation of the electromagnetic signals, as eddy currents

may be induced in the steel cased well. However, there is increasing interest in using

the steel casing as an “extended electrode” to help deliver current to depth. In the fol-

lowing chapters, I develop a strategy for including steel cased wells in the EM numerical

simulations and examine their influence on EM signals.
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Chapter 3

Modelling electromagnetics on

cylindrical meshes

A number of geophysical electromagnetic (EM) problems lend themselves to cylindri-

cal geometries. Airborne EM problems over a 1D layered earth or borehole-logging

applications fall into this category; in these cases cylindrical modelling, which removes

a degree of freedom in the azimuthal component, can be advantageous as it reduces

the computation load. This is useful when running an inversion where many forward

modellings are required, and it is also valuable when exploring and building up an un-

derstanding of the behaviour of electromagnetic fields and fluxes in a variety of settings,

such as the canonical model of an airborne EM sounding over a sphere, as it reduces

feedback time between asking a question and visualizing results (e.g. Oldenburg et al.

(2017)).

Beyond these simple settings, there are also a range of scenarios where the footprint

of the survey is primarily cylindrical, but 2D or 3D variations in the physical property

model may be present. For example if we consider a single sounding in an Airborne EM
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survey, the primary electric fields are rotational and the magnetic fields are poloidal,

but the physical property model may have lateral variations or compact targets. More

flexibility is required from the discretization to capture these features. In this case, a 3D

cylindrical geometry, which incorporates azimuthal discretization may be advantageous.

It allows finer discretization near the source where we have significant sensitivity and

the fields are changing rapidly. Far from the source, the discretization is coarser, but

it still conforms to the primary behaviour of the EM fields and fluxes and captures the

rotational electric fields and poloidal magnetic flux.

In other cases, the most significant physical property variations may conform to a

cylindrical geometry, for example in settings where vertical metallic well-casings are

present, or in the emerging topic of using geophysics to “look ahead” of a tunnel boring

machine. Of particular interest to the thesis is understanding the behavior of electromag-

netic fields and fluxes in the presence of steel-cased wells. In addition to the hydraulic

fracturing application, understanding EM in settings with steel-cased wells is of interest

across a range of applications, from characterizing lithologic units with well-logs (Kauf-

man, 1990; Kaufman and Wightman, 1993; Augustin et al., 1989a), to identifying ma-

rine hydrocarbon targets (Kong et al., 2009; Swidinsky et al., 2013; Tietze et al., 2015),

to mapping changes in a reservoir induced by hydraulic fracturing or carbon capture

and storage (Pardo and Torres-Verdin, 2013; Börner et al., 2015; Um et al., 2015; Weiss

et al., 2016; Hoversten et al., 2017; Zhang et al., 2018). Carbon steel, a material com-

monly used for borehole casings, is highly electrically conductive (106−107 S/m) and

has a significant magnetic permeability (≥ 100 µ0) (Wu and Habashy, 1994); it there-

fore can have a significant influence on electromagnetic signals. The large contrasts in

physical properties between the casing and the geologic features of interest, along with

the large range of scales that need to be considered to model both the millimeter-thick
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casing walls while also capturing geologic features, provide interesting challenges and

context for electromagnetics in cylindrical geometries.

In this chapter, I introduce an approach and associated open-source software im-

plementation for simulating Maxwell’s equations over conductive, permeable models

on 2D and 3D cylindrical meshes. The software is written in Python (Van Rossum

and Drake Jr, 1995) and is included as an extension to the SimPEG ecosystem (Cock-

ett et al., 2015); Appendix D provides a description of the SimPEG electromagnetic

module. Within the context of current research connected to steel-cased wells, my aim

with the development and distribution of this software is two-fold: (1) to facilitate the

exploration of the physics of EM in these large-contrast settings, and (2) to provide a

simulation tool that can be used for testing other EM codes. The large physical prop-

erty contrasts in both conductivity and permeability means the physics is complicated

and often non-intuitive; as such, we prioritize the ability of the researcher to access and

visualize fields, fluxes, and charges in the simulation domain. This is particularly useful

when the software is used in conjunction with Jupyter notebooks which facilitate explo-

ration of numerical results (Perez et al., 2015). As the mesh conforms to the geometry

of a vertical borehole, a fine discretization can be used in its vicinity without resulting

in a onerous computation. This provides the opportunity to build an understanding of

the physics of EM in settings with vertical boreholes prior to moving to settings with

deviated and horizontal wells. I demonstrate the software with examples at DC, in the

frequency domain, and in the time domain. Source-code for all examples is provided

as Jupyter notebooks as outlined in Appendix A; they are licensed under the permissive

MIT license with the hope of reducing the effort necessary by a researcher to compare

to or build upon this work.

This chapter is organized in the following manner. In section 3.1, I introduce the
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governing equations, Maxwell’s equations, and describe their discretization in cylin-

drical coordinates. I then compare our numerical implementation to the finite element

and finite difference results shown in (Commer et al., 2015) as well as a finite volume

OcTree simulation described in (Haber et al., 2007). Section 3.2 contains numerical ex-

amples of the DC, frequency domain EM, and time domain EM implementations. The

two DC resistivity examples (sections 3.2.1 and 3.2.2) are built upon the foundational

work in (Kaufman, 1990; Kaufman and Wightman, 1993) which use asymptotic analy-

sis to draw conclusions about the behavior of the electric fields, currents, and charges

for a well where an electrode has been positioned along its axis. The final two examples,

in sections 3.2.3 and 3.2.4, consider a frequency domain experiment inspired by (Au-

gustin et al., 1989a). These examples demonstrate the impact of magnetic permeability

on the character of the magnetic flux within the vicinity of the borehole and discusses

the resulting magnetic field measurements made within a borehole.

3.1 Numerical tools

The governing equations under consideration are Maxwell’s equations. I provided an

overview in Section 1.5. This section is meant to provide a brief review and set the

context for what is required of our numerical tools.

Under the quasi-static approximation, Maxwell’s equations are given by:

∇×~e =−∂~b
∂ t

∇×~h−~j =~se

(3.1)

where ~e is the electric field,~b is the magnetic flux density,~h is the magnetic field, ~j is

the current density and ~se is the source current density. Maxwell’s equations can also
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be formulated in the frequency domain, using the eiωt Fourier Transform convention

(equation 1.2), they are

∇×~E =−iω~B

∇× ~H− ~J =~Se

(3.2)

The fields and fluxes are related through the physical properties: electrical conductivity

(σ , or its inverse, resistivity ρ) and magnetic permeability (µ), as described by the

constitutive relations

~J = σ~E

~B = µ~H
(3.3)

At the zero-frequency limit, we also consider the DC resistivity experiment, described

by

∇ ·~j = I (δ (~r−~rs+)−δ (~r−~rs−))

~e =−∇φ

(3.4)

where I is the magnitude of the source current density,~rs+ and~rs− are the locations of

the current electrodes, and φ is the scalar electric potential.

Of our numerical tools, we require the ability to simulate large electrical conductiv-

ity contrasts, include magnetic permeability, and solve Maxwell’s equations at DC, in

frequency and in time in a computationally tractable manner. Finite volume methods

are advantageous for modelling large physical property contrasts as they are conserva-

tive and the operators “mimic” properties of the continuous operators, that is, the edge

curl operator is in the null space of the face divergence operator, and the nodal gradient
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Figure 3.1: Anatomy of a finite volume cell in a (a) cartesian, regtangular mesh,
(b) cylindrically symmetric mesh, and (c) a three dimensional cylindrical
mesh.

operator is in the null space of the edge curl operator (Hyman and Shashkov, 1999).

As such, they are common practice for many electromagnetic simulations (e.g. Horesh

and Haber (2011); Haber and Ruthotto (2018); Jahandari and Farquharson (2014) and

references within), and will be my method of choice.

3.1.1 Discretization

To represent a set of partial differential equations on the mesh, I use a staggered-grid

approach (Yee, 1966) and discretize fields on edges, fluxes on faces, and physical prop-

erties at cell centers, as shown in Figure 3.1. Scalar potentials can be discretized at cell

centers or nodes. I consider both cylindrically symmetric meshes and fully 3D cylindri-

cal meshes; the anatomy of a finite volume cell for these scenarios is shown in Figure

3.1 (b) and (c).

To discretize Maxwell’s equations in the time domain (equation 3.1) or in the fre-

quency domain (equation 3.2), I invoke the constitutive relations to formulate our system
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in terms of a single field and a single flux. This gives a system in either the electric field

and magnetic flux (E-B formulation), or the magnetic field and the current density (H-J

formulation). For example, in the frequency domain, the E-B formulation is

Ce+ iωb = sm

C>M f
µ−1b−Me

σ e = se

(3.5)

and the H-J formulation is

C>M f
ρ j+ iωMe

µh = sm

Ch− j = se

(3.6)

where e,b,h, j are vectors of the discrete EM fields and fluxes; sm and se are the discrete

magnetic and electric source terms, respectively; C is the edge curl operator, and the

matrices Me, f
prop are the edge / face inner product matrices. In particular, variable electri-

cal conductivity and variable magnetic permeability are captured in the discretization.

The time domain equations are discretized in the same manner; for time-stepping, a

first-order backward Euler approach is used. Although the midpoint method, which is

second-order accurate, could be considered, it is susceptible to oscillations in the solu-

tion, which reduce the order of accuracy, unless a sufficiently small time-step is used

(Haber et al., 2004; Haber and Ruthotto, 2018). Appendix D provides more details on

the discretization of Maxwell’s equations in both the frequency and time-domains.

At the zero-frequency limit, each formulation has a complementary discretization

for the DC equations. For the E-B formulation the discretization leads to a nodal dis-
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cretization of the electric potential φ , giving

−G>Me
σ e = q

e =−Gφ

(3.7)

where G is the nodal gradient operator, and q is the source term, defined on nodes.

Note that the nodal gradient takes the discrete derivative of nodal variables, and thus the

output is on edges. The H-J formulation leads naturally to a cell centered discretization

of the electric potential

VDj = q

M f
ρ j = D>Vφ

(3.8)

Where D is the face divergence operator, V is a diagonal matrix of the cell volumes, q

is the source term, which is defined at cell centers as is φ . Here, the face divergence

takes the discrete derivative from faces to cell centers, thus its transpose takes a variable

from cell centers to faces. For a tutorial on the finite volume discretization of the DC

equations, see (Cockett et al., 2016b).

For the EM simulations, natural boundary conditions are employed; in the E-B for-

mulation, this means ~B×~n = 0|∂Ω, and in the H-J formulation, we use ~J×~n = 0|∂Ω.

Within the DC simulations, there is flexibility on the choice of boundary conditions em-

ployed. In the simplest scenario, for the nodal discretization, we use Neumann bound-

ary conditions, σ~E ·~n = 0|∂Ω, and for the cell centered discretization, we use Dirichlet

boundary conditions φ = 0|∂Ω.

When employing a cylindrical mesh, the distinction between where the electric

and magnetic contributions are discretized in each formulation has important implica-
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tions. If we consider the cylindrically symmetric mesh (Figure 3.1b) and a magnetic

dipole source positioned along the axis of symmetry (sometimes referred to as the TE

mode), we must use the E-B formulation of Maxwell’s equation to simulate the result-

ing toroidal magnetic flux and rotational electric fields. If instead, a vertical current

dipole is positioned along the axis of symmetry (also referred to as the TM mode), then

the H-J formulation of Maxwell’s equations must be used in order to simulate toroidal

currents and rotational magnetic fields. The advantage of a fully 3D cylindrical mesh is

that it provides additional degrees of freedom, with the discretization in the azimuthal

direction. This allows us to simulate more complex responses. However, in order to

avoid the need for very fine discretization in the azimuthal direction, we should select

the most natural formulation of Maxwell’s equations given the source geometry being

considered. For a vertical steel cased well and a grounded source, we expect the major-

ity of the currents to flow vertically and radially, thus the more natural discretization to

employ is the H-J formulation of Maxwell’s equations.

Haber and Ruthotto (2018) provides derivations and discussion of the differential

operators and inner product matrices; though they are described for a cartesian coor-

dinate system and a rectangular grid, the extension to a three dimensional cylindrical

mesh is straightforward. Effectively, a cartesian mesh is wrapped so that the x com-

ponents become r components, and y components become θ components, as shown in

Figure 3.2.

The additional complications that are introduced are: (1) the periodic boundary

condition introduced on boundary faces and edges in the azimuthal direction, (2) the

removal of radial faces and azimuthal edges along the axis of symmetry, and (3) the

elimination of the degrees of freedom of the nodes and edges at the boundary and as

well as the nodes and vertical edges along the axis of symmetry. The implementa-

72



Figure 3.2: Construction of a 3D cylindrical mesh from a cartesian mesh.

tion of the 3D cylindrical mesh is provided as a part of the discretize package

(http://discretize.simpeg.xyz), which is an open-source python package that contains fi-

nite volume operators and utilities for a variety of mesh-types. All differential operators

are tested for second order convergence and for preservation of mimetic properties (as

described in Haber and Ruthotto (2018)). discretize is developed in a modular,

object-oriented manner and interfaces to all of the SimPEG forward modelling and in-

version routines, thus, once the differential operators have been implemented, they can

be readily used to perform forward simulations (Cockett et al., 2015). One of the bene-

fits of SimPEG for forward simulations is that values of the fields and fluxes are readily

computed and visualized, which enables researchers to examine the physics as well as

to simulate data. Development within the SimPEG ecosystem follows best practices for

modern, opens-source software, including: peer review of code changes and additions,
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versioning, automated testing, documentation, and issue tracking.

3.1.2 Validation

Testing for the DC, TDEM, and FDEM implementations includes comparison with an-

alytic solutions for a dipole in a whole-space. These examples are included as supple-

mentary examples with the distributed notebooks. I have also compared the cylindri-

cally symmetric implementation at low frequency with a DC simulation from a Resistor

Network solution developed in MATLAB with (Figure 3 in Yang et al. (2016a)).

Here, I include a comparison with the time domain electromagnetic simulation shown

in Figures 13 and 14 of Commer et al. (2015). A 200m long well, with a conductivity

of 106 S/m, outer diameter of 135 mm, and casing thickness of 12 mm is embedded

in a 0.0333 S/m background. For the material inside the casing, I use a conductivity

equal to that of the background. The conductivity of the air is set to 3×10−4 S/m and

the permeability of the casing is ignored (µ = µ0). A 10 m long inline electric dipole

source is positioned on the surface, 50 m radially from the well. The radial electric field

is sampled at 5 m, 10 m, 100 m, 200 m and 300 m along a line 180◦ from the source.

Two simulations are included in Commer et al. (2015): a finite element (FE) and

a finite difference (FD) solution. Both simulation meshes capture the thickness of the

casing with a single cell or single tetrahedral element. The finite element solution mesh

consisted of over 8 million tetrahedral elements and the simulation completed in 63

hours on a single core of an Intel Xeon X5550 processor (2.67 GHz). For the finite

difference solution, a conservative time-stepping was used (∆t = 3×10−10 s), resulting

in a total of >120 million time steps. This simulation took 23.2 hours using 512 cores

on an Intel Xeon architecture (2.33 GHz).

Additionally, I include a comparison with the 3D UBC finite volume OcTree time
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domain code (Haber et al., 2007). The OcTree mesh allows for adaptive refinement of

the mesh around sources, receivers, and conductivity structures within the domain, thus

reducing the number of unknowns in the domain as compared to a tensor mesh. The

mesh in the UBC simulation included 5,011,924 cells, with the finest cells being equal

to the width of the casing; 154 time steps were taken and 10 different step-lengths were

used (requiring 10 different matrix factorizations). This simulation took 57 minutes to

run on a single Intel Xeon X5660 processor (2.80GHz).

For the 3D cylindrical simulation (SimPEG), I use a mesh that has 4 cells radially

across the width of the casing, 2.5 m vertical discretization, and azimuthal refinement

near the source and receivers (along the θ = 90◦ line), as shown in Figure 3.3. The

mesh has a total of 314,272 cells. For the time discretization, the smallest time-step I

use is 10−6 s; the time-mesh is coarsened at later times. I used a moderately conserva-

tive time-stepping scheme with 187 time-steps total. Seven different step-lengths were

employed, requiring seven matrix factorizations. To solve the system matrix, the direct

solver PARDISO was used (Petra et al., 2014; Cosmin et al., 2016). The simulation took

14 minutes to run on a single Intel Xeon X5660 processor (2.80GHz).

In Figure 3.4, I show the absolute value of the radial electric field sampled at five

stations; each of the different line colors is associated with a different location, and off-

sets are with respect to the location of the well. Solutions were interpolated to the same

offset using nearest neighbor interpolation.The 3D cylindrical simulation (SimPEG) is

plotted with a solid line and overlaps with the UBC solution (dash-dot line) for all times

shown. The finite element (FE) solution from Commer et al. (2015) is shown with the

dashed lines, and the finite difference (FD) solution is plotted with dotted lines. The

3D cylindrical (SimPEG) and UBC solutions are overall in good agreement with the

solutions from Commer et al. (2015). There is a difference in amplitude and position of
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Figure 3.3: Depth slice (left) and cross section (right) through the 3D cylindrical
mesh used for the comparison with Commer et al. (2015). The source and
recievers are positioned along the θ = 90◦ line. The mesh extends 17km
raidally and 30km vertically to ensure that the fields have sufficiently de-
cayed before reaching the boundaries.

the zero-crossing (the v-shape visible in the blue and orange curves) between the Com-

mer solutions and the SimPEG / UBC solutions at the shortest two offsets in the early

times. At such short offsets from a highly conductive target, details of the simulation

and discretization, such as the construction of the physical property matrices in each of

the various approaches become significant; this likely accounts for the discrepancies but

a detailed code-comparison is beyond the scope of this chapter. My aim with this com-

parison is to provide evidence that the numerical simulation is performing as expected;

the overall agreement with Commer’s and UBC’s results provides confidence that it is.

This example demonstrates agreement between the 3D cylindrical solution and so-

lutions obtained with independently developed codes. Importantly, it also shows how,

by using a cylindrical discretization which conforms to the conductivity structure of in-

terest, the size of the mesh and resultant cost of the computation can be greatly reduced.

This is true even with relatively conservative spatial and temporal discretizations. Min-
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Figure 3.4: Time domain EM response comparison with (Commer et al., 2015).
Each of the different line colors is associated with a different location; offsets
are with respect to the location of the well.

imizing computation time was not a main focus in the development of the software and

there are still opportunities for improving efficiency. As an open-source project, contri-

butions from the wider community are encouraged.

3.2 Numerical Examples

The numerical experiments I consider in this section are motivated by the need to use

this software to delve into the physics of DC and EM in settings with steel cased wells.

As such, the examples build upon examples in analytical derivations and asymptotic

analyses in Kaufman (1990); Kaufman and Wightman (1993) at DC and Augustin et al.

(1989a) for frequency domain EM. I do this to provide confidence that the physical

phenomena we observe in the simulations are expected by theory as well as to build a

foundation for discussion in the subsequent chapters.
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3.2.1 DC Resistivity Part 1: Electric fields, currents and charges in
a long well

In his two seminal papers on the topic, Kaufman uses transmission line theory to draw

conclusions about the behaviour of the electric field when an electrode is positioned

inside of an infinite casing. In this first example, I will revisit some of the physical

insights discussed in (Kaufman, 1990; Kaufman and Wightman, 1993) that followed

from an analytical derivation and compare those to my numerical results. In the second

example, I look at the distribution of current and charges as the length of the well is

varied and compare those to the analytical results discussed in (Kaufman and Wightman,

1993)

I start by considering a 1 km long well (106 S/m) in a whole space (10−2 S/m), with

the conductivity of the material inside the borehole equal to that of the whole space.

For modelling, I will use a cylindrically symmetric mesh. The positive electrode is

positioned on the borehole axis in the mid-point of a 1 km long well; a distant return

electrode is positioned 1 km away at the same depth.

Kaufman discusses the behavior of the electric field by dividing the response into

three zones: a near zone, an intermediate zone and a far zone (Kaufman, 1990; Kauf-

man and Wightman, 1993). In the near zone, the electric field has both radial and ver-

tical components, negative charges are present on the inside of the casing, and positive

charges are present on the outside of the casing. The near zone is quite localized and

typically, its vertical extent is no more than∼ 10 borehole radii away from the electrode.

To examine these features in our numerical simulation, I have plotted in Figure 3.5: (a)

the total charge, (b) secondary charges, (c) electric field, and (d) current density in a

portion of the model near the source.
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Figure 3.5: (a) Total charge density, (b) secondary charge density, (c) electric field,
and (d) current density in a section of the pipe near the source at z =-500 m.
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Discussion

Within the near-zone, the total charge is dominated by the large positive charge at the

current electrode location and negative charges that exist along the casing wall where

current is moving from a resistive region inside the borehole into a conductor. The extent

of the negative charges along the inner casing wall is more evident when we look at the

secondary charge, which is obtained by subtracting the charge that would be observed

in a uniform half-space from the total charge (Figure 3.5b). Inside the casing, we can

see the transition from near-zone behavior to intermediate zone behavior approximately

0.5 m above and below the source; that is equal to 10 borehole radii from the source

location, which agrees with Kaufman’s conclusion.

In the intermediate zone, Kaufman discusses a number of interesting aspects with

respect to the behavior of the electric fields and currents which we can compare with the

observed behavior in Figure 3.5. Among them, he shows that the electric field within the

borehole and casing is directed along the vertical axis; as a result no charges accumulate

on the inner casing wall. Charges do, however, accumulate on the outer surface of the

casing; these generate radially-directed electric fields and currents, often referred to as

leakage currents, within the formation. At each depth slice through the casing and bore-

hole, the electric field is uniform, however, due to the high conductivity of the casing,

most of the current flows within the casing. The vertical extent of the intermediate zone

depends on the resistivity contrast between the casing and the surrounding formation

and extends beyond several hundred meters before transitioning to the far zone, where

the influence of the casing disappears (Kaufman, 1990).

The radially directed fields from the casing, and the length of the intermediate zone,

have practical implications in the context of well-logging because they delineate the

region in which measurements can be made to acquire information about the formation
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resistivity outside the well. Within the intermediate zone, fields behave like those due

to a transmission line (Kaufman, 1990), and multiple authors have adopted modelling

strategies that approximate the well and surrounding medium as a transmission line

(Kong et al., 2009; Aldridge et al., 2015). I will extend this analysis in the next example

and discuss how the length of the well impacts the behavior of the charges, fields, and

fluxes.

3.2.2 DC Resistivity Part 2: Finite Length Wells

In (Kaufman and Wightman, 1993), the transmission-line analysis was extended to con-

sider finite-length wells. Inspired by the interest in using the casing as an “extended

electrode” for delivering current to depth (e.g. Schenkel and Morrison (1994); Um et al.

(2015); Weiss et al. (2016); Hoversten et al. (2017)), here I consider a 3D DC resistivity

experiment where one electrode is connected to the top of the well. I will examine the

current and charge distribution for wells ranging in length from 250 m to 4000 m and

compare those to the observations in (Kaufman and Wightman, 1993). The conductivity

of the well is selected to be 106 S/m. A uniform background conductivity of 10−2 S/m is

used and the return electrode is positioned 8000 m from the well; this is sufficiently far

from the well that we do not need to examine the impact of the return electrode location

in this example. A 3D cylindrical mesh was used for the simulation.

Kaufman and Wightman (1993) derives a solution for the current within a finite

length well and discusses two end-member cases: a short well and a long well. “Short”

versus “long” are defined on the product of αLc, where Lc is the length of the casing and

α = 1/
√

ST , where S is the cross-sectional conductance of the casing and has units of

S·m (S = σc2πa∆a, for a casing with radius a and thickness ∆a), and T is the transverse

resistance. The transverse resistance is approximately equal to the resistivity of the sur-
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rounding formation (for more discussion on where this approximation breaks down, see

Schenkel and Morrison (1994)). For short wells, αLc� 1, the current decreases linearly

with distance, whereas for long wells, where αLc� 1, the current decays exponentially

with distance from the source, with the rate of decay being controlled by the param-

eter α . In Figure 3.6 (a), I show current in the well for 5 different borehole lengths.

The x-axis is the distance from the source normalized by the length of the well. I also

show the two end-member solutions (equations 45 and 53) from Kaufman and Wight-

man (1993). There is significant overlap between the 250m numerical solution and the

short well approximation. As the length of the well increases, exponential decay of the

currents becomes evident. Since α is quite small, for this example α = 2×10−3 m−1,

the borehole must be very long to reach the other end member which corresponds to the

exponentially decaying solution.

Figure 3.6: (a) Current along a well for 5 different wellbore lengths. The x-axis is
depth normalized by the length of the well. The black dashed line shows the
short-well approximation (equation 45 in Kaufman and Wightman (1993))
for a 200 m long well. The black dash-dot line shows the long-well approx-
imation (equation 53 in Kaufman and Wightman (1993)) for a 4000 m well.
(b) Charge per unit length along the well for 5 different wellbore lengths.

In Figure 3.6 (b), I have plotted the charges along the length of the well. In the short-
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well regime, the borehole is approximately an equipotential surface and the charges

are uniformly distributed; in the long well the charges decay with depth. What was

surprising to me was the noticeable increase in charge accumulation that occurs near

the bottom of the well. This is especially evident for the short well. Initially, I was

suspicious and thought this might be due to problems with our numerical simulation;

there was no obvious physical explanation that I was aware of. However, investigation

into the literature revealed that the increase in charge density at the ends of a cylinder

is a real physical effect, but an exact theoretical solution does still not appear to exist

(Griffiths and Li, 1997) (see figure 4, in particular).

Discussion

The results shown in Figure 3.6 have implications when testing approaches for reducing

computational load by approximating a well with a solid tube or prism, as in Um et al.

(2015), or replacing the well with a distribution of charges, as in Weiss et al. (2016).

For a short well, the behaviour of the currents is independent of conductivity, so, as

long as the borehole is approximated by a sufficiently conductive target, the behaviour

of the fields and fluxes will be representative of the fine-scale model. However, as

the length of the well increases, the cross-sectional conductance of the well becomes

relevant as it controls the rate of decay of the currents in the well and thus the rate

that currents leak into the formation. A similar result holds when a line of charges

is used to approximate the well as a DC source; a uniform charge is suitable for a

sufficiently short or sufficiently conductive well, whereas a distribution of charge which

decays exponentially with depth needs to be considered for longer wells. Thus, when

attempting to replace a fine-scale model of a well with a coarse-scale model, either with

a conductivity structure or by some form of “equivalent source”, validations should be
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performed on models that have the same length-scale as the experiment to ensure that

both behaviors are being accurately modeled.

3.2.3 Frequency Domain Electromagnetics Part 1: Comparison
with scale model results

In the DC example, we discussed how charges are distributed along the well and cur-

rents flow into the formation. From a historical perspective, practical developments in

EM were pursued in the frequency domain; the mathematics is more manageable in the

frequency domain, and technological advances were being made in the development of

induction well-logging tools (Doll, 1949; Moran and Kunz, 1962). Although the con-

ductivity of the pipes generally plays the most dominant role in attenuating the signal,

the magnetic permeability is non-negligible (Wait and Hill, 1977); it is the product of

the conductivity and permeability that appears in the description of EM attenuation.

Also, the fact that permeable material becomes magnetized in the presence of an exter-

nal field complicates the problem. Augustin et al. (1989a) is one of the first papers on

induction logging in the presence of steel cased wells that aims to understand and isolate

the EM response of the steel cased well. Using a combination of scale modelling and

analytical mathematical modelling, they examine the impacts of conductivity and mag-

netic permeability on the magnetic field observed in the pipe. In this example and the

one that follows, I attempt to unravel this interplay between conductivity and magnetic

permeability.

The first experiment Augustin et al. (1989a) discusses is a scale model using two dif-

ferent pipes, a conductive copper pipe and a conductive, permeable iron pipe; each pipe

is 9 m in length. The copper pipe had an inner diameter of 0.063 m and a thickness of

0.002 m, while the iron pipe had a 0.063 m inner diameter and 0.0043 m wall thickness.
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A source-loop, with radius 0.6 m was co-axial with the pipe and in one experiment po-

sitioned at one end of the pipe (which they refer to as the “semi-infinite pipe” scenario).

In another experiment the source loop is positioned at the midpoint of the pipe (which

they refer to as the “infinite pipe” scenario); for both experiments, magnetic field data

are measured as a function of frequency at the central axis of the pipe. Their results are

presented in terms of a Field Strength Ratio (FSR), which is the ratio of the absolute

value of the magnetic field at the receiver with the absolute value of the magnetic field

if no pipe is present (Figure 3 in Augustin et al. (1989a)). At low frequencies, for the

data collected within the iron pipe, static shielding (FSR < 1) was observed for the mea-

surements where the receiver was in the plane of the source loop for both the “infinite”

and “semi-infinite” scenarios. When the receiver was positioned within the pipe, 1.49

m offset from the plane of the source loop, static enhancement effects (FSR > 1) were

observed for both the infinite and semi-infinite scenarios. Using this experiment for con-

text, I will compare the behaviour of our numerical simulation with the observations in

(Augustin et al., 1989a) and examine the nature of the static shielding and enhancement

effects.

For our numerical setup, the pipes are 9 m in length and have an inner diameter of

0.06 m. The copper pipe has a casing-wall thickness of 0.002 m and the iron pipe has a

thickness of 0.004 m. Following the estimated physical property values from Augustin

et al. (1989a), I use a conductivity of 3.5× 107 S/m and a relative permeability of 1

for the copper pipe. For the iron pipe, a conductivity of 8.0× 106 S/m and a relative

permeability of 150 is used. A background resistivity of 104 Ωm is assumed. The

computed FSR values for the axial magnetic field as a function of frequency are shown

in Figure 3.7.

Consider the response of the conductive pipe. At low frequencies, the FSR for the
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Figure 3.7: Field strength ratio (FSR), the ratio of the measured vertical magnetic
field with the free space magnetic field, as a function of frequency for two
different receiver locations. In (a), the receiver is in the same plane as the
source, in (b), the receiver is 1.49 m offset from the source.

copper pipe (blue lines) is 1 for both the infinite (solid line) and semi-infinite (dashed

line) scenarios, as the field inside the copper pipe is equivalent to the free-space field.

With increasing frequency, eddy currents are induced in the pipe which generate a mag-

netic field that opposes the primary, causing a decrease in the observed FSR. When the

source and receiver are in the same plane (L=0.00 m), the rate of decrease is more rapid

in the infinite scenario than the semi-infinite. Since there is conductive material on both

sides of the receiver in the infinite case, we would expect attenuation of the fields to
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occur more rapidly than in the semi-infinite case. This observation is consistent with

Figure 3a in Augustin et al. (1989a). For the offset receiver (L=1.49 m), they observed

a slight separation in the infinite and semi-infinite curves which I do not; however, they

attributed this to potential errors in magnetometer position. Thus, overall, the numerical

results for the copper pipe are in good agreement with the scale model results observed

by Augustin et al. (1989a).

Next, we examine the response of the conductive, permeable pipe. In Figure 3.7b,

we observe a static enhancement effect (FSR > 1) at low frequencies. The enhancement

is larger in the infinite scenario than the semi-infinite scenario; this is in agreement with

Figure 3b in Augustin et al. (1989a). There is however, a significant discrepancy be-

tween our numerical simulations and the scale model for the semi-infinite pipe when the

source and receiver lie in the same plane(Figure 3.7a). Augustin et al. (1989a) observed

a static shielding effect for both the infinite and semi-infinite scenarios, whereas we ob-

serve a static shielding for the infinite scenario, but a significant static enhancement for

the semi-infinite case. To examine what might be the cause of this, I will examine the

magnetic flux density in this region of the pipe.

In Figure 3.8, I have plotted: (a) the secondary magnetic flux in the infinite-pipe sce-

nario near the source (z =-4.5 m), (b) the secondary magnetic flux in the semi-infinite

scenario (z=0 m for the source), and (c) top 5 cm of the semi-infinite pipe. All plots

are at 0.1 Hz. The primary magnetic field is directed upwards within the regions I

have plotted, so upward-going magnetic flux indicates a static enhancement effect, and

downward-oriented magnetic flux indicates static shielding effects. In (a) we see a tran-

sition between the static shielding in the vicinity of the source to a static enhancement

approximately 0.5 m above and below the plane of the source. Similarly in (b), we no-

tice a sign-reversal in the z-component of the secondary magnetic flux at a depth of 0.6
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m.

Discussion

The behaviors observed in Figure 3.8 are quite comparable to Augustin et al.’s obser-

vation of a transition from shielding to enhancement occurring at distances greater than

0.8 m from the source. Numerical experiments show that the vertical extent of the re-

gion over which static shielding is occurring increases with increasing pipe diameter,

and similarly increases with increasing loop radius while the magnitude of the effect

decreases. This can be understood by considering how the pipe is magnetized; for a

small loop radius, the magnetization is largely localized near the plane of the source and

rapidly falls off with distance from the plane of the source. Localized, large amplitude

magnetization causes the casing to act as a collection of dipoles around the circum-

ference of the casing. As the radius of the loop increases, the magnetization spreads

out along the length of the well resulting in longer, lower-amplitude dipoles, thus both

increasing the extent of the region over which static shielding is occurring as well as

decreasing its amplitude.

This explains the nature of the static enhancement and static shielding effects, but

to explain the discrepancy between the static shielding observed in the semi-infinite

pipe when L=0 m by Augustin et al. (1989a), and the static enhancement we observe

in Figure 3.7a, I examine the magnetic flux density in the top few centimeters of the

pipe. Figure 3.8c shows the top 5 cm of the secondary magnetic flux in the semi-infinite

pipe; the source is in the z=0 m plane. Zooming in reveals there is yet another sign

reversal near the end of the pipe. This is evident even in the infinite-pipe scenario

(Figure 3.7d), where the source is offset by several meters from the end of the pipe.

This edge-effect perhaps bears some similarities to what we observed in Figure 3.6b,
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Figure 3.8: Magnetic flux density at 0.1 Hz in the region of the pipe near the plane
of the source for (a) the “infinite” pipe, where the source is located at -4.5
m and the pipe extends from 0 m to -9 m, (b) a “semi-infinite” pipe, where
the source is located at 0 m and the pipe extends to -9 m. In (c), we zoom
in to the top 5 cm of the “semi-infinite” pipe, and (d) shows the 5 cm at the
top-end of the “infinite” pipe.

where we saw a build up of charge near the end of the pipe in the DC scenario. At the

end of the pipe, we encounter the situation where the normal component of the flux (~j,~b)

from the pipe to the background needs to be continuous both in the radial and vertical

directions at the end of the pipe as does the tangential component of the fields (~e,~h). The

interplay of these two constraints at the end of the pipe results in more complexity in the

resultant fields and fluxes. Within the span of a few centimeters we transition from static

enhancement at the top of the pipe to a static shielding further down. An error as small

as a few centimeters in the position of the magnetometer causes a reversal in behavior;

in Figure 3.9, I have plotted the FSR for a magnetometer positioned 3 cm beneath the

plane of the source, and the static-shielding behavior observed for the semi-infinite pipe

is much more aligned with that observed in Figure 3a in Augustin et al. (1989a).
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Figure 3.9: Field strength ratio, FSR, for a receiver positioned 3 cm beneath the
plane of the source. For comparison, we have plotted the FSR for the per-
meable pipe when the source and receiver lie in the same plane (L=0.00 m)
with the semi-transparent orange lines. Note that the infinite-pipe solutions
for L=0.03 m and L=0.00 m overlap.

3.2.4 Frequency Domain Electromagnetics Part 2: Conductivity
and permeability in the inductive response of a well

The experiments shown in the previous section revealed some insights into the complex-

ity of the fields within the pipe and illustrated the role of permeability in the character

of the responses at low frequency. Next, we move to larger scales and examine the role

of conductivity and permeability in the responses we observe in the borehole.

In this example, I consider a 2 km long well with an outer diameter of 10 cm and

thickness of 1 cm in a whole-space which has a resistivity of 104 Ωm. A loop with

radius 100 m is coaxial with the well and positioned at the top-end of the well. A

receiver measuring the z-component of the magnetic flux density is positioned 500 m

below the transmitter loop, along the axis of the well. I will consider both time domain

and frequency domain responses.

In electromagnetics, the product of permeability and conductivity is an important

90



quantity in characterizing the main features of the fields and fluxes. For example, the

skin depth, which describes the decay of a plane wave in a homogeneous medium, is

given by δ =
√

2/(ωµσ). Most EM experiments only consider variable conductivity,

however for steel-casing, both parameters are variable, which undoubtedly complicates

the behaviour of EM fields and fluxes. To assess the contribution of each to the measured

responses, I will investigate two scenarios. In the first, the well has a conductivity of

108 S/m and a relative permeability of 1, and in the second, the well has a conductivity

of 106 S/m and a relative permeability of 100; thus the product of conductivity and

permeability is equivalent for both wells.

Similar to the analysis done by Augustin et al. (1989a) when looking at the role of

borehole radius in the behaviour of the magnetic response (e.g. figure 8), I will examine

the normalized secondary field (NSF) which is the ratio of the secondary field with the

amplitude of the primary, where the primary is defined to be the free-space response. In

Figure 3.10, I have plotted the normalized secondary field for the two pipes considered,

the conductive pipe (blue) and the conductive, permeable pipe (orange). Let us start by

examining the conductivity response in Figure 3.10. Where the value of the NSF is zero,

the primary dominates the response; this is the case at low frequencies where induction

is not yet contributing to the response. As frequency increases, currents are induced in

the pipe which generate a secondary magnetic field that opposes the primary, hence the

NSF becomes negative. When the real part of the NSF (solid line) is -1, the secondary

magnetic field is equal in magnitude but opposite in direction to the free-space primary

and the measured real field is zero. Values less than -1 indicate a sign reversal in the real

magnetic field. Similarly, when the imaginary part of the response function goes above

zero, there is a sign reversal in the imaginary component. Note that these sign reversals

occur even in a half-space and are a result of sampling the fields within a conductive
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medium; in this case the receiver was 500 m below the surface.

As compared to the conductive pipe, the frequency at which induction sets in is

higher for the conductive, permeable pipe. We also notice that the amplitude variation

of both the imaginary and real parts is larger for the permeable pipe. To examine the con-

tribution of conductivity and permeability to the responses, I have plotted the real part of

the secondary magnetic flux density, b, in Figure 3.11. The top row shows the response

within the conductive pipe and the bottom row shows the conductive, permeable pipe.

The primary magnetic flux is oriented upwards and we can see that all of the secondary

fields generated are oriented downwards. Similar to the previous example, we see that

at low frequencies, there is magnetostatic response due to the permeable pipe. However,

due to the larger length scales of the source loop and the casing in this example, there is

no measurable contribution at the receiver. At 1 Hz, we can see that induction is starting

to contribute to the signal for the conductive pipe, while for the permeable pipe, it is

not until ∼10 Hz that we begin to observe the contribution of induction. At 100 Hz, the

secondary magnetic field is stronger in amplitude than the primary, and the NFS is less

than -1 for both the conductive and permeable pipes. The amplitude of the secondary

within the permeable pipe is stronger than that in the conductive pipe. At 1000 Hz, we

have reached the asymptote of NSF=-1 for both the conductive and permeable pipes; the

secondary magnetic flux is equal in magnitude but opposite in direction to the primary.

Conducting a similar experiment in the time domain, we can compare the responses

as a function of time. For this experiment, a step-off waveform is employed and data are

measured after shut-off, the NSF is plotted in Figure 3.12. Note here that the secondary

field is in the same direction as the primary, so after the source has been shut off, the

secondary field is oriented upwards, as shown in Figure 3.13. Shortly after shut-off,

the rate of increase in the secondary field is the same for both the conductive and the
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Figure 3.10: Normalized secondary field, NSF, as a function of frequency for two
wells. The NSF is the ratio of the secondary vertical magnetic field with the
primary magnetic field at the receiver location (z =-500 m); the primary is
defined as the whole-space primary.

conductive, permeable wells. A maximum normalized field strength of approximately 1

is reached for both cases. The responses begin to differ at 10−3 s where the conductive

well maintains a NFS∼ 1 for approximately 1 ms longer than the permeable well before

the fields decay away.

Discussion

It is important to note that although the product of the conductivity and permeability is

identical for these wells, the geometry of the well and inducing fields results in different

couplings for each of the parameters. For a vertical magnetic dipole source, the electric

fields are purely rotational while the magnetic fields are primarily vertical. An approx-

imation we can use to understand the implications of these geometric differences is to

assume the inducing fields are uniform (e.g. the radius of the source loop is infinite) and

to examine the conductance and permeance of the pipe. For rotational electric fields, the
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Figure 3.11: Secondary magnetic flux density (with respect to a whole-space pri-
mary) at five different frequencies for a conductive pipe (top row) and for a
conductive, permeable pipe (bottom row).

conductance is

S = σ
tL

2πr
(3.9)

where t is the thickness of the casing, r is the radius of the casing and L is the length-

scale of the pipe segment contributing to the signal. For vertical magnetic fields, the

permeance is

P = µ
t2πr

L
(3.10)

As the length-scale, L, is larger than the circumference of the pipe (2πr) the geometric

contribution to the conductance is larger than that to the permeance.

An important take-away from this example is that the contributions of conductivity
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Figure 3.12: Normalized secondary field (NSF) through time. In the time-domain,
we compute the NSF by taking the difference between the total magnetic
flux at the receiver and the whole-space response and then taking the ratio
with the whole-space magnetic flux prior to shutting off the transmitter.

and permeability to the observed EM signals are not simply governed by their product.

The geometry of the source fields plays an important role in how each contributes. Thus

to accurately model conductive, permeable pipes, over a range of frequencies or times,

a numerical code must allow both variable conductivity and variable permeability to be

considered.

3.3 Summary and Outlook

I have developed software for solving Maxwell’s equations on 2D and 3D cylindrical

meshes. The medium can have variable electrical conductivity and magnetic permeabil-

ity. The 2D solution is especially computationally efficient and has a large number of

practical applications. When cylindrical symmetry is not valid, the 3D solution can be

implemented; a judicious design of the mesh can often generate a problem with fewer

cells than would be required with a cartesian tensor or OcTree mesh, thus reducing the

computational cost of a simulation. I demonstrated the versatility of the codes by mod-
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Figure 3.13: Secondary magnetic flux density for a conductive well (top row) and
a conductive, permeable well (bottom row) through time. The source wave-
form is a step-off waveform.

elling the electromagnetic fields that result when a highly conductive and permeable

casing is embedded in the earth.

I presented a number of different experiments involving DC, frequency-domain, and

time-domain sources. The first two examples considered a simple DC resistivity exper-

iment. In the first, I demonstrated that the numerically obtained currents, electric fields,

and charges emulated those predicted by the asymptotic analysis in Kaufman (1990)

for long wells. The second example looked at the transition in behavior of currents

and charges between short and long wells. Even in this relatively simple example, the

physics was more complex than I originally anticipated; I had not intuitively expected

96



to see the large increase in charge density that was observed near the ends of the well.

In the subsequent examples, I considered electromagnetic experiments and incor-

porated magnetic permeability in the simulations. I showed that for a conductive and

permeable casing, excited by a circular current source, there is a complicated magnetic

field that occurs in the top few centimeters of the pipe. Furthermore, the role of conduc-

tivity and permeability in the observed responses is more complex than their product;

the source geometry and coupling with the casing are important to consider.

As new strategies and software are developed to handle more complex well-geometries,

such as deviated or horizontal wells, it is important that we establish an understanding

of the physics. Of critical importance is the ability to plot the charges, fields, and fluxes

in the simulations. This is valuable for understanding the responses obtained from the

experiment and it is a solid foundation for designing a field survey. I anticipate that

the software provided with this thesis can be a resource for building understanding and

additionally, serve as a tool for testing 3D simulations with boreholes present.

The software implementation is included as a part of the SimPEG ecosystem. Sim-

PEG also includes finite volume simulations on 3D tensor and OcTree meshes as well

as machinery for solving inverse problems. This means that the cylindrical codes can be

readily connected to an inversion and additionally, simulations and inversions of more

complex 3D geologic settings can be achieved by coupling the cylindrical simulation

with a 3D tensor or OcTree mesh using a primary-secondary approach (e.g. example 3 in

Appendix D). Beyond modelling steel cased wells, the 3D cylindrical mesh could prove

to be useful in conducting 3D airborne EM inversions where a domain-decomposition

approach, similar to that described in Yang et al. (2014), is adopted.
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Chapter 4

Direct current resistivity with

steel-cased wells

4.1 Introduction

Subsurface resistivity can be a valuable part of a geologic interpretation, whether that be

identifying lithologic units, characterizing changes within a reservoir, or imaging sub-

surface injections associated with carbon capture and storage or hydraulic fracturing. In

many of these settings, steel-cased wellbores are present. Steel has a significant elec-

trical conductivity, which is generally six or more orders of magnitude larger that of

the surrounding of the geologic formation. Clearly, such a large contrast is important

to consider when conducting a direct current (DC) resistivity survey. On one-hand, the

role of the steel casing may be viewed as “distortion” which complicates the signals

of interest (Wait, 1983; Holladay and West, 1984; Johnston et al., 1987). In other sce-

narios, a wellbore may be beneficial in that it can serve as an “extended electrode” so

that current-injection and sampling of the resultant electrical potentials can take place
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beneath near-surface heterogeneities (Ramirez et al., 1996; Rucker et al., 2010; Rucker,

2012; Ronczka et al., 2015) or so that currents injected at the surface can reach signif-

icant depths (Schenkel and Morrison, 1994; Weiss et al., 2016; Hoversten et al., 2017).

The use of casings as extended electrodes extends back several decades. Sill and Ward

(1978) used the well casing as a buried electrode for their mis-à-la-masse experiment

at the Roosevelt Hot Springs geothermal field in Utah, as did Kauahikaua et al. (1980)

for their mis-à-la-masse mapping of a high temperature geothermal reservoir in Hawaii.

Sill (1983) used the well as a source to monitor an injection test at Raft River, Idaho to

determine if measurable changes that might indicate the direction of fluid flow could be

observed. Rocroi and Koulikov (1985) delineated a known resistive hydrocarbon deposit

in the USSR by injecting current into two cased wells. More recently, applications for

hydraulic fracturing, enhanced oil recovery and carbon capture and storage have been

of much interest (Commer et al., 2015; Um et al., 2015; Weiss et al., 2016; Hoversten

et al., 2017).

To build a physical understanding of electrical and electromagnetic methods in set-

tings where steel-cased wells are present, there are several areas to be investigated. First,

the significant conductivity of the steel will impact the behavior of the charges, currents,

and electric fields. This is true at the electrostatic limit, relevant to DC resistivity sur-

veys, as well as when the source fields are time-varying, as in electromagnetic (EM)

surveys. When considering EM surveys, induction effects also influence the responses,

and magnetic fields and fluxes become relevant, meaning that the magnetic permeability

of the steel then introduces further complexity into the signals we measure. This chapter

is concerned with the first set of physical phenomena: understanding the physics of steel

casings at DC.

Much of the initial theory and understanding of the behavior of electric fields, cur-
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rents, and charges, was developed in the context of well-logging. Kaufman (1990) and

Kaufman and Wightman (1993) provide a theoretical basis for our understanding; the

first paper derives an analytical solution for a DC experiment where an electrode is po-

sitioned along the axis of an infinite length well, and discusses where charges accumu-

late and how currents leak into the surrounding formation. From this, Kaufman (1990)

shows that by measuring the second derivative of the electric potential, information

about the formation resistivity can be obtained. The second paper extends the analysis

for finite length wells. Schenkel and Morrison (1990); Schenkel (1991); Schenkel and

Morrison (1994) pioneered numerical work analyzing the influence of steel-cased wells

on geophysical data using an integral equation approach for solving the DC resistivity

problem. They expand upon the logging-through-casing application and discuss limita-

tions of the transmission line solution presented in Kaufman (1990) for this application.

They also explored the feasibility of cross-hole and borehole-to-surface surveys where

one electrode is placed within, or beneath, a cased borehole. These examples demon-

strated that the casing can improve detectability of a conductive target as compared to

the scenario where no cased well is present.

In this chapter, I focus on three aspects of DC resistivity in the presence of steel-

cased well. In section 4.2, I examine the feasibility of conducting a surface DC survey

to detect a flaw in the casing and discuss factors that influence detectability of a flaw. In

section 4.3, I examine the use of DC resistivity for geophysical imaging when a steel-

cased well is present. Finally, in section 4.4, I assess strategies applied in the literature

for approximating a steel-cased well with a coarse-scale model to reduce computational

cost.

Source codes for all of the simulations shown are open source, licensed under the

MIT license, and are available as Jupyter notebooks (see Appendix A). The examples
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in the paper have been selected with an emphasis on examining physical principles;

however, I envision that the Jupyter notebooks included with this chapter could serve as

useful survey design tools.

4.2 DC resistivity for casing integrity

Degraded or impaired wells can pose environmental and public-health hazards. A flaw

in the cement or casing can provide a conduit for methane to migrate from depth into

groundwater aquifers or into the atmosphere. This is particularly of concern for shale

gas wells. Elevated levels of thermogenic methane, which are attributed to deep sources

(rather than biogenic methane which can be generated closer to the surface), in ground-

water wells in Pennsylvania has been positively correlated with proximity to shale gas

wells in the Marcellus and Utica (Osborn et al., 2011; Jackson et al., 2013), and failure

rates of unconventional wells (e.g. shale gas wells) is estimated to be 1.57 times larger

than that of a conventional well drilled in the same time-period (Ingraffea et al., 2014).

Wells can fail if there is a compromise in the cement or the casing. To diagnose the in-

tegrity of a well with electrical methods, we require a contrast in electrical conductivity

to be associated with the flaw, thus I will focus attention to detecting flaws in the highly

conductive casing.

Under what circumstances should we be able to detect a flaw in the casing using DC

resistivity from the surface? To address this question, I begin by examining how a flaw

which comprises the entire circumference of the pipe along some depth interval changes

the charge distribution and thus the resultant electric fields we measure on the surface.

From there, I investigate the role of parameters including the depth of the flaw and the

background conductivity on our ability to detect it from the surface. Finally, I examine

the scenario in which only a portion of the circumference of the pipe is flawed.
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4.2.1 Basic experiment

The experiment I consider is a “top-casing” DC resistivity experiment where one elec-

trode is connected to the wellbore at the surface and a return electrode is positioned

some distance away. The concept and basic physics is the same as a mis-à-la-masse sur-

vey in which the positive electrode is connected to a conductive target. When the source

is turned on, positive charges are distributed on the interface between the conductive

target and the resistive host. Electric potentials are measured on the surface and these

data are then used to infer information about the extent of the conductor (Telford et al.,

1990). Applying the same principles to a casing integrity experiment, I connect a posi-

tive electrode to the casing, and for an intact casing, positive charges will be distributed

on the outer interface of the casing along its entire length. If corrosion causes a flaw

across the diameter of the casing, the continuity of the conductive flow-path for charges

is interrupted, thus we expect a larger charge on the top portion of the flawed casing

than we would if it were intact. This results in a larger electric field at the surface than

would be observed if the casing were intact. The difference in electric field (or electric

potentials) from the expected electric field that results from an intact well could then be

an indicator that there is a problem with the well.

To demonstrate the principles, I start by considering a simple model of a casing in

a half-space. The intact well is 1 km long, has an outer diameter of 10 cm, a thickness

of 1 cm and a conductivity of 5× 106 S/m. The background is 10−1 S/m, and the

conductivity of the inside of the well is taken to be equal to that of the background.

The positive electrode is connected to the top of the casing and the return electrode is

positioned 2 km away. To simulate the physics, the 3D cylindrical DC code described

in Chapter 3 was employed. In Figure 4.1 I show cross-sections of the: (a) electrical

conductivity model, (b) current density, (c) charge density, and (d) electric field for
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Figure 4.1: Cross section showing: (a) electrical conductivity, (b) current density,
(c) charge density, and (d) electric field for a top-casing DC resistivity ex-
periment over (top) an intact 1000 m long well and (bottom) a 1000 m long
well with a 10 m flaw at 500 m depth.

the intact well (top row) and a flawed well (bottom row) that contains a 10 m gap in the

casing at 500 m depth. As expected, the introduction of a resistive flaw prevents currents

from reaching the bottom portion of the well. This results in increased currents, charge

density and thus electric fields within the top 500 m.

To quantify the charge along the length of the well, I have plotted the charge as a

function of depth for the intact well (black), flawed well (blue), and also a short well of

500 m length (grey dash-dot) in Figure 4.2a. In each of the wells, we observe that there
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is an increase in charge density near the end of the discontinuity along the length of the

well. This was also noted in Griffiths and Li (1997) and in Chapter 3 – this behavior

is attributed to edge effects. At an interface between materials with two different con-

ductivities, the normal component of the current density must be conserved, as well as

the tangential component of the electric field; the discontinuity at the end of the pipe,

and at the location of the flaw, means the continuity conditions must be preserved si-

multaneously in the radial and vertical directions, and this complicates the behavior of

the fields, fluxes and charges. Another observation is that the flawed and short wells

have nearly identical charge distributions in the top 500 m. In the bottom portion of

the flawed well, where the remaining conductive material is, a small dipolar charge is

introduced, but this is nearly an order of magnitude smaller than the charge in the top

portion of the pipe. The signal due to the flaw can be defined as the difference between

the total response due to a flawed well and the total response due to an intact well (the

primary); I will refer to this difference as the secondary response. The secondary charge

is dipolar in nature with positive charge above the flaw and negative charge beneath the

flaw. Note that the charge distributions along the short well, truncated where the flaw

starts at 500 m depth, and along the top portion of the flawed well are almost identical;

these charges are the source of signal for a surface electric field measurement. This

suggests that an inversion strategy, where one attempts to estimate the length of a well,

may be an effective approach for characterizing the depth to a flaw.

Impact of the vertical extent of the flaw

A 10 m flaw is quite long and it is of interest to see how the results are changed if the

flaw has a smaller vertical extent. The distribution of charges shown in Figure 4.2 hints

that the flaw may not need to be very long in order to still significantly influence the
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Figure 4.2: (a) Charge along the length of the intact well (black), a 500 m well (
“short”, grey dash-dot), and a well with a 10 m flaw at 500 m depth (blue), in
a top-casing DC resistivity experiment. (b) Secondary electric field due on
the surface of the earth due to the flaw in the casing. The primary is defined
as the electric field due to the 1000 m long intact well. The return electrode
is 2000 m away from the well.

response. To confirm this, I adopt a much finer vertical discretization in order to model

smaller flaws. Here, I use a shorter, 50 m long well in order to reduce computational

load. The flaw is positioned at 25 m depth, and the length of the impairment is varied.

This simulation is conducted on a cylindrically symmetric mesh, the positive electrode

is connected to the casing, and a return electrode is positioned 50 m away.

The resultant charge distributions are shown in Figure 4.3. For comparison, I again

show the charge on a well that is truncated at the location of the flaw; this is the “short”

well and results are displayed using the grey dash-dot line. The charge distribution is

similar for all of the flawed-well scenarios, even for flaws smaller than the thickness of

the casing (10−2 m). We see similar behavior to that shown in Figure 4.2, where posi-

tive charge accumulates within the top portion of the well and a small dipole charge is

present in the bottom portion of the well. There are minor differences in amplitude as

the vertical extent of the flaw is changed; as the extent of the flaw decreases, the ampli-
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Figure 4.3: Charge along the length of a 50 m long intact well (black), a 25 m
well (“short”, grey dash-dot), and four wells, each with a flaw starting at
25 m depth and extending the length indicated by the legend (5× 10−1 m
(blue), 5× 10−2 m (orange), and 5× 10−3 m (green)) in a top-casing DC
resistivity experiment. For reference, the diameter of the casing is 10−1 m
and its thickness is 10−2 m. The return electrode is 50 m away from the well
and a cylindrically symmetric mesh was used in the simulation.

tude of the dipolar charge on the bottom portion of the well increases slightly while the

amplitude of the positive charge on the top portion of the well decreases. These distinc-

tions, however, are small in magnitude, and even if the background is more conductive,

the casing is still orders-of-magnitude larger in conductivity than any geologic material

we are likely to encounter. Thus, I conclude that, so long as the impairment affects the

entire circumference of the casing, the extent of that flaw has little impact on the charge

that accumulates in the top portion of the well. As such, I will proceed in our analysis

using a 10 m flaw in the 1 km well so that a fine vertical discretization is not necessary.
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4.2.2 Survey design considerations

When examining detectability of a signal, there are two aspects to consider: (1) the

signal must be larger than the noise floor of the instrument, and (2) the signal must be

a significant percentage of the primary; for the casing integrity experiment, the primary

is the signal due to the intact well. Due to the cylindrical symmetry of the charge on

the well, we expect the electric field at the surface to be purely radial, thus only radial

electric field data need be collected at the surface.

In Figure 4.4, I have plotted the primary field (top row), secondary field (second

row) and secondary field as a percentage of the primary (third row) for four different

return electrode locations. In (a), the return electrode is 2000 m offset from the well,

in (b) the offset is 750 m, in (c) the offset is 500 m, and in (d) the offset is 250 m. In

addition to the plan view, I have plotted the primary electric field (black), total electric

field for the flawed well (blue) and secondary radial electric field (orange) along the

θ = 90◦ azimuth in the fourth row of Figure 4.4. The fifth row shows the secondary as

a percentage of the primary.

At the furthest offset (Figure 4.4a), there is nearly complete cylindrical symmetry in

the primary field. With complete cylindrical symmetry there is no preferential direction

along which to collect data. As I move the return electrode closer, for example to 750 m

from the well, we notice that the secondary electric field does not change substantially.

However, if I examine the ratio of the secondary to the primary (second and fifth rows),

we see that the ratio has increased. Although the primary field has similar, if not larger

amplitude near the well, it also has considerable curvature. As a result, the proportion

of the primary field that is in the radial direction has decreased in amplitude. Hence the

important characteristic, the ratio of the secondary to primary of the radial components,

has increased. The above principles are further enhanced as the return current is brought
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Figure 4.4: (Top row) primary electric field, (second row) secondary electric field,
and (third row) secondary electric field as a percentage of the primary radial
electric field for a return electrode that is offset (a) 2000 m, (b) 750 m, (c)
500 m, and (d) 250 m from the well. The primary is defined as the response
due to the 1000 m long, intact well. Electrode locations are denoted by the
red dots. In the third row, the colorbar has been limited between 20% and
100%. The fourth and fifth rows show radial electric field data collected
along the θ = 90◦ azimuth (white dotted lines in the top three rows). The
fourth row shows the primary (black line), the total electric field due to the
flawed well (blue line), and the secondary radial electric field (orange line).
The fifth row shows the secondary as a percentage of the primary.
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closer to the well as in panels (c) and (d), where the return electrode is brought to 500

m and 250 m from the well. Again, for all of these examples the amplitude of the

secondary field at the surface is quite similar. However, the choice of azimuth for the

survey line will greatly affect the size of the ratio. In terms of survey design, we can

take advantage of the return electrode to reduce coupling with the primary.

For our following examples I will place the return electrode at 500 m from the well

and collect radial data along a line that is perpendicular to the source line. I will examine

several factors influencing detectability of a flaw, including the depth of the flaw and

the conductivity of the background in the following sections. I will also examine the

scenario where only a portion of the circumference of the well has been compromised.

4.2.3 Factors influencing detectability

Depth of the flaw

The introduction of a flaw in the well changes the distribution of charges along the length

of the well and causes a secondary dipolar charge centered about the flaw. The position

and strength of this dipole will affect our ability to detect the flaw. To examine this,

I have taken the same model of a 1km pipe in a 10−1 S/m background and varied the

depth of the flaw from 300 m to 900 m. In Figure 4.5, I plot radial electric field results

along a line perpendicular to the source electrodes; the return electrode is positioned

500 m from the well. In (a), I show total radial electric field, in (b) the secondary radial

electric field (with the primary being the electric field resulting from the intact well,

shown in black in panel a), and in (c) I show the secondary radial electric field as a

percentage of the primary. I have also indicated where values fall below a 10−7 V/m

noise floor on Figure 4.5 (a) and (b), as well as those that fall below a 20% threshold in

(c). A threshold of 20% may be conservative, however, it does depend on knowledge
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of the background conductivity as well as the geometry and physical properties of the

well. In many scenarios, these may not be well-constrained, thus I select a conservative

threshold for this analysis. Any detectability analysis will be site-dependent and I have

therefore made all source-code available so that a similar workflow may be followed

and adapted to include setting-specific parameters.

When a well is impaired, the total radial electric field is larger than that due to the

baseline, intact well. The strength of the secondary response decreases as the depth of

the flaw increases. For this example of a 1000 m long well in a 10−2 S/m background, a

flaw at 900 m depth is not detectable; there is no overlap between the region in which the

secondary electric field (Figure 4.5b) is above the noise floor and the region in which

the secondary comprises a significant percentage of the primary (Figure 4.5c). This

might be expected, as the difference between the charges distributed along a 900 m long

segment versus the 1000 m long well are not drastically different. For a flaw at 700 m

depth, there is a window between 400 m offset and 800 m offset over which the radial

electric field data are sensitive to the flaw. As the depth to the impairment decreases,

both the spatial extent over which data are sensitive to the flaw, and the magnitude of

the secondary response in those data, increase.

Background conductivity

The total charge on the well is controlled by the contrast in conductivity between the

steel-cased well and the surrounding geology. Increasing the conductivity of the back-

ground reduces that contrast thus reducing the amount of charge on the well. The result

is a decrease in the total electric field at the surface. Similarly, the strength of the sec-

ondary dipolar charge introduced with the presence of an impairment also depends upon

the available charge and will also be reduced with increasing background conductivity.
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Figure 4.5: Radial electric field as the depth of the flaw along a 1km long well
is varied. The positive electrode is connected to the top of the casing, the
negative electrode is positioned 500m away and data are measured along a
line 90◦ from the source electrodes. In (a), we show the total electric field
for four flawed wells, each with a 10m flaw at the depth indicated on the
legend. The black line shows the radial electric field due to an intact well;
we define this as the primary. In (b), the secondary radial electric field is
plotted and in (c), we show the secondary radial electric field as a percentage
of the primary.
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In Figure 4.6, I have adopted the same model of a 1 km well with a 10 m impairment

at 500 m depth, and show the radial electric field for the flawed (solid lines) and intact

(dashed lines) well as the background conductivity is varied. A resistive background

promotes the strongest total and secondary signals. As the conductivity increases, de-

tectability becomes more challenging; at a conductivity of 3×10−1 S/m, the flaw at 500

m depth is undetectable as there is no overlap in the regions where the secondary signal

is above the noise floor and where it comprises a significant percentage of the primary.

Variations in the background geology will also influence the distribution of charges

and thus the measured signal at the surface. To examine the challenges introduced when

variable geology is considered, I will introduce a layer into the model and vary its con-

ductivity. The layer is 50 m thick and its top is at 400 m depth. The flaw will again be

positioned at 500 m depth, and the background conductivity is 10−1 S/m. The return

electrode is 500 m from the well, and radial electric field data are measured along a

line perpendicular to the source. In Figure 4.7, I show data for a flawed well (solid)

and intact well (dashed) for scenarios in which a conductive or resistive layer is posi-

tioned above the flaw. The presence of a resistive layer improves detectability, while a

conductive layer reduces detectability.

To understand the physical phenomena governing this, I have plotted a cross section

through: (a) the model, (b) the currents, (c) the charges, and (d) the electric field in

Figure 4.8 for (first row) a model of an intact well with a conductive layer present,

(second row) a flawed-well model including a conductive layer, (third row) a model of

an intact well with a resistive layer, and (fourth row) a flawed-well model including the

resistive layer. For the comparison, there is two orders of magnitude difference between

the background and the layer. When a conductive layer is present, we see that it acts

to “short-circuit” the system as there is significant current leak-off into that layer. This
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Figure 4.6: Radial electric field as the conductivity of the background is varied for
a 1 km well with a 10 m flaw at 500 m depth. The positive electrode is con-
nected to the top of the casing, the negative electrode is positioned 500 m
away and data are measured along a line 90◦ from the source electrodes. In
(a), we show the total electric field for five different background conductiv-
ities, each indicated on the legend. The solid lines indicate the response of
the flawed well and the dashed lines indicate the response of the intact well
(the primary). In (b), the secondary radial electric field is plotted and in (c),
we show the secondary radial electric field as a percentage of the primary.
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Figure 4.7: Radial electric field as the conductivity of a 50 m thick layer positioned
at 400 m depth is varied. The positive electrode is connected to the top of
the casing, the negative electrode is positioned 500 m away and data are
measured along a line 90◦ from the source electrodes. In (a), we show the
total electric field five different layer conductivities. The black line shows the
scenario where the layer has the same conductivity as the background. The
dashed-lines indicate the intact well and the solid lines indicate the flawed
well. In (b), the secondary radial electric field is plotted (with respect to an
intact well primary) and in (c), we show the secondary radial electric field as
a percentage of the primary.
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reduces the amount of current that reaches the flawed section of the well and decreases

the total charge on the well, which is the source of our signal. Conversely, when a

resistive layer is present, there is less leak-off of currents. In fact, Yang et al. (2016a)

showed that rather than leaking-off, currents can enter the casing if a resistive layer is

present. In terms of detecting a flaw beneath a resistive layer, this means that the current

density and charge along the well increases, thus amplifying the response due to the

flaw.

Conductivity of the casing

The conductivity of the casing is also relevant to how the charges are distributed along

its length. For highly conductive wells, the charge along the length of the well is ap-

proximately uniform, for more resistive wells, the charges follow an exponential decay,

as shown in Figure 4.9. Schenkel (1991) described the decay of currents, and thus the

distribution of charges along the length of a well, in terms of the conduction length,

δL =

√
Sc

σ0
=

√
2πrtσc

σ0
(4.1)

Where Sc is the cross-sectional conductance of the casing (Sc = 2πrtσc for a casing with

radius r, thickness t, conductivity σc and has units of [S · m]) and σ0 is the conductivity

of the background. The conduction length is akin to skin depth in electromagnetics and

is the depth at which the amplitude of currents have decreased by a factor of e−1. Casing

conductivities of 5×105 S/m, 5×106 S/m, and 5×107 S/m correspond to conduction

lengths of ∼ 180 m, 560 m, 1800 m. For the most resistive well shown, 5× 105 S/m,

the vast majority of current has decayed well before it reaches the flaw; the majority of

charges are concentrated where the currents leak off, near the top of the well. Corre-

spondingly, there is greater sensitivity to a flaw in a conductive well than in a resistive
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Figure 4.8: Cross section showing: (a) electrical conductivity, (b) current density,
(c) charge density, and (d) electric field for a top-casing DC resistivity exper-
iment over models with a conductive layer (top two rows) and a model with
a resistive layer (bottom two rows). The layer extends from 400 m to 450 m
depth. The plots in the second and fourth rows correspond to models with a
10 m flaw at 500 m depth.
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Figure 4.9: (a) Charge along the length of wells with three different conductivities
(each indicated by a different color in the legend). The intact wells are de-
noted with dashed lines and the flawed wells are denoted with solid lines. (b)
Secondary charge along the flawed and short wells. The primary is defined
as the electric field due to the 1000 m long intact well. The return electrode
is 2000 m away from the well.

well, as is reflected in the radial electric field data shown in Figure 4.10.

Partial flaw

The above examples considered an impairment that affects the entire circumference of

the casing. This may be suitable in some scenarios where a particular geologic unit

subjects the well to corrosive conditions, however, flaws may also be vertical cracks

along the well (e.g. if pipe burst occurs). This is a much more challenging problem for

DC resistivity because, if only a portion of the circumference is impaired, there is still

a high-conductivity pathway for currents to flow along the entire length of the well. To

examine the feasibility of detecting a partial flaw, I have run simulations where half of

the circumference of the casing is compromised, leaving the other-half intact.

I consider four different depth extents of the flaw between 10 m and 300 m; in all

scenarios the top of the flaw is at 500 m. In Figure 4.11a, I have plotted the total radial

electric field resulting from an intact well (black), wells where the entire circumference
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Figure 4.10: Radial electric field as the conductivity of the casing is varied for a 1
km well with a 10 m flaw at 500 m depth. The positive electrode is con-
nected to the top of the casing, the negative electrode is positioned 500 m
away and data are measured along a line 90◦ from the source electrodes. In
(a), we show the total electric field for three different casing conductivities,
each indicated on the legend. The solid lines indicate the response of the
flawed well and the dashed lines indicate the response of the intact well (the
primary). In (b), the secondary radial electric field is plotted and in (c), we
show the secondary radial electric field as a percentage of the primary.
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is compromised (solid) and wells in which 50% of the circumference has been compro-

mised (dashed); (b) and (c) show the secondary radial electric field and the secondary

as a percentage of the primary, respectively. We see that the depth-extent of the flaw has

little impact on the fully-compromised wells, which is consistent with the observations

in our previous examples. However, if the well is partially flawed, we do see variation

in the secondary response. By compromising 50% of the circumference of the well,

we have reduced the effective cross-sectional conductance over that portion of the well.

Numerical experiments show that if, instead of introducing a flaw which comprises 50%

of the circumference of the well, we reduce the conductivity of the intact well by 50%

over the same depth extent as the flaw, we obtain similar, but not identical, responses

at the surface. Although for extensive flaws, there is a small region over which the sec-

ondary signal is above the noise floor, there are no regions where this coincides with

measurements where the secondary fields are a significant percentage of the primary.

There may be a subset of circumstances, such as if the flaw is near to the surface, or if

the background geology is sufficiently well-known so that the percent threshold can be

reduced, where a partial flaw may be diagnosed, however, these results demonstrate that

a partial flaw is a challenging target for a DC resistivity survey.

4.2.4 Summary

In summary, I provided an overview of the fundamental physics governing the behavior

of currents, charges, and electric fields in a top-casing DC resistivity experiment to

detect an impairment in the well. If a flaw comprises the entire circumference of some

depth interval along the casing, then the charges are concentrated in the portion of the

well above the flaw, and to first approximation, the charge distribution is equal to that of

a well which has been truncated at the depth of the flaw. This excess charge is the source
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Figure 4.11: Radial electric field as the vertical extent of the flaw is varied. The
positive electrode is connected to the top of the casing, the negative elec-
trode is positioned 500 m away and data are measured along a line 90◦ from
the source electrodes. In (a), we show the total electric field four different
flaw extents. The black line shows the response of the intact well. The
dashed-lines indicate the partially flawed wells (50% of the circumference
is compromised) and the solid lines flawed wells in which the entire cir-
cumference of the well has been compromised. In (b), the secondary radial
electric field is plotted (with respect to an intact well primary) and in (c),
we show the secondary radial electric field as a percentage of the primary.
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of our signal. As it is cylindrically symmetric, the resultant secondary electric fields due

to the flaw are purely radial. In terms of survey-design, we can take advantage of this

knowledge and use the return electrode location to reduce coupling with the primary

electric field in our data (as shown in Figure 4.4). Our ability to detect a flaw across

the entire circumference of the casing depends upon the conductivity of the background

and casing, as well as the depth of the flaw. Larger contrasts between the casing and

the background (e.g. a more resistive background and / or a more conductive casing)

increase the secondary response, as does decreasing the depth of the flaw. If only a

portion of the circumference is impaired, leaving a conductive pathway connecting the

top and bottom portions of the casing, the secondary signal is small and thus will be

challenging to detect under most circumstances.

For the subset of scenarios where we do have data sensitivity to the flaw, an inverse

problem can be solved to estimate the depth of the impairment. One approach would be

to use a reduced modeling procedure whereby only a few parameters are sought. For the

case presented here, we might invert for a smooth background, the length of the well,

and potentially the conductivity of the casing, if it is not known a-priori.

In the next section, I transition from viewing the casing as the target to working on

the scale of a geophysical imaging application in reservoir monitoring and viewing the

casing as a high-conductivity feature present in that setting.

4.3 Survey design for exciting targets at depth

There are many problems in hydraulic fracturing, carbon capture and storage and en-

hanced oil recovery that require targets to be illuminated and data to be acquired and

inverted. Typically these experiments include steel-cased wells and the target of interest

could be resistive or conductive. The target could be immediately adjacent to a well or
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offset from it, and the survey may employ electrodes on the surface or positioned down-

hole. Similarly, receivers may be positioned on the surface or in adjacent boreholes.

Each of these factors influences our ability to detect a target in our data.

Detectability of a target requires two steps: (1) source fields must excite the target,

and (2) receivers must be positioned so that the secondary response is measurable. In

this section, I focus on the first point – exciting the target. I will examine the impact of

source electrode locations, the physical properties of the target and the geometry of the

target on our ability to excite a response.

4.3.1 Source location

I begin by examining the impact of the source electrode location on our ability to deliver

current to a region of interest in the model. The model I consider is 1 km long well in a

10−1 S/m background. The well has a conductivity of 5×106 S/m, an outer diameter of

10 cm thickness, and a 1 cm thickness; these are the same parameters used for the casing

integrity experiment described in the previous section. The conductivity of the fluid

filling the casing is identical to that of the background. I am interested in effects near

the well and thus the modeling can be carried out using the 2D cylindrical mesh provided

that the return electrode is sufficiently far away. The return electrode is physically a disc

of current at a radius equal to the distance of the return electrode from the well, in this

case 2 km. The assumption of cylindrical symmetry and the use of a distant return

electrode has similarly been applied in Schenkel (1991).

To examine the impact that the source electrode location has on our ability to excite

a target, I consider the electrode locations shown in Figure 4.12. Three of the electrodes

are connected to the casing (tophole - blue, centered - green, and downhole - red); the

remaining electrodes are not connected to the casing; these include the surface electrode
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Figure 4.12: Electrode locations to be compared. The top casing electrode (blue),
centered electrode (green, 500 m depth), and downhole electrode (red, 500
m depth) are connected to the casing. The surface electrode (orange) is off-
set from the well by 0.1 m. The remaining electrodes are positioned along
the axis of the casing. Panel (a) shows the entire length of the casing, while
(b) zooms in to the bottom of the casing to show the separation between the
electrodes beneath the casing.

(orange) as well as the five electrodes near the end of the pipe (purple - within the pipe,

brown, pink, grey and yellow are beneath the end of the pipe). The surface electrode is

offset from the well by 0.1 m.

To assess the ability of each electrode configuration to excite a geologic target of

interest, I will examine the current density in the formation. In Figure 4.13, I have

plotted the amplitude of the current density along a vertical line (a) 25 m, (b) 50 m, and

(c) 100 m radially offset from the well. In terms of survey design, we wish to choose

a source location that maximizes the total current density within the depth region of

interest. If the target is near the surface, we choose an electrode which is connected

to the top of the casing, or near the casing at the surface. Interestingly, at depth, there

is little distinction between these two scenarios. Thus, if one is limited to deploying
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electrodes at the surface, and for practical purposes, connecting infrastructure to the

well-head presents a challenge, then grounding the electrode near the well still results in

a survey that benefits from the well acting as a high-conductivity pathway to help deliver

current to depth. If the aim however, is to excite a deeper target, we see that positioning

the electrode downhole can significantly increase the current density delivered to that

depth. For example, if we have a target near 500 m depth, positioning the electrode

near that depth nearly doubles the current density as compared to an electrode at the

surface. If a target is near the end of the well, between 800 m and 1000 m depth, then

positioning an electrode near the end of the well triples the current density. This effect

will be amplified if the well is lengthened, since we observe exponential decay of the

currents carried along according to the conduction length (equation 4.1).

Kaufman (1990) pointed out that the difference between an electrode positioned

along the axis of the casing and one coupled to the casing at depth is highly localized

around the source, and thus is not an important distinction at the scales we consider for

a geophysical imaging survey. I can test this numerically by comparing the currents

arising from the electrode which is connected to the casing 5 m above the bottom of the

casing (red in Figures 4.12 and 4.13), and the electrode positioned along the axis of the

casing 1.25 m above the bottom of the casing (purple in Figures 4.12 and 4.13). Indeed,

we see that the red and purple lines overlap for all offsets in Figure 4.13, indicating that

both situations result in the same distribution of currents within the formation.

For electrodes beneath the casing, the distribution of currents is significantly differ-

ent. For electrodes 1.25 m, 5 m, 10 m and 20 m below the pipe, we see that within∼ 100

m above and below the electrode location, the currents are nearly symmetric, following

the expected response of a point source. I have included a simulation with the electrode

20 m below the pipe when there is no casing present; this is shown in black in Figure
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Figure 4.13: Total current density along a vertical line offset (a) 25 m, (b) 50 m
and (c) 100 m from the axis of the casing, which extends from the surface
(0 m) to 1000 m depth. The electrode locations correspond to those shown
in Figure 4.12. For reference, a simulation with an electrode 20 m below
the casing when there is no casing present is shown in black.

4.13. The main difference between the distribution of currents for each of these scenar-

ios is the reduction in current density in the top 1000 m, with increasing electrode depth;

as the electrode is moved deeper, less current is channeled into the casing. Schenkel and

Morrison (1990) noted that for electrodes positioned beneath a well, if the electrode is

more than 100 casing diameters beneath the casing, then the casing has little impact on

the fields below or far from the pipe. The current is much more localized if the electrode
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is beneath the casing, and thus if a target is beneath or very near the end of the well, then

it is advantageous to position the electrode beneath the well.

Not surprisingly, if the source electrode can be positioned near the depth region of

interest, the current density delivered to that region is larger. Numerical experiments

show that the position of the return electrode makes minimal impact on the currents at

depth. However, if the return electrode is within tens of meters of the well, the near

surface currents are significantly altered. This is consistent with our observations in

section 4.2, where I showed that the return electrode location has little impact on the

magnitude of the secondary signals, but its position alters the geometry of the source

fields and this can be used to reduce coupling of receivers to the primary field.

4.3.2 Target properties

The physical property contrast between the target and the background, the target’s ge-

ometry and proximity to the well, all influence our ability to observe its impact on the

data we measure. The purpose of this section is to explore the impact of these factors

on the excitation and detection of the target. In the first example, I examine the role of

the conductivity of a cylindrical target which is in contact with the well. The second ex-

ample is again a cylindrically symmetric co-axial disc target but there is a gap between

the casing and the target. The final example is fully 3D; the target is a block and I look

at the excitation as a function of the distance of a block from the well.

Target in contact with the well

First, I consider a cylindrical target that is in contact with the well. Schenkel and Mor-

rison (1994) examined such a scenario for a conductive target (e.g. a steam injection or

water flood) in a mis-à-la-masse type experiment where a source electrode is connected

to the casing at the same depth as the center of the target. They considered a cross-well
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experiment with potential electrodes in an offset, uncased well, and compared two sce-

narios for the source well: one in which the source well is an open-hole, and the second

in which it was cased. They demonstrated that the casing enhances the response, and

thus the data sensitivity to the target, as compared to an experiment where current is

injected directly into the target and no casing is present. In this example, I build upon

those findings and examine the role of the conductivity of the target on our ability to

excite it as well as the impact on the data if the target is not directly in contact with the

well.

The model I use is a 1 km casing in a half-space with a target. The target extends

25 m vertically and has a 25 m radius and the depth to its top is 900 m. The model

is cylindrically symmetric and thus we expect that the secondary electric field at the

surface due to the target will be purely radial. As such, I apply the lessons learned from

the casing integrity example and use the return electrode to reduce coupling with the

primary field along a line perpendicular to the source. I position the return electrode

500 m from the well-head and compare both top-casing and down-hole source electrode

locations.

We begin by examining the physical behavior governing the DC response of a con-

ductive and resistive target. Figure 4.14 shows the (a) conductivity model, and resultant:

(b) current density, (c) charge density, and (d) electric fields for a conductive target (10

S/m, top row) and a resistive target (10−3 S/m, bottom row) in a down-hole experiment

where the source electrode is positioned at the center of the target. The extent of the

steel-cased well is noted by the vertical black line in panel (a). For the conductive tar-

get, we see an accumulation of positive charges along the radial and vertical boundaries

of the target. This is consistent with currents that have been channeled into the conduc-

tor and exit into a more resistive background. Conversely, for the resistive target, we
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see an accumulation of negative charge on the radial boundary, consistent with current

moving from a resistive region to a more conductive material. We also notice some

positive charge accumulation on the top and bottom boundaries of the target; some of

the currents deflected around the resistor do enter from the top and bottom, resulting in

an accumulation of positive charge. This is not observed in a traditional mis-à-la-masse

experiment, where a point source is positioned within the target. Figure 4.15 shows the

current density, charges and electric fields for a mis-à-la-masse experiment in which no

steel cased well is present.

In a DC experiment, the electric field response we measure is a result of the distribu-

tion of charges within the domain. As a metric for quantifying excitation, I integrate the

secondary charge over this depth interval containing the target. In Table 4.1, I show the

secondary charge integrated over the depth interval containing the target; the secondary

charge on the casing within this region is included in the calculation. To examine how

the charge relates to the electric field data, I have plotted (a) total radial electric field,

(b) secondary radial electric field (with respect to a primary that includes the casing in a

halfspace), and (c) the secondary radial electric field as a percentage of the primary for

a down-hole source and similarly for a top-casing source (d, e, f) in Figure 4.16. I adopt

the same noise floor and percent threshold as in the casing integrity examples (10−7

V/m and 20%, respectively). For time-lapse surveys where a baseline survey has been

taken and the background is well-characterized, this threshold could likely be reduced.

The black line in panels (a) and (d) corresponds to the baseline model in which no tar-

get is present; each of the colored lines corresponds to a different target conductivity as

indicated in the legend.

First, we examine the impact of the conductivity of the target and notice that there is

an asymmetry between secondary charge on conductive targets and resistive targets. For
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Figure 4.14: Cross section showing: (a) electrical conductivity, (b) current density,
(c) charge density, and (d) electric field for a DC resistivity experiment
with a resistive target (top) and a conductive target (bottom). The positive
electrode is positioned in the casing at the 912.5 m depth. The casing is
shown by the black line that extends to 1 km depth in panel (a).

Table 4.1: Integrated secondary charge over a target adjacent to the casing, as
shown in Figure 4.14.

integrated secondary charge (C)
target conductivity (S/m) downhole source top-casing source

1e-03 -4.24e-12 -1.08e-12
1e-02 -3.82e-12 -9.68e-13
1e-01 0.00e+00 0.00e+00
1e+00 1.75e-11 4.46e-12
1e+01 3.26e-11 8.28e-12
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Figure 4.15: Cross section showing: (a) electrical conductivity, (b) current density,
(c) charge density, and (d) electric field for a DC resistivity experiment
with a conductive target (top) and a resistive target (bottom). The positive
electrode is positioned at 912.5 m depth. No casing is included in this
simulation. Note that the colorbars for the charge density (c) and electric
field (d) are different than those used in Figure 4.14. For the resistive target,
the colorbar is saturated, the charge density over the resistive target is on
the order of 10−13 C/m3.
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Figure 4.16: Radial electric field at the surface as the conductivity of a cylindrical
target, in contact with the well, is varied. The target has a radius of 25
m and extends in depth from 900 m to 925 m. The return electrode is
on the surface, 500 m from the well and data are measured along a line
perpendicular to the source. The panels on the left show (a) the total electric
field, (b) the secondary electric field with respect to a primary that does
not include the target, and (c) the secondary electric field as a percentage
of the primary for a survey in which the positive electrode is positioned
downhole at 912.5 m depth. The panels on the right similarly show (d) the
total electric field, (e) the secondary electric field, and (f) the secondary
electric field as a percentage of the primary for a top-casing experiment.
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a 1 S/m target, which is one order of magnitude more conductive than the background,

the integrated secondary charge is 1.75× 10−11 C, while for a 1× 10−2 S/m target,

which is one order of magnitude more resistive than the background, the integrated sec-

ondary charge is −3.82× 10−12 C for the downhole casing experiment. Thus, there is

a factor of 4.6 between the magnitude of the secondary charge for these targets; this is

equivalent to the ratio we see between the secondary electric field measurements at the

surface observed in Figure 4.16b. When also considering the influence of the primary

electric field on our ability to detect a target, we see that for a down-hole casing experi-

ment, the conductive targets are detectable; they both have a significant region where the

secondary is above the noise floor and the secondary comprises a significant percentage

of the primary. The resistive targets, however, are not. Although within 200 m of the

well, the secondary signal is above the noise floor, this also corresponds to where the

primary field is large; the percent threshold would need to be reduced to less than 5% in

order to have confidence in the signals due to the resistive targets.

When comparing the downhole source to the top-casing source experiments for a

fixed conductivity, there is a factor of 3.9 between the integrated secondary charge

shown in 4.1; this is reflected in the secondary electric field data in Figure 4.16b &

e. For the top-casing experiment, none of the targets is detectable. There are two fac-

tors that make this a more challenging experiment than the downhole scenario: (1) less

current is available to excite the target, as reflected in Table 4.1 and (2) the primary field

is stronger at the receivers (200 m from the well the primary field has an amplitude of

10−5 V/m, while for the down-hole source experiment, the primary has an amplitude

of 2×10−6 V/m). Addressing the excitation of the target requires that the source elec-

trode be positioned downhole, closer to the target. The second point may be overcome if

receivers can be positioned closer to the target, for example within an adjacent borehole.
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In summary, the integrated secondary charge provides a metric for a survey’s ability

to excite a target, and shows that conductive targets are easier to excite than resistive

targets. As expected, if the source electrode can be positioned near the target, excitation

is enhanced. This also has the added benefit of reducing the strength of the primary

electric field at the surface, as compared to a top-casing survey; this increases the po-

tential for detecting a target with surface-based receivers. In the next section, I examine

the significance of the electrical connection between the casing and the target.

Target not in contact with the well

How significant is the electrical connection between the casing and the target for our

ability to excite a response? To examine this, I introduce a small gap equal to the thick-

ness of the casing (1 cm) between the casing and the target. This has negligible effect

on the volume of the target, but it changes the electrical characteristics of the problem.

Consider a conductive target; if it is in-contact with the well, we are effectively con-

ducting a mis-à-la-masse experiment, and the conductor will have a net positive charge.

When the target is isolated from the casing, the total charge on the target must be zero,

and thus dipolar effects, in which negative charges build up on the inner interface of the

cylinder target and positive charges build up on the outer interface of the target, will be

the source of our signal. This is demonstrated in Figure 4.17.

The corresponding secondary charge integrated over the target depth and radial elec-

tric field data are shown in Table 4.2 and Figure 4.18. For comparison, the data result-

ing from the target in contact with the well are plotted in the dashed, semi-transparent

lines. While there is little difference in the integrated secondary charge or the electric

field measurements for the resistive targets, we see that there is a factor of 1.3 difference

(i.e. 30%) between the integrated secondary charges and correspondingly, the secondary
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Figure 4.17: Cross section showing: (a) electrical conductivity, (b) current density,
(c) charge density, and (d) electric field for a DC resistivity experiment
with a conductive target (top) and a resistive target (bottom) which is not in
contact with the well. The positive electrode is positioned in the casing at
the 912.5 m depth. The casing is shown by the black line that extends to 1
km depth in panel (a).

electric fields, from a 10 S/m target in contact with the well versus not. Similarly, there

is a factor of 1.2 between a 1 S/m target in contact with the well versus not for both the

downhole and top-casing sources. Increasing the gap between the target and the casing

decreases the integrated charge and correspondingly reduces the secondary electric field

at the surface. The integrated secondary charge for a 10 S/m target with a 10 cm gap be-

tween the target and casing in a downhole source experiment is 1.7×10−11 C, which is
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Table 4.2: Integrated secondary charge over a target that is not electrically con-
nected to the casing, as shown in Figure 4.17.

integrated secondary charge (C)
target conductivity (S/m) downhole source top-casing source

1e-03 -4.24e-12 -1.08e-12
1e-02 -3.80e-12 -9.64e-13
1e-01 0.00e+00 0.00e+00
1e+00 1.49e-11 3.79e-12
1e+01 2.51e-11 6.39e-12

a factor of 2.2 smaller than the connected target; correspondingly the electric field data

at the surface are reduced by a factor of 2.2 as compared to the connected target. Thus,

a direct, electrical connection between the target and the well in which we connect the

source is preferable for exciting and detecting conductive targets. In the next section, I

further examine the impact of the separation between the target and casing.

Target offset from the well

The examples thus far have focused on a particular geometry where the target is sym-

metric about the well and is either connected or not. The more general case is where

there is a target located anywhere in the medium and we wish to use DC or EM to

characterize it. For example, in some scenarios, instrumenting a well for a geophysi-

cal survey may not be possible if it is also actively being used for an injection. Using

another well, offset from the injection well, may then be preferable for positioning elec-

trodes. In such circumstances, the physical property model is fully 3D and there are

more factors that influence our ability to excite the target; in addition to the conductivity

and geometry of the target, the distance between the well where the source electrode is

positioned is now relevant. To address these potential applications, I examine a fully 3D

scenario in which a target block is located away from the source well. Our primary goal

is to compare relative excitations that arise from using different survey parameters. It
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Figure 4.18: Radial electric field at the surface as the conductivity of a cylindrical
target, which is not contact with the well, is varied. The target has a radius
of 25 m and extends in depth from 900 m to 925 m. The return electrode
is on the surface, 500 m from the well and data are measured along a line
perpendicular to the source. The panels on the left show (a) the total electric
field, (b) the secondary electric field with respect to a primary that does
not include the target, and (c) the secondary electric field as a percentage
of the primary for a survey in which the positive electrode is positioned
downhole at 912.5 m depth. The panels on the right similarly show (d) the
total electric field, (e) the secondary electric field, and (f) the secondary
electric field as a percentage of the primary for a top-casing experiment.
The data shown in Figure 4.16, for the target in contact with the well, are
plotted in the dashed, semi-transparent lines for reference.
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is sufficient to evaluate an electric dipole moment of the target that is evaluated with a

Born approximation (Born, 1933).

For a target offset from the pipe, we expect the secondary response due to that target

to be dipolar. Thus, a natural proxy for excitation is the dipole moment of the target. I

will adopt a Born-approximation approach to quantify the excitation and take the norm

of the integrated anomalous current density over the target volume, that is,

m =

∣∣∣∣∣∣∣∣∫ ~ja dV
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∫ σs~ep dV
∣∣∣∣∣∣∣∣ (4.2)

where σs = σ−σp is the secondary conductivity (the difference between the conductiv-

ity of the target and the conductivity of the background),~ep is the primary electric field

(the electric field due to the source, casing, and half-space background), and ~ja is the

anomalous current density which is non-zero only over the volume where the target is

located.

The target I consider is 50 m wide in both horizontal dimensions and is 25 m in

height. Its top is at 900 m depth, as in the previous examples. I will examine both

downhole source and top-casing experiments. A depth slice showing the primary electric

field for the downhole electrode is shown in Figure 4.19; the return electrode is on

the surface at x =-500 m, y =0 m. The three different target positions relative to the

borehole are outlined in white. The solid line shows the target which is inline with the

return electrode, the dashed is 90◦ from the source electrode and the dotted line shows

the target which is 180◦ from the return electrode. I vary the distance from the well

to the target and have plotted the Born-approximated dipole moment for four different

target conductivities in Figure 4.20 for (a) a downhole experiment, and (b) a top-casing
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Figure 4.19: Depth slice showing the primary electric field due to a downhole elec-
trode and a return electrode located on the surface at x =-500 m, y =0 m.
The red line indicates the azimuth of the source. We examine the 3 differ-
ent target azimuths shown by the white outlines. The solid line indicates
the target inline with the source, the dashed is 90◦ from the source line, and
the dotted line is 180◦ from the source line.

experiment. The offset is calculated from the center of the well to the nearest edge of

the target that is excited by a downhole source. As before, conductive targets are much

easier to excite than resistive targets, and for a given conductivity, a downhole source

provides greater excitation than a top-casing source. Naturally, as the target is moved

further from the well, the geometric decay of source fields reduces our ability to excite

the target. Positioning the return electrode along the same azimuth as the target acts to

mitigate some of these effects for targets that are at distances greater than 200 m from

the well, while for targets nearer to the well, the return electrode location has little effect

on the excitation.

The next step to consider is detection of the secondary response due to this target.

Consistent with the Born-approximation approach, I simulate the target as a dipole with
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Figure 4.20: Integrated anomalous current density (excitation), as defined in equa-
tion 4.2, for a 50 m × 50 m × 25 m target at 900 m depth in a DC exper-
iment with the positive electrode (a) downhole at 912.5 m depth, and (b) a
top-casing electrode. The return electrode is positioned on the surface 500
m from the well. Each line color indicates a different target-conductivity.
The different line styles correspond to different target azimuths relative to
the plane of the source electrodes and correspond to those show in Figure
4.19. The solid line indicates a target inline with the source, the dashed is
90◦ from the source, and the dotted line is 180◦ from the source. Offset is
calculated from the center of the well to the edge of the target closest to the
well.

a moment computed with equation 4.2 and compare the secondary electric field data

at the surface for models with, and without, the casing. For this example, I select the

model of a conductive target (10 S/m) with center 50 m offset from the well. The target

is along a line 90◦ from the source (e.g. along the same line as the dashed-outline in

Figure 4.19). This gives a dipole moment of 38 Am for the target. The electric field data,

measured along the same line as the target, are shown in Figure 4.21. The secondary

response with the casing is shown in blue, and the response of the same dipole in a half-

space is shown in orange. The secondary response due to the dipole in a half-space falls

below the 10−7 V/m noise floor for all offsets, whereas, when the casing is included,

the secondary response is above the noise floor until beyond offsets of 600 m from the

well. The casing not only helps excite a target, as was demonstrated in Schenkel and
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Morrison (1994), it also provides a conductive pathway for the secondary currents, thus

increasing the secondary signal observed at the surface; this was similarly noted in Yang

et al. (2016a). In the model with the casing, the secondary signal comprises a significant

percentage of the primary between offsets of∼ 200 m and∼ 650 m, providing a window

between 200 m and 600 m where the secondary electric field is above the noise floor and

comprises a significant percentage of the primary.

If I move the target further from the well, positioning its center 75 m from the well,

then the dipole moment is reduced to 24 Am. If I use the criterion that the secondary

electric field must be above the noise floor and be at least 20% of the primary field,

then the region over which we can expect to collect data is reduced to a 50 m window

between 300 m and 350 m offset from the well. For this given survey, then, we can

consider ∼ 25 Am as a threshold for detectability of a target.

Summary

The examples presented here showed that conductive targets are much easier to excite

than resistive targets. For deep targets, a downhole electrode is preferable to a top-

casing source as it delivers more current at depth to excite the target and reduces the

strength of the primary at the surface; this makes the secondary field a larger percentage

of the primary. For targets in close proximity to the well, if the target is in contact with

the well, that electrical connection enhances the response. Additionally, I showed that

beyond helping excite a target, as was demonstrated by Schenkel and Morrison (1994),

the casing also improves detectability of secondary signals at the surface.

Designing a survey for a specific setting may require incorporation of 3D geologic

structures and may include inversions to examine a survey’s ability to recover a target.

In this case, it is desirable to have a coarse-scale representation of the steel-cased well
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Figure 4.21: (a) Sum of the primary and secondary radial electric field due to a
dipolar target with moment of 38 Am centered 50 m from the well, either
calculated with the casing (blue) or simply a dipole in a half-space (orange).
(b) Secondary radial electric field due to a dipolar target in a halfspace with
casing (blue) and without casing (orange). Secondary radial electric field as
a percentage of the primary. The target is along a line 90◦ from the source
electrodes; this is the same line along which we measure data at the surface.

141



on the simulation mesh. This is the topic of the next section.

4.4 Coarse-scale approximations of the well

When approaching the inverse problem, many forward simulations are required, and

typically, a 3D cartesian mesh, with cells that vary on the length scales of the geol-

ogy, is desired. Thus, rather than performing a fine-scale simulation of the steel-cased

well, we may wish to represent the well on a coarse mesh. In the literature, two main

approaches arise: the first approximates the well as some form of “equivalent source,”

such as a charge distribution (e.g. Weiss et al. (2016)); the second approach represents

the well as a conductivity feature on the coarse-mesh (e.g. Swidinsky et al. (2013); Um

et al. (2015); Yang et al. (2016a); Kohnke et al. (2017); Puzyrev et al. (2017), among

others). Here, I will focus on the second approach, noting that a charge distribution

along the length of the well can be computed with the 2D or 3D cylindrical code de-

scribed in Chapter 3. Within the literature, there is disagreement among approaches for

selecting the conductivity of the coarse-scale feature approximating the well. Um et al.

(2015) replaces the fluid-filled cylinder with a solid rod having the same conductivity

as the casing, arguing that it is the contrast between the conductivity of the well and

the conductivity of the surrounding geology that is the most important factor; Puzyrev

et al. (2017) also adopts this approach. Other authors have opted to preserve the cross-

sectional conductance of the well (Swidinsky et al., 2013; Kohnke et al., 2017); this is

consistent with the transmission-line model of the well discussed in Kaufman (1990).

The aim of this section is to analyze these approaches.
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4.4.1 Replacing a hollow-cased well with a solid cylinder

I consider a steel-cased well with a conductivity of 5× 106 S/m that is embedded in

a 0.1 S/m halfspace; the conductivity of the material that fills the well is the same as

the background. The well has an outer diameter of 10 cm and a thickness of 1 cm,

and I will vary its length. I will perform a top-casing experiment, where the positive

electrode is connected to the casing at the surface. The return electrode is positioned

8 km away, and a cylindrically symmetric mesh is used in the simulations. I examine

approximations that treat the casing as a solid cylinder with the same outer-diameter as

the true, hollow-cased well.

The distribution of charges, or equivalently, the current in the casing, is the source

of the electric response of the casing. Thus to judge if two models of the casing are

“equivalent”, I examine the current and charges as a function of depth. In Figure 4.22,

I have plotted the vertical current and charges along the casing for the true, hollow

cased well (solid), solid cylinder with conductivity equal to that of the casing, 5× 106

S/m (dashed), and solid cylinder with a conductivity that preserves the product of the

conductivity and the cross-sectional area of the conductor, 1.8× 106 (dotted), for four

different casing lengths, each indicated by a different color. Figure 4.22 shows: (a) the

vertical current along the casing, (b) the difference in current between the approximate

model and the true model, (c) that difference as a percentage of the true solution (d)

the charge per unit length, (e) difference in charge per unit length and (f) difference in

charge per unit length as a percentage of the true solution.

For short wells, we see that the current decays linearly and that the charge distri-

bution is nearly uniform above the end of the well, while for longer wells, the decay

of the current is exponential in nature, as is the charge distribution. This behavior is

consistent with that predicted by the transmission line solution described in Kaufman
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Figure 4.22: Currents (top row) and charges (bottom row) along the length of a
hollow steel-cased well (solid lines), solid cylinder with conductivity equal
to that of the steel-cased well (dashed-lines), and a solid cylinder with a
conductivity such that the product of the conductivity and the cross sec-
tional area of the cylinder is equal to that of the hollow-pipe (dotted lines).
Each of the line-colors corresponds to a different casing length, as indi-
cated in the legend. In (a), we show the vertical current in the casing, (b)
shows the difference from the true, hollow-cased well in the vertical current
within the casing, and (c) shows that difference as a percentage of the true
currents. In (d), we show the charge per unit length along the casing, (e)
shows the difference from the true, hollow-cased well and (f) shows that
differences as a percentage of the true charge distribution. The x-axis on all
plots is depth normalized by the length of the casing.

and Wightman (1993). Kaufman and Wightman (1993) showed that the transition be-

tween the linear decay of currents and the exponential decay of currents is controlled by

three factors: the cross sectional conductance of the well, the resistivity of the surround-

ing formation, and the length of the well. Schenkel (1991) similarly summarized this

behavior in the definition of the conduction length (equation 4.1), which is the length

over which the currents in the casing have decayed by a factor of 1/e. For sufficiently

conductive and short wells (e.g. Lc/δ � 1, where Lc is the length of the casing), the

current decay is linear and independent of the conductivity, whereas for longer wells,
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(Lc/δ � 1), the rate of decay of the currents is controlled by the conduction length (see

equations 45 and 53 in Kaufman and Wightman (1993)).

In preserving the cross-sectional conductance, we see that the difference in cur-

rents and charges along the length of the well is negligible; the maximum difference

in currents for the 2000 m long well which has equivalent cross-sectional conductance

is 7× 10−7 A as compared to the difference of 0.18 A when using the conductivity of

the casing. This difference is important as it changes how much current is available to

excite a target at depth. For a 2000 m long well, the current is overestimated by > 150%

if the well is replaced by a solid cylinder with the same conductivity of the steel-cased

well. It also changes the distribution of charges and thus the electric field due to the

well. Figure 4.22e shows us that the extra conductance introduced when approximating

the well using the conductivity equal to the casing results in a secondary dipolar charge

on the casing. This in turn reduces the electric field we observe at the surface, as shown

in Figure 4.23. For a long well, the difference can be as large as 40% near the well.

The numerical time-domain EM experiment used in Um et al. (2015) to justify the

approximation of the well by a solid, conductive rod having the same conductivity as the

steel-cased well used a 200 m long well with a thickness of 12.223 mm, outer diameter

of 135 mm, conductivity of 106 S/m in 0.033 S/m half-space. The conduction length

of this well is 560 m; this is more than twice the length of the well. Therefore, the

behavior of the currents falls into the linear regime, where the decay of currents is mostly

independent of the conductivity, and thus the difference between using the conductivity

of the casing or preserving cross-sectional conductance is less significant. However, if

longer wells such as those typically employed in hydrocarbon settings, are considered,

the behavior of the currents and charges depends upon the conductance of the casing,

and thus that is the quantity that should be conserved in an approximation of the hollow-
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Figure 4.23: Radial electric field measured at the surface for a model of a hollow
steel-cased well (solid lines), a solid cylinder with conductivity equal to
that of the steel-cased well (dashed-lines), and a solid cylinder with a con-
ductivity such that the product of the conductivity and the cross sectional
area of the cylinder is equal to that of the hollow-pipe (dotted lines). Each
of the line-colors corresponds to a different casing length, as indicated in
the legend. In (a), we show the total radial electric field, (b) shows the dif-
ference in electric field from that due to the true, hollow-cased well, and (c)
shows that difference as a percentage of the true electric fields. The x-axis
on all plots is distance from the well normalized by the length of the casing.

cased well by a solid rod.

In order to confirm that this conclusion is valid for variable geology, I have included

a simulation with a 2 km long casing in a layered background. Each layer is 50 m thick

and the conductivity was assigned randomly; three instances are included, as shown in

Figure 4.24. The mean of the background conductivity is 0.1 S/m for each of the models.

The currents and charges along the length of the well for the true model, and a model

approximating the well as a solid cylinder with equal cross-sectional conductance, are

shown in Figure 4.25. For all of the models shown, the difference in both the casing

currents and the charges are 5 orders of magnitude less than the amplitude of the total

currents and charges; thus I conclude that approximating a hollow cylindrical steel cas-

ing by a solid cylinder with a conductivity that preserves cross-sectional conductance is

valid for models with variable geology.
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Figure 4.24: Three realizations of a 2 km long casing in a layered background,
where the conductivity of the layers is assigned randomly. Each layer is
50 m thick, and the mean conductivity of the background is 0.1 S/m. The
color of the title corresponds to the plots of the currents and charges in
Figure 4.25

4.4.2 Cartesian grid

In the previous section, I showed that a hollow, cylindrical steel-cased well can be ap-

proximated by a solid cylinder with equal cross-sectional conductance. In this section,

I move to a coarser, cartesian mesh, such as might be employed when solving a 3D in-

verse problem. I examine a simple approximation of a steel cased well on a cartesian

grid. I employ 4 tensor meshes, each with progressively larger cell widths for the finest

cells that capture the casing. On each of the cartesian meshes, I approximate the casing

by preserving the product of the conductivity and the cross sectional area on the mesh.

For comparison, I run a fine-scale simulation on a 3D cylindrical mesh that accurately

discretizes the casing; it uses 4 cells across the casing-wall. The casing model is similar

to that used in previous examples: it is 1 km long, has an outer diameter of 10 cm, a

thickness of 1 cm, and is embedded in a 0.1 S/m half-space. The positive electrode is
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Figure 4.25: (a) Total vertical current through the casing for the three layered-earth
models shown in Figure 4.24. The solid lines indicate the response of the
true, hollow steel cased-well and the dotted lines indicate the response of
a solid cylinder having the same cross-sectional conductance as the hollow
well. (b) Difference between the currents along the casing in the solid well
approximation and the true, hollow well. (c) Charge per unit length for each
of the models. (d) Difference in charge per unit length between the true
model of the casing and the approximation which preserves cross-sectional
conductance.

connected to the top of the casing and a return electrode is positioned 1 km from the

well-head.

The resultant currents and charge per unit length are shown in Figure 4.26. In the top

row, panel (a) shows the total current in a region approximating the well, along with the

total current in the “true” cylindrical well (black line), (b) shows the difference between

the current through the cartesian cells and the true model, and (c) shows the difference

as a percentage. Similarly, in the bottom row, I show (d) the charge per unit length along

the cylindrical well (black line) and cartesian-prism approximations, (e) the difference
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Figure 4.26: Currents (top row) and charges (bottom row) along the length of a
steel cased well. The “true” hollow-cased well is simulated on a 3D cylin-
drical mesh and has 4 cells across the width of the casing thickness (black
line). The colored lines correspond to the currents and charges computed
along the well represented on a cartesian mesh with cell widths shown in
the legend. The finest vertical discretization is 2.5 m in all simulations.
To represent the hollow cased well on the cartesian mesh, the cells inter-
sected by the casing are assigned a conductivity that preserves the product
of the conductivity and cross-sectional area of the well. In (a), we show
the vertical current in the casing, (b) shows the difference from the true,
hollow-cased well in the vertical current within the casing, and (c) shows
that difference as a percentage of the true currents. In (d), we show the
charge per unit length along the casing, (e) shows the difference from the
true, hollow-cased well and (e) shows that differences as a percentage of
the true charge distribution.

in charge per unit length from the charge per unit length on the true cylindrical model,

and (f) that difference as a percentage of the charge per unit length on the cylindrical

well.

The approximation of the cylindrical well by a rectangular prism with width equal

to the diameter of the casing introduces minimal error in the currents and charges com-

puted using a finite volume approach, even though the casing is only captured by one cell
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across its width. Comparing the current along the length of the well for the 3D cylindri-

cal well and the cartesian simulation with 0.1 m cells, we see that the error introduced

is < 2.5% (until the end of the well where the current approaches zero). Similarly,

the difference in the charge per unit length is < ±1.25%. As successively coarser dis-

cretizations are used, accuracy is gradually lost; by doubling the cell sizes to 0.2 m, the

error in the currents is 6% at its maximum and < ±3% in the charge along the casing.

A factor of 8 increase in cell size (0.8 m cells) results in a maximum error of 15% in

the currents. It is important to note that the forward simulation is conducted using a

finite volume approach; other approaches such as finite difference or integral equation

approaches may have worse agreement if care is not taken to handle large physical prop-

erty contrasts, captured by a single cell, in the simulation. Note that the behavior of the

errors depends upon the properties of the casing (e.g. conductivity and length) as well

as the conductivity of the background. This might be expected from the description of

the casing conduction length (equation 4.1). If the conduction length is large relative

to the length of the well, the currents decay linearly, and the geometry and conductivity

of the well are less significant in the behavior of the currents. Alternatively, if the con-

duction length is comparable to the length of the well, the currents decay exponentially

with a decay rate that depends on the geometry and conductivity of the well. For exam-

ple, if the background is more resistive, increasing the contrast between the casing and

background, the errors are reduced. Using a background conductivity of 100Ωm, the

maximum error introduced in the current is < 1% with 0.1 m cells and < 2% with 0.8

m cells.

Depending on the level of accuracy required in a 3D simulation, there are several

strategies that one might take to reduce this error. In some cases, local refinement can be

achieved with a tetrahedral mesh, as is often employed when using finite element tech-
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niques (e.g. Weiss et al. (2016)), or an OcTree mesh (Haber et al., 2007). Other, more

advanced approaches including upscaling and multiscale could also be considered. In an

upscaling approach, one inverts for a conductivity model, which might be anisotropic,

that replicates the physical behavior of interest (Caudillo-Mata et al., 2017a). Multiscale

techniques translate conductivity information from a fine-scale mesh to a coarse-scale

mesh, on which the full simulation is to be solved, using a coarse-to-fine interpolation

that is found by solving Maxwell’s equations on the fine mesh locally for each coarse

grid cell (Haber and Ruthotto, 2018; Caudillo-Mata et al., 2017b). The 3D cylindrical

forward simulation code described in Chapter 3 and used in this example can serve a

tool for validating and refining an approach to achieve the desired level of accuracy.

4.5 Conclusion

The work in this chapter is motivated by the increasing use of steel cased wells in geo-

science problems, including monitoring applications such as carbon capture and storage

and hydraulic fracturing. For geophysical imaging of targets at depth, the wells are

beneficial as they can be used to channel currents to depth and enhance signals at the

surface for targets that otherwise would be undetectable from a surface-based survey.

Additionally, there is interest in considering the casing itself as the geophysical target

in casing integrity experiments; here the aim is to detect flaws or breaks in the casing.

These applications, coupled with advances in modeling capabilities, open up the poten-

tial for advancing the utility of electrical and electromagnetic imaging in settings with

metallic-cased wells.

Despite this potential, the reality is that electric fields, especially if measured at the

Earth’s surface, are small. Secondary fields might only be a few percent of the primary

field, and thus too insignificant to reliably detect the target of interest. The success of
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using a DC or EM survey then depends upon many details that pertain to understanding

the basic physics, the effects of parameters of the casing, the background conductivity,

location of the current electrodes, and discerning which fields should be measured. DC

resistivity is the starting point, as it allows us to examine the currents, charges, and

electric fields in the electrostatic limit, prior to introducing inductive effects and the

influence of magnetic permeability in an EM signal, and as such, was the focus of this

paper. Regarding the physics, a DC survey involves attaching a current generator to

a conductive medium. This establishes a steady state current; the signal to which we

are sensitive is the electric field that arises from charges that accumulate at interfaces

separating regions of different conductivity. For this reason, most of our results are first

presented as currents and charges.

The large contrasts in physical properties and significant variation in length scales

due to long, thin, cylindrical, steel-cased wells prompt a number of questions about how

the EM fields behave. In many cases, the finer details about the physical responses has

challenged my intuition. With respect to the casing integrity application there were basic

questions: how does a flaw in the pipe affect the currents and electric fields measured

at the surface? Does the extent of the flaw change our ability to detect it (e.g. if it

has a vertical extent of several meters versus a vertical extent of centimeters)? What

happens if the flaw only comprises a part of the well, leaving some connectedness in

the casing? When considering a geophysical experiment for imaging a target: is there a

significant difference in the currents at depth between scenarios where a source electrode

is connected to the well-head at the surface and one where the source electrode is offset

from the well by a few meters? The surface signals are small; are there preferential

geometries for the source and receiver electrodes that maximize signal/noise? A major

goal of the DC survey will be to excite and detect target bodies. For problems, such
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as CO2 sequestration, enhanced oil recovery, or hydraulic fracturing, the target may or

may not be in contact with the well; how significant is an electrical contact between a

target and the well in the data we measure at the surface?

Looking towards solving inverse problems in settings with steel-cased wells, it is

advantageous to reduce the computational cost of the forward simulation because an

inversion requires many forward simulations. There are several approaches that can be

taken to achieve this; one common approach is to approximate the finely-discretized

well with an approximation on a coarse-scale mesh. Currently, there is disagreement

within the literature as to how this should be done. Some authors have advocated that the

conductivity contrast between the casing and the background should be preserved and

thus replace a hollow steel-cased well with a solid rod that has a conductivity equal to

that of the casing. Other authors have opted to preserve the product of the conductivity

and cross-sectional area of the casing, following the conclusions of the transmission-

line solution shown in Kaufman (1990). What is the correct conductivity needed for

substitution?

Some of the above questions have been addressed in theoretical papers extending

back a few decades but numerical verification was often limited or carried out with

simplifying assumptions. Other questions require the ability to carry out numerical

modeling in 2D or 3D environments – these tools are just now becoming available. My

goal with this chapter has been to examine the scientific questions above and to promote

insight about the solution by plotting the currents, charges, and electric fields.
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Chapter 5

Electromagnetics with steel cased wells

5.1 Introduction

In the previous chapter, I focussed on the physics of direct current (DC) resistivity ex-

periments in settings with steel cased wells. This provided a fundamental understanding

in terms of the charges, currents and electric fields. In this chapter, I shift attention to

the electromagnetic (EM) problem where the fields and fluxes vary in time. EM can

be advantageous in that for a given survey geometry, the response can be sampled at

multiple frequencies or times, providing richer information than is available by only

the electrostatic response in a DC experiment. The richness in information comes both

from the additional physics introduced as inductive processes become relevant, as well

as potentially multiple excitation directions as the formation currents change through

time.

In addition to time-variation of fields and fluxes in an EM experiment, the physics in

settings with steel casing is further complicated by the significant magnetic permeability

of the steel. Magnetic permeability is often neglected in EM simulations and inversions

as the variations in permeability are typically much less significant than the role of con-
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ductivity in the data. However, steel has a permeability of ≥ 100 µ0 (Wu and Habashy,

1994).

The role of permeable casings has been explored for inductive sources and receivers,

primarily in the context of cross-well EM surveys (Augustin et al., 1989a; Wu and

Habashy, 1994; Wilt et al., 1996; Becker et al., 1997; Lee et al., 1998, 2005; Kim and

Lee, 2006). For grounded sources, the influence of permeability is much less explored.

More recently, some authors have included magnetic permeability in simulations with

casings, (e.g. (Kong et al., 2009)), but most of the published EM simulations of metal-

lic cased wells neglect to include magnetic permeability (e.g. (Swidinsky et al., 2013;

Commer et al., 2015; Um et al., 2015; Fang et al., 2017; Puzyrev et al., 2017)). Within

the publications that include permeability in grounded-source simulations, there is min-

imal analysis on how permeability alters the behavior of the currents in the earth or how

it affects data measured at the surface. A notable exception is the work in Wait and

Williams (1985); Williams and Wait (1985). They developed an analytical model for

a dipole-dipole frequency domain electromagnetic experiment over a halfspace with a

conductive, permeable, and polarizable casing. Their simulations showed that if the cas-

ing is permeable, the apparent resistivity and phase measurements made at the surface

data can be biased upwards as compared to only a conductive casing. Expanding on our

understanding of how the permeability impacts the subsurface currents and the resultant

measured data in a grounded-source experiment with a steel cased well is a prime goal

of this chapter.

For numerical modelling, particularly when considering the inverse problem, it is ad-

vantageous to reduce the size of the mesh to reduce the computational cost. In Chapter

4, I showed that for a DC resistivity experiment, preserving the product of the conduc-

tivity and the cross-sectional area of the casing is a viable strategy if the cells which
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encapsulate the casing are approximately equal in size to the diameter of the casing. It

is questionable if this same approximation holds for EM experiments. Furthermore, it is

unclear how to approximate the magnetic permeability on a coarse scale. Schwarzbach

and Haber (2018) suggests an upscaling strategy based upon that presented in Caudillo-

Mata et al. (2017a), where one inverts for the conductivity and the permeability of the

casing. By analyzing the behavior of the fields and fluxes, we may be able to calibrate

our expectations of upscaling strategies for permeability.

We have the choice to focus our analysis in the time-domain or the frequency-

domain. Here, I choose to conduct the analysis in the time-domain. The physics of

EM are arguably more intuitive in the time-domain, as all fields are real and we can step

through changes with time. The frequency-domain requires that we consider the parti-

tioning of electromagnetic energy into real and quadrature components; this additional

step can be a hurdle to building intuition.

The chapter is organized as follows. In section 5.2, I consider the time-domain EM

(TDEM) response of a conductive well in a “top-casing” experiment where one elec-

trode is connected to the top of the well and a return electrode is positioned some dis-

tance away on the surface. I examine the currents within the casing and in the surround-

ing geologic formation through time; this provides the foundation for understanding the

EM casing response. Following from this, I introduce magnetic permeability in Section

5.3 and demonstrate how it alters the current and the impact this has on data collected at

the surface. Finally, in section 5.4, I examine the the problem of approximating a con-

ductive, permeable, steel-cased well and discuss some of the challenges that are unique

to EM as compared to DC.

Source code for all of the examples shown in this chapter are available as Jupyter

notebooks as outlined in Appendix A.
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5.2 EM response of a conductive casing

As a starting point for this discussion, I first perform a simple numerical experiment to

demonstrate the behavior of the currents in a time-domain EM experiment over a half-

space. For this simulation, a positive electrode is positioned at the origin (where the

casing will be) and a return electrode is positioned 1 km away (at x =1000 m). The

conductivity of the background is 10−2 S/m, and the conductivity of the air is set to

1× 10−4 S/m. When we come to simulations with the casing, I have observed that

contrasts near or larger than ∼ 1012 S/m leads to erroneous numerical solutions, and

thus it is preferable to set the air to be more conductive than what is typically employed

in EM simulations (often ∼ 10−8 S/m). A step-off waveform is used and the currents

within the formation are plotted through time in Figure 5.1. Panel (a) shows a vertical

cross section along the line of the wire, (b) shows a horizontal depth slice at 50 m depth

and (c) shows a depth slice at 800 m depth. The images in panels (a), (b) and (c) are on

the same color scale.

At time t =0 s, the currents behave according to the DC solution. In panel (a), we

see the flow of current from the source electrode, through the formation to the return

electrode. Immediately after the source-current is shut-off, an image current develops

in the formation; this image current acts to preserve the magnetic flux initially set-up

by the source current. The image current flows in the same direction as the original

current in the wire. This is opposite to currents in the formation, causing a circulation

of current. The center of this circulation is visible as the null at x =500 m (the mid-way

point between the two current electrodes) which propagates downwards through time.

Similarly, in the depth slices, we can see the image currents diffusing downwards and

outwards with time. For example, between 1 ms and 5 ms, the image current passes 800

m depth.
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Figure 5.1: Current density for a time domain experiment over a 10−2 S/m half-
space. The positive electrode is on the surface where the well-head will be
and the return electrode is at x = 1000 m. Each row corresponds to different
time, as indicated in the plots in panel (c). Panel (a) shows a cross section
through the half-space along the same line as the source-wire. Panels (b) and
(c) show depth-slices of the currents at 54 m and 801 m depth.
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Having established the background response, I now consider a model with a steel-

cased well. The well has a conductivity of 5×106 S/m and is 1 km long; it has an outer

diameter of 10 cm and a 1 cm thick casing wall. The mud which infills the well has

the same conductivity as the background, 10−2 S/m. At this point, I focus on electrical

conductivity only and set the permeability of the well to µ0. I will introduce variable

magnetic permeability in the following section. The source electrode is connected to

the top of the casing, and the return electrode is in the same position as the previous

example (x =1000 m). The same step-off experiment is run and the currents plotted in

Figure 5.2. I have added a fourth panel (a) which zooms in to the wellbore. Panels (b),

(c) and (d) again show a cross-section of the currents in the formation and depth slices

at 50 m and 800 m depth, respectively.

At time, t =0 s, we can see the increased current density along the length of the well,

which correspondingly increases the current density deep within the formation. At the

DC initial condition, currents flow away from the well, and eventually curve back to the

return electrode. As in the previous example, an image current develops in the forma-

tion immediately after shut-off, which can be seen in Figure 5.2 (b). There is again a

circulation of current, however the geometry of this circulation and the corresponding

null is more complex than in the previous example. In Figure 5.2 (a), we see the back-

ground circulating currents being channeled into the well and propagating downwards.

The depth range over which currents enter the casing depends upon time. At t =0.01

ms, the zero crossing, which distinguishes the depth between incoming and outgoing

current in the casing, occurs at z=90 m, at t =0.1 ms it is at 225 m and by t =1 ms, the

zero crossing approaches the midway point in the casing and is at 470 m depth. At later

times, the downward propagation of this zero-crossing slows as the image currents are

channeled into the highly conductive casing.
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Figure 5.2: Current density for a top-casing time domain EM experiment with a
conductive well (5× 106 S/m). (a) Cross section in the immediate vicinity
of the well. (b) Cross section through the formation. (c – d) depth-slices.
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Further out in the formation, we similarly see the interaction of the diffusing for-

mation currents set up at DC and the image currents. Rather than being centered at the

midway point between the positive and negative electrodes as in the half-space example

(Figure 5.1), the center of the circulating currents shifts with time. At early times, it is

closer to the well, while at later times, it is closer to the mid-way point. By 10 ms, the

impact of the well is much less evident and the currents are very similar in character to

those obtained in the half-space experiment.

On the side of the well opposite to the wire, we also see a null develop; it is visible

in the cross sections in panel (a). To help understand this, we examine the depth slices

in panel (c). Behind the well, we see that as the image currents diffuse downwards and

outwards, some of those currents are channeled back towards the well; this is visible in

the depth slice at 10−4 s. These channeled currents are opposite in direction to those the

formation currents set up at t =0 s, which also are diffusing downwards and outwards;

where these two processes intersect, there is a current shadow.

We can isolate the “casing response” by taking the difference between the currents

generated when the casing is present (Figure 5.2) and those generated in the half-space

model (Figure 5.1). This is plotted in Figure 5.3. Within the casing and the surround-

ing formation, these secondary currents are cylindrically symmetric. This might not be

immediately intuitive given the complexity of the behavior observed in Figure 5.2, how-

ever, it is a highly conductive, cylindrically symmetric target, and the main impact it has

on the physical behavior is that it channels currents along its length. At all times, there

is a downward-going secondary current within the casing. This results in dipolar-like

currents within the surrounding formation.
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Figure 5.3: Difference in current density for a time domain experiment which in-
cludes a conductive steel-cased well (as in Figure 5.2) and an experiment
over a halfspace (as in Figure 5.1).

162



5.2.1 Data

On the surface, we can measure electric field data and/or the time-rate of change of

the magnetic field (db/dt) as a function of time. Due to the cylindrical symmetry of

the currents in Figure 5.3, we can expect that the radial electric field and the tangential

db/dt will be most impacted by the presence of the casing.

Electric field

In Figure 5.4, I show surface electric field data for 2 times, an early time (0.01 ms)

and a later time (5 ms). The top row shows data from the background model. The two

panels on the left show the electric field at the surface at (a) 0.01 ms and (b) 5 ms. On the

right, (c) shows the radial electric field measured along the x =0 m line (indicated by the

white-dashed lines in (a) and (b)), and (d) shows a time-decay for a receiver positioned

300 m from the well (indicated by the red dot in (a) and (b)). Data that are positive are

plotted with the solid lines and data that are negative are plotted with dashed lines. The

red dots in panel (c) correspond to the 300 m offset location where the data in (d) are

taken from. Similarly, the blue and green dots in (d) correspond to the time-channels

shown in (c). The middle row shows the same information but for the simulation with

the conductive well, and the bottom row shows the difference between the casing and

background data (casing minus background).

At early times (0.01ms), the behavior of the geometry of the electric field is fairly

complex (panel a). The electric field we observe results from a combination of the

diffusing galvanic and image currents. The galvanic currents, set up at DC, are dipolar

in nature, with field lines directed radially outward from the positive electrode located

at x =0 m. The image current is directed in the negative x-direction and causes some

inward deflection of the fields (this can also be observed at 0.01 ms in Figure 5.1). A
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Figure 5.4: Simulated electric field at the surface of the earth at (a) 0.01 ms and
(b) 5 ms after shut-off for the halfspace model. (c) Radial electric field data
measured along the survey line shown in white in (a) and (b) at 0.01 ms
(blue) and 5 ms (green). (d) Radial electric field as a function of time at
300 m along the survey line (shown in the red dot in (a)). The red dots in
(c) correspond to the data observed at 300 m offset and the blue and green
dots in (d) correspond to the 0.01 ms and 5 ms data. Similar information is
shown in (e), (f), (g) and (h) for the model with the conductive casing. The
difference in the radial electric field data (casing minus halfspace) is shown
in (i), (j), (k) and (l).

164



Figure 5.5: Sketch of the plan-view geometry of the early-time galvanic currents
(left) and image currents (right) in a time-domain EM experiment over a half-
space. Through time, both current systems diffuse downwards and outwards
as they decay. The wire follows a straight line between the negative and
positive electrodes. The green dashed line shows where we are measuring
the radial electric field data. Prior to shut-off, current in the wire flows from
the negative to the positive electrode. In the earth, the galvanic currents
are dipolar in nature and flow from the positive to the negative electrode.
Along the survey-line, the radial component of the galvanic currents always
points outwards. Immediately after shut-off, image currents are induced in
the earth. They are oriented in the same direction as the original current
in the wire and are directed away from the negative electrode towards the
positive. Along the survey-line, the radial component of the image currents
is always pointed inwards.

sketch of both current systems is shown in Figure 5.5

The radial electric field data at offsets less than 300 m are primarily influenced by the

geometry of the image currents, while beyond 300 m, the data are primarily influenced

by the dipolar galvanic currents. Diffusion of both current systems continues through

time. By 5 ms the image current has passed and the geometry of the fields reflects that

of the diffusing galvanic currents. This means that the electric fields are a diffuse dipolar

shape that is centered at the midpoint of the wire (e.g. as in Figure 5.1b at 1 and 5 ms).
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Along our survey line, the electric field is oriented mainly in the negative y-direction, but

with a slight outward deflection due to the dipolar nature of the fields, and are therefore

positive. Through time, we can similarly see the impact of the passing image current.

At very early times, the data are positive, as the galvanic currents and associated electric

field are the main contributor to the response. When the image current arrives, just past

0.01 ms, the electric field is deflected inwards, reversing the sign of the radial electric

field data. The second sign-reversal occurs at ∼ 0.3 ms; at this point, the image current

has diffused considerably, and we again return to a geometry that is mainly influenced

by the diffusing galvanic currents.

I now consider the data when a casing is present. The casing introduces further

complexity as it channels both galvanic and image currents. We can see the impact in

the geometry of the fields in Figure 5.4(e). The channeled currents are directed inwards,

towards the well, giving the large negative radial electric field response observed at

short offsets in (g). In panel (g), we see that this additional current-channeling pushes

the sign reversal that we observed in the early time in (c) for the background model to a

further offset. At later times, we continue to see the impact of the casing as the diffusing

currents are deflected inwards (panel f). The result is that the radial electric field data

remain negative through time as can be seen in (g) and (h).

The story simplifies if we examine the difference between the data from the model

with the casing and those simulated with the background. Essentially, by subtracting

the background data from the casing data, we remove the 3D survey geometry from the

behavior of the fields, and are left with the current-channeling behavior. The well is a

highly conductive feature and once the source current is shut off, the diffusing image

current and galvanic currents are channeled towards it. The result is the cylindrically

symmetric fields shown in (g) and (h). The electric field is directed radially inwards,
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and thus the secondary “casing-response” in (k) and (l) is always negative through time.

Time rate-of-change of the magnetic flux

We can examine the db/dt data at the surface. Figure 5.6, shows the db/dt data for the

background (top row), casing model (second row), and difference between them (third

row). Additionally, I include plots of the db/dt data difference as a percentage of the

background response in (m) and (n). The data plotted in the rightmost column (plots

(c), (d) and below) are the azimuthal component of db/dt along the white-dashed lines

shown in panels (a) and (b).

The db/dt response is quite 3-dimensional in its geometry. At early times (panel

(a), 0.01 ms), we have a rotational component that arises from the downward-directed

current density at the positive electrode, located at the origin. We also have a con-

tribution from the horizontal image currents and galvanic currents, which complicates

the behavior between x =0 m and x =1000 m. Near the surface, there is a y-directed

component from these current systems. Later in time (5 ms) the db/dt data in (b) are

primarily influenced by the diffusing horizontal currents and thus db/dt is oriented in

the y-direction along the wirepath. The difference between the data from the simulation

with the casing and without is much less dramatic than we observed in the electric field

data. It is really only the late times at short offsets that are significantly impacted; be-

yond 400 m offset from the well, the difference between the db/dt data with the casing

(f) and without (c) is less than 10% for the 1 ms data. In contrast, the electric field data

in Figure 5.4 differed by several orders of magnitude at all offsets shown.

To summarize the above results, we see that each data-type is sensitive to different

aspects of the physics. The radial electric field data are influenced by radial currents,

which, as seen in Figure 5.3, are significantly altered near the surface over a large range
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Figure 5.6: Simulated db/dt at (a) 0.01 ms and (b) 5 ms after shut-off for the
halfspace model. (c) Tangential db/dt measured along the white line in (a)
and (b) at 0.01 ms (blue) and 5 ms (green). (d) Tangential db/dt as a function
of time at 300 m along the survey line (shown in the red dot in (a)). Similar
information is shown in (e), (f), (g) and (h) for the model with the conductive
casing. The difference in the db/dt data (casing minus halfspace) is shown
in (i), (j), (k) and (l). The difference is also shown as a percentage of the
halfspace solution at 0.01 ms and 5 ms in (m) and through time at 300 m
offset in (n).
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of offsets when the casing is present. The tangential db/dt data, however, are primarily

influenced by vertical currents, which are most altered near the wellbore.

5.2.2 Discussion

There are a number of points to highlight in these examples. The first, which has been

noted by several authors (e.g. Schenkel and Morrison (1994); Hoversten et al. (2015)),

is that the casing helps increase sensitivity to targets at depth. This occurs by two mech-

anisms: (1) at DC, prior to shut-off, the casing acts as an “extended electrode” leaking

current into the formation along its length; (2) after shut-off, it channels the image cur-

rents and increases the current density within the vicinity of the casing. The second

point to note is that there are several survey design considerations raised by examining

the currents: targets that are positioned where there is significant current will be most

illuminated. If the target is near the surface and offset from the well, a survey where

the source wire runs along the same line as the target will have the added benefits of the

excitation due to the image currents. These benefits are twofold: (1) the passing image

current increases the current density for a period of time, and (2) the changing amplitude

and direction of the currents with time generate different excitations of the target. This

should provide enhanced information in an inversion, as compared to a single excitation

that is available from a DC survey. For deeper targets in this experiment, the passing

image current has diffused significantly, and thus it appears that the wire location has

less impact on the magnitude of the current density with location. However, it is possi-

ble that increasing the wire length could be beneficial. This extension is straightforward

and could be examined with the provided script. Often, little attention is paid to the

wirepath in an EM survey, and only the electrode positions are considered as a part of

the survey design. These examples show that the image currents, whose geometry is
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dictated by the geometry of the wirepath, have a significant influence on the behavior

of the currents and the resultant data. Thus, these examples also provide motivation for

thinking of the wirepath as a component of the EM survey design.

5.3 EM response of permeable casings

The previous section demonstrated the behavior of the currents in a TDEM experiment

with a conductive casing; in this section, I am interested in building an understanding

of how the magnetic permeability of the pipe affects the currents and the EM response.

Using the same survey setup and casing geometry as in Figure 5.2, I now include mag-

netic permeability in the simulation. The permeability of the casing is set to µ = 100µ0

and the resultant currents are shown in Figure 5.7.

The early-time behavior of the currents is very similar to what we observed in the

case of a conductive well (Figure 5.7). As we move to later times, however, we can

see that the permeability of the steel introduces further complexity into the behavior of

the currents. Notably, in Figure 5.7(a) at 5ms and 10ms, there is a vertical circulation

of currents within the well-casing; near the inner wall of the casing, the currents are

moving downwards, while near the outer wall, the currents are moving upwards. This is

particularly noticeable near 750m depth in the 5ms image. The behavior of the currents

within the formation is also more complex. By 10ms, the impact of the conductive

casing was minimal on the behavior of the formation currents, whereas here, we see that

the permeable and conductive casing still significantly alters the formation currents (as

compared to Figure 5.1b).

To isolate the influence of magnetic permeability, I take the difference between the

currents observed in the example with the conductive, permeable well (Figure 5.7) and

those observed in the conductive well (Figure 5.2). The result is shown in Figure 5.8.
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Figure 5.7: Current density for a top-casing time domain EM experiment over a
10−2 S/m half-space and a 1 km-long, conductive, permeable steel-cased
well (5×106 S/m, 100µ0).
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Figure 5.8: Difference in current density for a time domain experiment which in-
cludes a conductive, permeable steel-cased well (as in Figure 5.7) and an
experiment over a conductive well (as in Figure 5.2).
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At the DC limit, magnetic permeability has no influence on the behavior of the cur-

rents. However, as we move to later times, EM effects become relevant and we begin

to see the impact that permeability has on the behavior of the currents. The genera-

tion of poloidal currents within the casing wall is not an effect that can be caused by

conductivity alone. Often in EM problems the magnetic field,~h and the magnetic flux

density ~b are treated interchangeably, which is sensible when µ = µ0 everywhere in

the domain. However, when variable permeability is introduced, the distinction is im-

portant. Figure 5.9 demonstrates how the vertical circulation of current can arise due

to the interplay between the currents and corresponding rotational magnetic fields and

fluxes. The downward directed current density within the casing (a) generates a toroidal

magnetic field everywhere in space (b) according to Amperes law. The magnetic flux is

related to the magnetic field through the constitutive relation, and since the pipe is much

more permeable than the background, the magnetic flux density is concentrated within

the pipe. Once the transmitter is shut-off, the magnetic flux decreases, and the time

variation of the magnetic flux generates rotating electric fields (d) according to Faradays

law. Finally, the electric field is related to the current density through Ohms law, and

therefore the rotating current density is concentrated within the pipe (e). If the pipe is

only conductive and not permeable, then there is no concentration of the magnetic flux,

as in (c). Instead, the magnetic flux has identical geometry to the magnetic field, and by

symmetry, the rotation of the electric field cancels, leaving only a vertical component.

5.3.1 Data

As in Figure 5.3, the secondary currents due to the permeability of the well are cylin-

drically symmetric. In the data, we then expect that the radial electric field will be

minimally impacted at early times, but at later times, we will see the influence of per-
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Figure 5.9: Sketch demonstrating how a vertical circulation of current can arise
inside of a permeable casing in a top-casing TDEM experiment. A source
current is applied and (a) currents flow downwards through the pipe. (b)
Currents generate rotational magnetic fields according to Ampere’s law. (c)
Magnetic flux is concentrated in the permeable pipe according to the con-
stitutive relation between ~b and ~h. (d) The magnetic flux varies with time
after shut-off, and the time-varying magnetic flux creates rotational electric
fields according to Faraday’s law. (e) Currents associated with those elec-
tric fields are concentrated in conductive regions of the model in accordance
with Ohm’s law.

meability. Figure 5.10 shows the radial electric field data for the conductive casing (top

row), and permeable casing (second row). As well as the difference (permeable minus

conductive) and difference as a percentage of the data simulated with the conductive

well in the third and fourth rows, respectively. At early times, the impact of permeabil-

ity is minimal. For example, at 0.01 ms, it is only the data very near the wellbore (less

than 100m offset) that are marginally impacted. At the later time-channel, however, the

difference is significant. At 5 ms the difference between including permeability and not

is over 40% for all offsets shown (panel m). Through time, at the 300 m offset, we can

see that the response decays more slowly, particularly in the time window between 2 ms

and 100 ms. The maximum difference is > 4000% at 20 ms; in the conductive well-case

(d), the response has decayed to ∼ 10−8 V/m, while in the permeable well (h), the value
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Figure 5.10: Simulated electric field at the surface of the earth, as was presented
in 5.4. The top row (a – d) are the data simulated with the conductive
casing. The second rows (e – h) are the data simulated with the conductive,
permeable casing. The third row (i – l) is the difference (permeable and
conductive minus conductive only), and the fourth row (m and n) show the
difference as a percentage of the conductive solution.

of the electric field is nearly two orders of magnitude larger.

Although one might typically associate magnetic permeability with a large impact on

the magnetic fields and fluxes, the difference in the dbθ/dt data is much less significant

and localized to short-offsets, as can be seen in Figure 5.11.
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Figure 5.11: Simulated db/dt at the surface of the earth, as was presented in 5.6.
The top row (a – d) are the data simulated with the conductive casing. The
second rows (e – h) are the data simulated with the conductive, permeable
casing. The third row (i – l) is the difference (permeable and conductive
minus conductive only), and the fourth row (m and n) show the difference
as a percentage of the conductive solution.

5.3.2 Down-hole source

The impact of the magnetic permeability of the casing is much more significant if we

consider an experiment in which one electrode is positioned within the borehole. In this

case, the wire path is through the borehole, and the vertical current through it generates

a azimuthal magnetic field that is essentially perfectly coupled to the permeable casing.
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I demonstrate this with an experiment where the positive electrode is attached to the per-

meable casing at 950m depth. The currents through time are shown in Figures 5.12 and

5.13 which show the total currents and the difference between an experiment with the

permeable pipe and one with a conductive pipe whose permeability is µ0, respectively.

Shortly after shut-off, currents along the entire length of the pipe contribute to the

difference in the response between the permeable pipe and a conductive pipe. This is

reflected in the radial electric field data shown in Figure 5.14

In the radial electric field data, shown in Figure 5.14m, this corresponds to a differ-

ence of over 60% at 1000 m offset in the 5 ms data.

5.3.3 Discussion

Magnetic permeability introduces yet another complication into the physics of EM in

settings with steel-cased wells. In the top-casing experiment, we saw that by introduc-

ing permeability, a circulation of current in which current travelled downwards near

the inner wall of the well-casing and upwards along the outer wall of the well casing,

was generated. Such an effect is not observed if the casing is only conductive. This

indicates that it is important to model both permeability and conductivity in numerical

simulations to capture the physics; this is not commonly done in geophysical electro-

magnetic simulations. Furthermore, even low-frequency or late-time data, which are

sometimes treated as DC, may be impacted by magnetic permeability. Typically one

might associate magnetic permeability with most significantly impacting magnetic field

data, however these results show that the electric field in a top-casing experiment can be

off by >40% at late times, even 1000 m from the well if permeability is not considered

in the simulation. On the positive side however, one benefit that the permeability of the

steel may have in time-domain EM imaging experiments is that it increases the current
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Figure 5.12: Current density for a down-hole time domain experiment with a con-
ductive, permeable steel-cased well (5× 106 S/m, 100µ0). The positive
electrode is connected to the casing at 950 m depth and the return electrode
is on the surface at x = 1000 m.
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Figure 5.13: Difference in current density for a down-hole time domain experi-
ment with a conductive, permeable steel-cased well (as in Figure 5.12) and
a similar experiment with a conductive well.
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Figure 5.14: Simulated electric field at the surface of the earth, as was presented
in 5.10 for a TDEM experiment in which the positive electrode is coupled
to the casing at a depth of 950m.

density within the formation at later times. As a result, there is a long time-window over

which a target may be excited.

5.4 Approximations to a steel cased well

The above simulations accurately discretize the casing, with 4 cells across the thickness

of the casing wall. This is suitable for simulations in which the aim is to examine the

physics. When considering an inversion, which requires many forward simulations and

in which it is often preferable to use a cartesian grid to capture the geologic structures

180



of interest, it may not be feasible to use such a highly-refined mesh to capture the finer

details of the physics.

In the previous chapter, I showed that if we treat the well as a solid cylinder with a

conductivity that preserves the product of the conductivity and cross-sectional area of

the casing, we achieved an identical solution (within numerical error) at DC for the total

current and charge-per-unit-length along the casing (see Section 4.4). This raises the

question about whether, or not, this same approximation can be used for an electromag-

netic experiment. Also, is there a straight-forward approximation that can be used to

estimate the magnetic permeability for a coarse-scale representation of the well? In this

section, I examine these two questions, first by considering a conductive well, and then

introducing permeability.

5.4.1 Electrical conductivity

We consider the same model of a 1 km long, conductive well (5× 106 S/m) in a 10−2

S/m half-space as used in Section 5.2 and perform a similar TDEM experiment in which

one electrode is connected to the top of the casing and a return electrode is positioned 1

km away. The approximate model I use is a solid cylinder which has a conductivity of

1.8×106 S/m, so that both the true and approximate models have equal cross-sectional

conductances. Both simulations are performed on identical meshes; this minimizes nu-

merical differences that might otherwise occur from employing different discretizations.

To compare the responses, I first consider the total current along the length of the

well. If the approximation is valid, we should expect that the total current density in

the hollow-cased well is equal to the total current density in the cylinder approximating

the well through time. Figure 5.15 shows (a) the current at two times (0.01 ms and 5

ms) along the length of the well, and (b) current at 500 m depth through time for the
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true solution. Similarly, (c) and (d) show the current for the approximation to the well,

(e) and (f) show the difference (approximation minus true), and (g) and (h) show that

difference as a percentage of the true solution. At early times, there is good agreement

between the two solutions; at 0.01 ms, the percent-error in (g) is negligible and beyond

200 m depth in (e), the error is 5 orders of magnitude smaller than the true current.

Above 200 m depth, we do see some coherent error that reaches a maximum of ∼ 10−3

A near the surface. However, this is still several orders of magnitude smaller than the

true current at 0.01 ms. At later times the approximate solution underestimates the true

current. At 5 ms, the current is underestimated by 8% along the entire length of the

well, as can be seen in (g). Through time, the error shown in (h) reaches a maximum of

nearly 10% at 8 ms. There is a large increase in percent difference beyond 30 ms, this is

simply because we are dividing the difference by the very small current at the late times.

In electric field data measured at the surface, similar errors are observed. Figure 5.16

shows the electric field data for the true model (top row), approximate model (second

row), difference between the approximate and true models (third row) and difference as

a percentage (fourth row). At early times (0.01 ms), there is minimal difference, but at 5

ms, there is an 8% difference between the data generated with the true model and those

generated with the approximate model. At 300 m offset, the time-period between 1 and

10 ms is when we observe the largest error (panel n).

Errors of 8-10% are not as egregious as neglecting magnetic permeability, but the

anomalies that we will be looking for when considering subsurface injections are small

and may only comprise 10% to 20% of the background signal, so an error of 10% is

certainly not negligible.

In order to provide more context for where this approximation is breaking down, I

have plotted the current density, charge density and electric fields through time in Figure

182



Figure 5.15: (a) Downward-directed current (a) within the casing at 0.01 ms (blue)
and 5 ms (green) and (b) as a function of time at 500 m depth for the true,
hollow-cased well. (c), (d) Current in the approximate model which treats
the casing as a solid cylinder. The conductivity of the cylinder approxi-
mating the well is chosen so that both models have equal products of the
conductivity and the cross sectional area. (e), (f) Difference between the
current in the approximate model and the true model (approximate minus
true). (g), (h) Difference as a percentage of the true solution.
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Figure 5.16: Simulated electric field at the surface of the earth, as was presented
in 5.4. The top row (a – d) are the data simulated with the true, conduc-
tive casing. The second rows (e – h) are the data simulated with the solid
cylinder approximating the well. The third row (i – l) is the difference (ap-
proximate minus true), and the fourth row (m and n) show the difference as
a percentage of the true solution.

5.17. Panel (a) shows the true current density, (b) shows the secondary current density

(the difference between the simulation using the approximation of the casing and that

using the true casing), (c) shows the true charge density (d) shows the secondary charge

density, (e) shows the true electric field, and (f) shows the secondary electric field. Note

that (a) and (b) are on the same logarithmic color scales as are (e) and (f). Panels (c)

and (d) are each have their own associated linear colormap. Panels (b), (c) and (e) are
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effectively looking at “what physics are we introducing by making this approximation?”

At the DC limit, the solutions are in agreement, with the exception that the current

distribution between the true casing and the approximate casing are different inside of

the well, as expected. There is also a small secondary electric field at the bottom of

the pipe – this is because by treating the pipe as a solid cylinder, we have introduced

a conductivity contrast, and thus small secondary charge at that bottom interface. This

however has minimal impact on the currents in the formation or data measured at the

surface.

Shortly after shut-off, however, the approximation begins to break down. There is a

dipolar charge introduced on the casing with a concentrated negative charge density near

the top and a positive charge density beneath that. Corresponding to the positive charges,

there are similarly outward-directed currents and electric fields. As time progresses, the

secondary dipolar charge and associated currents and electric fields spread out along the

length of the well.

The passing image current changes the geometry of the currents and distribution

of charges. At DC, the well has a positive charge along its length and all currents are

outward from the well. The incoming image current is a source of the negative charges;

the currents enter the conductive casing from the resistive background, thus negative

charges build up at the interface. This indicates that the conductivity contrast between

the background and the casing is important when considering EM effects. At DC, the

approximation of the well by a cylinder with equal product of the conductivity and the

cross sectional area is correct. Any alteration of the conductivity would introduce errors

in the initial condition. However, the approximation does not hold through time as the

geometry of the current-systems changes. This suggests that perhaps a conductivity

which varies with time, and possibly along the length of the casing, may be necessary
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Figure 5.17: (a) True current density (b) difference between the currents in the
simulation with the approximation to the conductive well and the true so-
lution (secondary currents), (c) True charge density, (d) secondary charge
density, (e) true electric field, (f) secondary electric field.
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in order to accurately approximate the casing on a coarse scale.

5.4.2 Magnetic permeability

Clearly, if we do not have a suitable approach for estimating a coarse-scale conductivity

of a well in an EM experiment, we cannot expect to build up a strategy for a conduc-

tive, permeable pipe. If the currents are incorrect, then the magnetic fields and fluxes

are incorrect, and the interplay between the currents and magnetic permeability that I

demonstrated in Section 5.3 (Figure 5.12, in particular) will not be captured. Therefore,

the purpose of this section is to introduce some of the additional challenges that are

raised when permeability is considered and see if, by examining the physics, there are

any insights to be gleaned about this problem.

Simply based on the geometry of the currents and magnetic fields, one reasonable ap-

proach to estimating the permeability of a solid cylinder which approximates the hollow-

cased well is to preserve the product of the permeability and the casing thickness. The

magnetic fields and fluxes are rotational within the casing, so the thickness of the casing

is a primary control on the magnetic flux within the casing.

To introduce a first-order approximation for a conductive, permeable well, I preserve

the product of the conductivity and cross-sectional area, as in the previous section, and

preserve the product of the permeability (100 µ0 for the true well) and the thickness of

the casing (1 cm), giving a permeability of 20µ0. The experiment is again a top-casing

simulation, as in Section 5.3. The resultant current within the pipe and data from the true

and approximate simulation are shown in Figures 5.19 and 5.20, respectively (note that

the y-limits on this plot are different than those shown in the conductive-well example,

Figures 5.15 5.16). As might be expected, the discrepancy, in terms of percentage of

the true solution, at late times is nearly twice what we observed in the conductive well
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Figure 5.18: Sketch of the geometry of the dominant geometry of the current den-
sity, ~j and magnetic flux density,~b, within the casing. Most of the current
flows vertically while most of the magnetic flux density is rotational.

approximation. The direction of the difference is opposite to the conductive case. Here,

the currents within the casing are overestimated, creating an outward-directed secondary

electric field which reduces the magnitude of the radial electric field data relative to the

true solution.

To see where the solution is breaking down, I plot the currents, charges, and electric

fields in Figure 5.21. Note that the colorbar for the secondary charges in panel (d) has a

range that is an order of magnitude larger than that shown in Figure 5.17. The behavior

of the secondary currents charges and electric fields due to the approximation is opposite

to what we observed in Figure 5.17. Here, there is a positive secondary charge at the

top of the casing and a negative secondary charge beneath it, and as the image current

passes, we evolve to a state where there are outward-directed secondary currents and

electric fields in the top portion of the casing and inward-directed secondary currents

and electric fields in the bottom portion of the casing.

The interplay between currents, magnetic flux and magnetic permeability is clearly

complex. Before developing a strategy for upscaling conductive, permeable wells, there
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Figure 5.19: (a) Downward-directed current (a) within the casing at 0.01 ms (blue)
and 5 ms (green) and (b) as a function of time at 500 m depth for the true,
permeable, hollow-cased well. (c), (d) Current in the approximate model
which treats the casing as a solid cylinder. The conductivity of the cylinder
approximating the well is chosen so that both models have equal products
of the conductivity and the cross sectional area. The permeability of the
cylinder is chosen so that both models have equal products of the perme-
ability and the thickness. (e), (f) Difference between the current in the
approximate model and the true model (approximate minus true). (g), (h)
Difference as a percentage of the true solution.
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Figure 5.20: Simulated electric field at the surface of the earth, as was presented
in 5.4. The top row (a – d) are the data simulated with the true, conductive,
permeable casing. The second rows (e – h) are the data simulated with the
solid cylinder approximating the well. The third row (i – l) is the difference
(approximate minus true), and the fourth row (m and n) show the difference
as a percentage of the true solution.

are a host of questions that will need to be addressed: Can a conductivity which varies

vertically along its length and through time be used to approximate a casing? Does this

approximation still hold if the conductivity of the background, and thus distribution of

the currents within the formation is variable? If an appropriate description of the con-

ductivity is found, is there a simple description of the permeability that can be adopted

(e.g. is capturing the complexity of the currents the main item of concern?)?
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Figure 5.21: (a) True current density, (b) difference between the currents in the
simulation with the approximation to the conductive, permeable well and
the true solution (secondary currents), (c) true charge density, (d) secondary
charge density, (e) true electric field, (f) secondary electric field.
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5.5 Conclusions

This chapter poses more questions than answers. Even for the (seemingly) simple model

of a conductive casing in a half-space, there are subtleties to the behavior of the currents

in an EM experiment. The interaction of the diffusing formation currents (set up at DC,

before shut-off), the image current generated when the source current is shut-off, and

the highly conductive well produce a “shadow-zone” along a line 180◦ from the wire.

The geometric complexities are slightly simplified if we subtract-off the background re-

sponse of a grounded source over a half-space; the resulting “casing-response” is cylin-

drically symmetric through time.

Steel has a significant permeability, and the simulations in this chapter demonstrate

that including permeability significantly alters the currents, particularly at later times.

Within the well, a vertical circulation of current develops; this cannot be explained by

conductivity. Within the formation, the currents do not diffuse as rapidly as they did

when the well was only conductive. By 10 ms, in a 10−2 S/m half-space with a conduc-

tive well, there was very little distortion of the currents due to the presence of the well.

However, in the simulation with a conductive, permeable well – the currents within the

formation were still significantly altered at 10 ms. Correspondingly, the late-time data

are much more significantly affected by permeability than the early-time data (upwards

of 40% difference at 5 ms for a top-casing experiment and 60% for a down-hole ex-

periment). Many of the publications considering EM in settings with steel cased wells

neglect permeability. These results show that it is essential to consider. Furthermore,

late-time or low frequency data that are simulated and inverted as DC data could be

contaminated with permeability-effects.

Using sufficient spatial discretization to accurately simulate data on cartesian meshes

is costly, and can render the inversions, which require many forward simulations, infea-
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sible. As a result, it is advantageous to reduce the size of the mesh and approximate

the casing. The simple rule-of-thumb of preserving the product of the conductivity and

the cross-sectional area of the casing was suitable for DC resistivity problems, but this

breaks down when we consider EM problems. The incoming image current changes

the geometry of the fields and their interaction with the pipe through time. An effective

replacement conductivity for a simulation on a coarse mesh may need to vary with time

and with distance along the pipe. Matters are more complicated when permeability is in-

troduced, as there is an interplay between the currents, magnetic field, and magnetic flux

through time. Using a geometrically-motivated approximation for the permeability and

preserving the product of the permeability and the thickness of the casing introduce er-

rors in the opposite direction to those observed when only conductivity was considered.

I showed that secondary positive charges were introduced due to the approximation of

a conductive well, but negative charges were introduced as a result of the approxima-

tion to the conductive, permeable well. How to approximate the permeability is unclear

at this point, and will first require that a suitable strategy be developed for electrical

conductivity.

There is much yet to be investigated and understood about electromagnetics in set-

tings with conductive, permeable, steel cased wells. Central to this work is the ability to

simulate, visualize, and interact with aspects of the physics. This chapter provides some

glimpses into the behavior of the currents, fields and fluxes, and includes source code

and Jupyter notebooks (see Appendix A) that can be used to continue the exploration.
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Chapter 6

An inversion approach for subsurface

injections

6.1 Introduction

The previous three chapters have focussed on understanding the physics of electromag-

netics over conductive, permeable, steel-cased wells. In this chapter, we return to the

goal of imaging subsurface injections through geophysical inversion. We view this as a

time-lapse problem, in which one data set is obtained prior to the injection and second

data set is obtained after the injection. The aim of the inversion, then, is to characterize

the changes in the earth model due to the injection.

Time-lapse direct current (DC) resistivity, and in some cases electromagnetics (EM),

is commonly used in the groundwater hydrology community. In particular, DC resistiv-

ity has been used, in salt-tracer experiments aimed at understanding groundwater flow

(e.g. Slater et al. (2002); Kemna et al. (2002); Singha and Gorelick (2005); Doetsch

et al. (2012)) and for characterizing time-lapse vadose zone processes (e.g. Daily et al.
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(1992); Park (1998); Binley et al. (2002)). Within the context of hydrogeophysics, typ-

ically multiple time-lapse surveys are conducted. A range of interpretation techniques

have been applied. In terms of algorithmic complexity, the most straightforward ap-

proach is to invert each time-snapshot independently. The recovered models can then

be differenced and the difference interpreted (Cassiani et al., 2006), or an intermedi-

ate interpretation, for example estimating the center of mass of a plume (Singha and

Gorelick, 2006; Doetsch et al., 2012), can serve as an indicator that is tracked through

time. Daily et al. (1992) presented an approach for inverting ratios between initial and

subsequent datasets, and (LaBrecque and Yang, 2000) proposed an inversion for the

resistivity difference between two subsequent data sets by inverting the difference be-

tween the two data sets. A common approach is to use the inversion result from an

initial timestep as a reference and starting model for the following datasets (Loke, 2001;

Oldenborger et al., 2007), this is sometimes referred to as a “cascaded inversion” (Miller

et al., 2008). More advanced techniques simultaneously invert all of the time-snapshots

and apply both spatial and temporal regularization (Kim et al., 2009; Loke et al., 2014).

Hayley et al. (2011) provides an overview and comparison of common time-lapse inver-

sion approaches and demonstrates a comparison of several approaches for a synthetic

example of the remediation of a saline plume.

In the context of reservoir imaging applications, the “time-lapse” aspect of the prob-

lem is somewhat simpler than that typically encountered in hydrogeophysics. Very few

temporally dense DC or EM data sets have been collected for reservoir imaging. No-

table exceptions include the cross-well DC resistivity surveys described in Carrigan et al.

(2013) and Tøndel et al. (2014), for monitoring of a deep CO2 injection in a gas field

and monitoring steam chamber growth in a steam-assisted gravity drainage operation

in the Athabasca Oil sands, respectively. Much more common are time-lapse data sets
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consisting of only two times: pre-injection and post-injection. Cross-well EM has been

applied for such surveys to monitor water-floods (Wilt et al., 2005, 2012) and steam

injections (Wilt et al., 1996, 1997; Marion et al., 2011). By far the most common in-

version approach involves inverting for a background model with the initial data set,

typically including constraints from well-logs and potentially interfaces from seismic

data and using this as the starting model for the inversion, typically in 2D (e.g. Wilt

et al. (2012)).

Although the “time-lapse” aspect of injection-monitoring applications is generally

simpler than applications in hydrogeophysics, the large depths considered in reservoir

applications means that we are usually working with small signals. Furthermore, the

presence of steel cased wells complicates signals. Efforts to reduce the impact of steel

cased wells on DC surveys include using a coating on the casing which the electrodes

are connected to and thus insulate the casing from the survey (Tøndel et al., 2014).

For cross-well EM applications, fibreglass casings may sometimes be used (Wilt et al.,

2012), or when a single well is cased, a “casing-correction” is applied to the data col-

lected at a fixed frequency (Augustin et al., 1989b; Becker et al., 1997).

For the emerging application of grounded-source DC or EM in the monitoring of

subsurface injections, very few inversions of synthetic or field studies have been pub-

lished, leaving many open questions. How does the casing affect our sensitivities in the

inversion? In particular, Rucker (2012), have shown that in near surface studies where

the casings are used as long electrodes, depth information is lost in the inversion. Ad-

ditionally, forward modelling shows that the currents spread out along the length of the

well. These prompt the question: can we expect to resolve the location of the target

along the well? Specific to subsurface injections, there is also further a-priori infor-

mation that may be included, for example the conductivity of the injected material and
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the volume of material injected should be known. What is the best way to include this

information in the inversion?

For DC data, Weiss et al. (2015) works with the scattered potential due to the fracture

and suggests an approach which approximates the well as a line-charge distribution and

the fracture as a point charge. The information content of a DC survey with only a few

sources is quite limited, so reducing the number of free parameters, as in Weiss et al.

(2015), is appropriate for obtaining meaningful information from the data. Here, I wish

to work towards the use of electromagnetic data. In addition to providing information

at the electrostatic limit provided by DC data, EM data include the role of inductive

processes and are therefore richer in their information content. As such, I am interested

in using an inversion approach which enables us to interpret geometric and physical

property information from the result.

To focus discussion, we will consider synthetic examples related to hydraulic frac-

turing. The goal of the inversion in this case is to delineate the extent and geometry of the

propped region of the fractured reservoir. Changes in electrical conductivity are viewed

as a proxy for estimating the concentration of propped fractures. I will consider voxel-

based and parametric inversions, as well as alternate parameterizations using effective

medium theory. Using this range of approaches, I aim to develop an understanding of

the non-uniqueness we face for grounded-source surveys in settings with steel cased

wells. The analysis conducted in this chapter builds on the SimPEG framework and all

of the examples shown are available in the form of Jupyter notebooks (see Appendix A).

6.2 Choosing an inversion model

Background material on the general inversion approach I follow was provided in the

introduction (Section 1.6) with further details included in Cockett et al. (2015) and Ap-
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pendix D. The overview I provided laid out a general strategy for solving for the inver-

sion model m, but I have not yet specified how m is chosen. This chapter will explore

several different approaches for defining an inversion model including parametric mod-

els and using effective medium theory to invert for fracture concentration. This section

provides mathematical background on how these different model parameterizations are

treated in the inversion.

The physical property which we aim to characterize in an electromagnetic inver-

sion is electrical conductivity σ (or equivalently, its inverse, resistivity ρ). In a DC or

an EM inversion, however, it is common to invert for log-conductivity on the forward

simulation mesh, that is

σ = M (m) (6.1)

where M (m) = expm. We refer to M (·) as a mapping. Mappings have two implica-

tions in the inversion. One implication is in the model regularization: we have changed

the space in which we are applying the regularization, for this example, we regularize

on log-conductivity values rather than linear conductivity. As the conductivity of com-

mon earth materials varies over several orders of magnitude, it is preferable to penalize

jumps in orders of magnitude between voxels rather than penalizing linear values. The

second implication is in the computation of the sensitivity. The forward simulation in

an EM or DC problem depends upon electrical conductivity, thus the mapping modifies

the sensitivity via the chain rule

J[m] =
dF [M (m)]

dM (m)

dM (m)

dm
=

dF [σ(m)]

dσ

dσ

dm
(6.2)

Mappings can be composed, for example if inactive cells are included in the mod-

elling domain, such as air cells or cells capturing known structures such as a steel-cased
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well, then

σ = M2(M1(m)) (6.3)

where M1 injects in the log-conductivity values of the inactive cells and M2 takes the

exponential. The sensitivity is appropriately modified by adding another step to the

chain rule.

In addition to mappings routinely employed in electromagnetic inversions, such as

those used for working with log-conductivity values and handling inactive cells in the

modelling domain, there are two mapping which we will make use of in this chapter: an

effective medium theory mapping, based on the homogenization technique for propped,

fractured reservoirs discussed in Chapter 2 and parametric mappings.

Parametric mappings

The other type of mapping I will make extensive use of in this chapter are paramet-

ric maps. I consider model parameterizations of blocks and ellipsoids, similar to that

described in McMillan et al. (2015a); McMillan (2017). For example, using a simple

parametrization of a block, the model is

m = [mback,mblock,x0,∆x,y0,∆y,z0,∆z]> (6.4)

where mback is the model value of the background, mblock, (x0,y0,z0) is the center of the

block and (∆x,∆y,∆z) are the widths of the block in each dimension. The mapping is

then

M (m) = mback +(mblock−mback) s(τ(m)) (6.5)
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Figure 6.1: Approximation to a step function using an arctangent, as described in
equation 6.6. The values in the legend indicate the value of the slope, a.
Smaller values have a more gradual transition between zero and one, while
larger values have a more rapid transition.

where s(·) is a differentiable approximation to a step-function and τ is a level set func-

tion of the block. To approximate a step function, I use the arctangent function,

s(τ) =
1
π

tan−1(aτ)+
1
2

(6.6)

where a controls the slope of the transition between 0 and 1. Small values of a result in

a gradual transition while larger values give a sharper transition, as shown in Figure 6.1.

For more robust performance of the Gauss-Newton inversion, I choose a such that the

transition happens over a multiple cells in the simulation mesh (McMillan, 2017).

To define a level set function for a block, I need to define a function, τ , which

evaluates to τ < 0 when outside the target and τ > 0 inside the target. To define a block,

I could, for example use

τ = 1−

(∣∣∣∣∣∣∣∣x− x0

∆x/2

∣∣∣∣∣∣∣∣2
∞

+

∣∣∣∣∣∣∣∣y− y0

∆y/2

∣∣∣∣∣∣∣∣2
∞

+

∣∣∣∣∣∣∣∣z− z0

∆z/2

∣∣∣∣∣∣∣∣2
∞

)
(6.7)
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however, the infinity norm is not differentiable. Thus, I approximate the infinity norm

using an Ekblom norm (Ekblom, 1973),

τ = 1−

[(x− x0

∆x/2

)2

+ ε
2

]p/2

+

[(
y− y0

∆y/2

)2

+ ε
2

]p/2

+

[(
z− z0

∆z/2

)2

+ ε
2

]p/2


(6.8)

where ε is a small constant and p is a constant describing the approximate norm, for

example, if p = 2, then equation 6.8 describes an ellipsoid. To represent a block, I

choose a p that is sufficiently large. For the length scales I consider, a value of p = 4

is appropriate. The value of ε is chosen to be large enough, and the value of p small

enough so that the derivatives of the mapping are stable and second-order for the length

scales of the problem. In addition, rotations can be included in the model, as described

in McMillan (2017) 1.

When employing parametric mappings, there are two important implications to note

in the setup of the inversion. Since the mathematical statement of the inverse problem

is, in principle, overdetermined (there are more data than model parameters), I fix the

value of β at zero and do not employ a regularization. The second point is that for a

starting model, it is important to start with the block and background having different

conductivities. This was similarly discussed in McMillan (2017).

Effective medium theory mapping

In Chapter 2, I introduced a two-step process for estimating the electrical conductivity

of a propped, fractured volume of rock. The first step involved estimating the effective

conductivity of a mixture of electrically conductive proppant and fluid, and in the second

step, I estimated the effective conductivity of a volume of rock which has fractures filled

1McMillan (2017) also employs a weighting scheme to scale the model parameters. I have not found
this to be necessary for the examples I consider and thus do not use any weights or scaling
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with the proppant-fluid composite.

Assuming the electrical conductivity of the fluid and proppant are known, then rather

than inverting for electrical conductivity, we can invert for the concentration of conduc-

tive fractures. To avoid introducing additional non-uniqueness into the problem, I use

a fixed ratio of proppant and fluid within the propped region of the reservoir and treat

the fracture concentration ϕ as the inversion model (e.g. m = ϕ). In a voxel-based in-

version, ϕ is a vector with a value for the concentration in each cell. For simplicity, I

assume that the fractures are randomly oriented and work only with isotropic conduc-

tivities. In this case, the mapping requires that we solve the two-pahse effective medium

theory approximation,

(1−ϕ)(σ∗−σ0)R(0,∗)+ϕ(σ∗−σ1)R(1,∗) = 0 (6.9)

for the effective conductivity, σ∗. The background has conductivity σ0 and the conduc-

tive, proppant-filled cracks have conductivity σ1. Note that σ0, the conductivity of the

background, does not need to be a scalar, it can be a vector with a background conduc-

tivity value for each voxel in the mesh. These values can be obtained by first inverting

the pre-fracture data. The electric field concentration tensor R(i,∗) captures the geometry

of the particles that compose each phase. Note that for randomly oriented fractures R(i,∗)

is a scalar (1/3traceR(i,∗), where R(i,∗) is given in equation 2.3:

R( j,∗) =
1
3

trace
([

I+Aσ
∗−1(σ j−σ

∗)
]−1
)

(6.10)

For the background, I use an aspect ratio of 1, assuming a spherical geometry for the

particles that compose it, and for the fractures, I use a small aspect ratio (∼ 10−4−10−3)

and treat them as ellipsoidal cracks. In Section 2.2.3, I demonstrated that for sufficiently
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thin fractures, the exact aspect ratio is not significant. For a gradient based inversion, we

also require the derivative of the effective conductivity, σ∗, with respect to our model,

which is the fracture concentration, e.g.

∂σ

∂m
=

∂σ∗

∂ϕ
(6.11)

This derivation is outlined in Appendix C.

The general time-lapse inversion workflow using effective medium theory is two

steps:

• Construct a background conductivity model, σ0, by inverting pre-fracture data.

This inversion is a voxel-inversion for log-conductivity.

• Invert the post-fracture data for fracture concentration, φ . Note that using a start-

ing model and reference model of m0 = 0 is equivalent to starting the post-fracture

inversion with the pre-fracture model.

Self-consistent effective medium theory is the method I adopt to connect the concen-

tration of fractures with the effective conductivity of a fractured volume of rock, how-

ever, other relationships, such as an empirical relationship estimated from a lab study,

could equally be employed. One interesting implication of relating the concentration of

the fractures to the change in conductivity is that this provides a conduit for bringing

in a-priori information about the volume of proppant injected into the reservoir. The

predicted volume is

Vpred =
∫

ϕ dV (6.12)
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I can then define a volume data misfit term,

φV =
1
2

∣∣∣∣∣∣∣∣ 1
εV

(Vpred−Vobs)

∣∣∣∣∣∣∣∣2 (6.13)

where Vobs is the known volume terms which accounts for the estimated ratio of prop-

pant and fluid and εV is an uncertainty term. I note that I am assuming a fixed ratio

of proppant and fluid within the cracks. In reality, this will be variable, thus I use a

sufficiently large εV so as not to over-fit this assumption.

In the implementation, the inclusion of an additional data misfit term is handled by

a combo-objective function which enables joint inversions in the SimPEG framework.

6.3 Inversions with steel-cased wells

In the Chapter 4, we saw that the current spreads out along the length of the casing,

decaying as we move away from the source. In the inversion, this raises questions about

our ability to resolve the depth and vertical extent of the target. In this section, I start

from a simple model of a vertical well with a conductive target and examine our ability to

recover that target. Although most fracture operations are conducted in horizontal wells,

I start by considering a vertical well as this reduces computational cost and allows us to

explore aspects of the behavior of inversion prior to moving to the more fully 3D, more

computationally intensive scenario.

I start by considering a DC experiment with a simple cylindrically symmetric model,

shown in Figure 6.2. A 1 km long casing is embedded in a background that has a

resistivity of of 100 Ωm. The casing has an outer diameter of 10 cm, a thickness of 1 cm

and a conductivity of 5×106 S/m. For modelling, I approximate the hollow-cased well

as solid cylinder with a conductivity of 1.4×104 S/m, which preserves the product of the
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conductivity and the cross sectional area. This was shown to be a valid approximation

for DC problems in Section 4.4 and allows us to reduce the number of cells in the mesh,

thus speeding up the computation of the forward simulation and sensitivities. Similar to

the model used in 2, I assume a moderately-sized fracture operation which uses an 800

m3 slurry comprised of 15% proppant by volume. I assume leak-off of some of the fluid,

leaving a mixture of 50% fluid and 50% proppant, by volume, in the fractures. This gives

a total fracture volume of 240 m3 which I distribute among 10 circular fractures. Each

fracture is 3 mm wide is positioned within a 10 m interval along the well. Conserving

volume gives a 50 m radius for the fractures. Using a fluid conductivity of 3 S/m and a

proppant conductivity of 105 S/m, the conductivity of the 50/50 proppant-fluid mixture

found using self-consistent effective medium theory (equation 2.1) is 2500 S/m. Using

a fracture aspect ratio of 3×10−5 and assuming randomly-oriented fractures, I obtain a

conductivity of 3 S/m for the propped region of the reservoir.

The survey I use employs a downhole electrode and a distant return electrode. There

are 10 down-hole source locations from 900 m depth to 1000 m depth, as shown by

the red dots in Figure 6.2b. Radial electric field data are collected at the surface; there

are 40 receiver locations from 25 m to 1000 m along a radial line extending from the

well. In total, the survey consists of 400 data. Figure 6.3 shows (a) the simulated

data for both the background (prior to the fracture) and the fracture, (b) the difference

between the data with and without the fracture, and (c) the difference as a percentage

of the background response. The color of each line indicates the depth of the positive

electrode, as indicated by the colorbar at the bottom of the plot.The difference between

the data simulated over is significant both in magnitude and in percentage and thus we

can expect that the inversion will introduce structure in order to fit the fracture data.

In the following sections, I will explore several approaches to the inverse problem for
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Figure 6.2: Model of an electrically conductive propped fracture zone (3 S/m) in a
halfspace (100 Ω m) with a steel-cased well. The well is modelled as a solid
cylinder with a conductivity of 1.4× 104 S/m. The mesh has 4 cells across
the radius of the casing. The fractured region extends vertically from 950 to
960 m depth and has a radius of 50 m. Panel (a) has a radial extent of 80 m
to show the fractured zone and panel (b) has a radius of 0.4 m to show the
casing. The a-electrode locations are shown in panel (b).

obtaining meaningful information from the data.

6.3.1 Voxel inversion for conductivity

I begin by applying standard inversion techniques and perform a voxel inversion using a

Tikhonov regularization. As the simulation is cylindrically symmetric, I invert for a 2D

model which varies radially and vertically. Our aim in this inversion and the ones that

follow is to examine, under ideal circumstances, what information we can obtain from

the data using a given inversion approach. I therefore do not add noise to the data and

assign low uncertainties: 1% with a 10−9 V/m floor.

The choice of parameters is quite standard, similar to how one would approach a
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Figure 6.3: (a) Synthetic data for the down-hole casing experiment for the back-
ground, prior to the fracture (solid lines), and after the fracture (dots), (b)
secondary electric field (fracture - background), and (c) secondary electric
field as a percentage of the primary (background). The color of the lines or
dots indicates the depth of the source.
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blind inversion. In the regularization, I use αs = 10−3, αx = αz = 1. I start the inversion

with a large value of β , so that the regularization term initially dominates the objec-

tive function, and reduce the its value over the course of the inversion. The initial and

reference model are equal to the half-space resistivity of 100 Ωm.

The results of the first inversion I run are shown in Figure 6.4. This inversion reached

a global χ-factor of < 0.1 and fits all data points within 5% (Figure 6.4c). It converged

in two iterations. Because of the regularization function being used, the recovered model

is smooth and diffuse. Perhaps unexpected is the location of the center of the recovered

target; its depth is shifted below the true location, closer to the end of the well. Typically,

we might expect that if the inversion were to shift the location of a target, it would be

shifted up, closer to the receivers, where we have greater sensitivity. However, the

presence of the casing alters the sensitivity. In Chapter 3, I demonstrated that there is

an increase in charge near the ends of the well (see Figure 3.6, in particular), for the

DC problem, this translates to an increase in sensitivity near the end of the well. This

can also be seen by plotting the sensitivity. In Figure 6.5, I plot the sensitivity function

for the starting model of the casing in a 100 Ωm half-space (a) and (b), as well as for

the true model, with the conductive target in (c) and (d). In panels (a) and (b), we see

that throughout the region where the source electrodes are positioned, the sensitivity is

relatively uniform. The exception is near the end of the well, where the region of large

sensitivity broadens. When the target is included, the sensitivity is increased in that

region. However, we still see a broadened region of high sensitivity near the bottom

of the well. The increase in high sensitivity near the end of the well has a tendency to

promote structure near the end of the well in the inversion.

If I push the inversion harder and try to further improve the data-fit, the depth of

the target is better-resolved, as shown in Figure 6.6. In practice, this requires very high
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Figure 6.4: (a) Observed and predicted radial electric field data, (b) difference be-
tween the observed and predicted data (V/m), (c) difference between the
observed and predicted data as a percentage of the observed data, and (d)
conductivity model recovered in the inversion. The colors in (a), (b), and (c)
indicate the source location as shown in Figure 6.3. The white outline in (d)
outlines the true geometry of the fracture zone and the grey line shows the
location of the wellbore. The data are fit to a global χ-factor < 0.1 and the
inversion took 3 iterations.

data quality; here I fit all data points within ∼ 2% and reach a global χ-factor <0.05.

The geometry of the target that I recover is elongated vertically; this is consistent with

having larger sensitivity near the well. We also notice that the conductivity of the region

above the target drops beneath that of the background – this is a common effect in

smooth inversions when conductive targets are present. In this case, we know that the

changes due to the conductive proppant and fluid should only increase the conductivity

with respect to the background. I could impose a lower-bound on the conductivity of

the inversion model, however, experimentation shows that this tends to push the center

of the conductive anomaly beneath the true target depth.

More horizontally elongated structure can be promoted by altering the regulariza-
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Figure 6.5: Integrated sensitivity for (a, b) a survey conducted in a 100 Ωm half-
space and (c, d) the true model with the conductive target, shown in Figure
6.2. The inversion model is log-conductivity. The casing is shown by the
grey line, and the source locations are shown by the red dots. The integrated
sensitivity is computed by squaring the elements of the sensitivity matrix,
summing along the rows of the sensitivity matrix and then taking the square-
root. This gives a vector whose length is the number of model parameters.
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Figure 6.6: Tikhonov inversion result, similar to that shown in 6.4 that fits the data
to a global χ-factor < 0.05. The inversion took 5 iterations.

tion. Figure 6.7 demonstrates an inversion using αx = 100 and fitting the data to a

χ-factor < 0.05. Using a large αx smears out the target horizontally and also reduces

the maximum conductivity as compared to Figure 6.6.

In summary, by using a standard voxel inversion, we can recover a target at the cor-

rect location, and by adapting the α values, we can recover a general geometry reflective

of the true target. However, these are not particularly insightful images for delineating

the extent of the fractured region of the reservoir. With the aim of using the inversion

to obtain parameters indicative of the injection, I next examine an approach using a

parametric inversion.

6.3.2 Parametric Inversion

In a parametric approach to the inversion, the fractured volume of rock is represented

as a simple geometric structure, and we invert for a handful of parameters that describe

the properties of the background, target and the position and geometry of the target.
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Figure 6.7: Tikhonov inversion result, similar to that shown in 6.6 that uses αx =
100. The inversion took 5 iterations.

For the following examples, I treat the fractured volume of rock as a cylinder. I fix

x0 = 0m and invert for the log-conductivity of the background and the target, as well as

the depth, radius and thickness of the target. I again push the inversion quite hard, fitting

the following results to a global χ-factor < 0.05, meaning that most of the data are fit

within ∼ 2%.

For the parametric inversion to find an initial step, it is important that we start with a

model where the target has physical properties distinct from the background. In this ex-

ample, I build a starting model based on the first voxel inversion result, shown in Figure

6.4. The center of the target is at 980 m depth, its radius is 5 m and it thickness is 5 m.

The conductivity of the background is 10−2 S/m and the conductivity of the target is set

to 3×10−2 S/m. Figure 6.8 shows the recovered model; the true geometry is outlined by

the solid white line and the starting model geometry is shown by the dashed white line.

The radius is underestimated (25 m) and the conductivity significantly overestimated
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Figure 6.8: Parametric inversion result for a starting model centered at 980 m
depth with a thickness of 5 m and a radius of 5 m. The initial background
conductivity is 10−2 S/m and the initial conductivity of the target is 3×10−2

S/m. The geometry of the starting model is shown by the white dashed-lines
and the true model is shown by the solid white outline. The inversion reached
a χ-factor < 0.05 and took 8 iterations.

(7×106 S/m).

If instead, I use the true depth-center of the target, informed by the inversion result

in Figure 6.6, I obtain the model shown in Figure 6.9. The starting conductivities, radius

and thickness were the same used in the previous inversion. In this inversion, the target

is still shifted beneath the true location. The thickness, 12 m, is much closer to the true

thickness (10 m). However, the recovered conductivity, 1010 S/m is even more severely

overestimated than the previous inversion. Typically, one might expect that there is a

saturation in the conductivity effects for a DC experiment. For example, if I consider

the solution for a conductive sphere in a half-space subject to a uniform inducing electric

field, the conductivity-dependence of the magnitude of the electric field external to the

sphere is through the term:(σ2−σ1)/(σ2− 2σ1), where σ2 is the conductivity of the
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Figure 6.9: Parametric inversion result for a starting model centered at 955 m
depth with a thickness of 5 m and a radius of 5 m. The initial background
conductivity is 10−2 S/m and the initial conductivity of the target is 3×10−2

S/m. The geometry of the starting model is shown by the white dashed-lines
and the true model is shown by the solid white outline. The inversion reached
a χ-factor < 0.05 and took 8 iterations.

sphere and σ1 is the conductivity of the background (see equation 6.67 in Ward and

Hohmann (1988)). For a fixed background conductivity, whether the conductivity of the

target is 2 or 3 orders of magnitude larger than the background, makes little difference

in the external electric field. However, in this example, the conductive target is directly

coupled to the casing, which has a conductivity of 104 S/m. I suspect that this survey

geometry is sensitive to a larger dynamic range of conductivity values and this might

contribute to the large updates in the electrical conductivity of the target.

The casing spreads out the source currents along its length, this may reduce sensi-

tivity to the depth and thickness of the target. If that is the case, perhaps starting with

the correct depth-center and thickness will improve the result. Figure 6.10 shows the

recovered model when the correct depth and vertical extent of the target are used for the
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Figure 6.10: Parametric inversion result for a starting model centered at 955 m
depth with a thickness of 10 m and a radius of 5 m. The initial back-
ground conductivity is 10−2 S/m and the initial conductivity of the target is
3× 10−2 S/m. The geometry of the starting model is shown by the white
dashed-lines and the true model is shown by the solid white outline. The
inversion reached a χ-factor < 0.05 and took 12 iterations.

starting model. The thickness of the target is closer to the true thickness. However, he

conductivity is still overestimated (960 S/m), but not nearly as severely as the previous

inversion. The depth has been shifted down beneath the target, and the radius (23 m) is

underestimated.

If I start the inversion closer to the true solution, for example a radius of 75 m and

a thickness of 5 m, then, not surprisingly, I obtain a solution closer to the true solution.

The recovered radius is 76 m, thickness is 7 m and the conductivity 2 S/m. This inversion

result is shown in Figure 6.11.

These inversion results provide some insights into the non-uniqueness of the prob-

lem. In particular, depending on the starting model, the recovered conductivity of the

target can vary by many orders of magnitude. I suspect that the large conductivity of the
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Figure 6.11: Parametric inversion result where the center of the target is fixed at
a depth of 955 m. The starting model has a thickness of 5 m and a radius
of 75 m. The initial background conductivity is 10−2 S/m and the initial
conductivity of the target is 3× 10−2 S/m. The geometry of the starting
model is shown by the white dashed-lines and the true model is shown by
the solid white outline. The inversion reached a χ-factor < 0.05 and took 6
iterations.

casing is a major contributor to the difficulty of this inverse problem. The conductive

casing tends to spread out the source currents, which consequently spreads out the sen-

sitivity as compared to a point electrode. Furthermore, the currents along the casing are

altered due to the presence of a conductive target – this is a more complex interaction

than typically encountered in a DC experiment.

The geometry of the parametric inversion results provides a more intuitive geome-

try for interpretation, but, on its own, the inversion is not particularly robust. Thus we

require more a-priori information or assumptions be imposed in the inversion. There

are several approaches that could be taken to try and tame the inversion: the electrical

conductivity could be bounded, for example by using hard-constraints in the optimiza-
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tion, or a weighting scheme could be adopted to try to compensate for the sensitivities.

This level of “tuning” in the inversion is something I wish to avoid. Instead, I will

consider changing the model-space by using effective medium theory to map a volume-

concentration of fractures to electrical conductivity.

6.3.3 Inversion for fracture concentration

Effective medium theory provides a mapping from a volume-concentration of fractures,

ϕ , to electrical conductivity given known values for the conductivity of the background

and the conductivity of the material filling the fractures. Instead of inverting for elec-

trical conductivity (or log-conductivity), we can invert for a concentration of fractures.

This has several important implications in the inversion. First of all, it changes the

parameter space which we are working in; this affects both the regularization and the

computation of the sensitivities. In addition, it provides natural bounds for the con-

ductivity, as 0 ≤ ϕ ≤ 1. Figure 6.12 shows the effective conductivity as a function

of fracture concentration for the model considered here. Panels (a) and (b) show the

effective conductivity on a linear scale, while panels (c) and (d) show the effective con-

ductivity on a log-scale. The panels on the right (b) and (d) zoom in to lower concentra-

tions (0 < ϕ < 0.005). The mapping between concentration and effective conductivity

is approximately linear over the range of concentrations we expect to encounter for a

fractured volume of rock. Recall that the true concentration is 0.003. In comparison,

the bottom two plots, Figure 6.12 (c) and (d) show the log-conductivity, which is the

parameter I was inverting for in previous examples. It is quite non-linear, particularly

at low concentrations. Consider, for example how this manifests in the regularization.

If I regularize on log-conductivity, the difference between 10−2 S/m (the background)

and 1 S/m is penalized much more significantly than the difference between 1 S/m and
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Figure 6.12: Self-consistent effective medium theory estimation of electrical con-
ductivity as a function of fracture concentration. The conductivity of the
background is 10−2 S/m and the conductivity of the material filling the
fractures is 2500 S/m. We use an aspect ratio of 3×10−5, and the fractures
are assumed to be randomly oriented. Panels (a) and (b) show the conduc-
tivity on a linear scale while panels (c) and (d) show the conductivity on
a logarithmic scale. Panels (a) and (c) show the full range of possible ϕ

values from 0 to 1, and panels (b) and (d) zoom into a smaller range, 0
≤ ϕ ≤ 0.005.

2 S/m. If instead, I regularize on concentration, then the difference between 10−2 S/m

and 1 S/m is treated nearly the same as the difference between 1 S/m and 2 S/m as each

corresponds to an increase in concentration by 0.001 S/m. The associated sensitivity

function is shown in Figure 6.13. As compared to the log-conductivity inversion (Fig-

ure 6.5), the sensitivity is much more uniform over the length of the well for both (a, b)

the halfspace and (c, d) the true models.

To examine how using an effective medium theory model parameterization impacts

the inversion, I run a standard voxel inversion, as in Section 6.3.1, but now using ϕ
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Figure 6.13: Integrated sensitivity, similar to that shown in 6.5, except here, the
inversion model is fracture concentration. Panels (a, b) are the sensitivity
for a ϕ = 0 half-space and (c, d) show the sensitivity calculated using the
true model which includes the fracture.
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Figure 6.14: (a) Observed and predicted radial electric field data, (b) difference
between the observed and predicted data (V/m), (c) difference between the
observed and predicted data as a percentage of the observed data, (d) frac-
ture concentration model, ϕ , recovered in the inversion, and (e) electrical
conductivity model obtained by converting ϕ to electrical conductivity us-
ing equation 6.9 The colors in (a), (b), and (c) indicate the source location as
shown in Figure 6.3. The white outline in (d) outlines the true geometry of
the fracture zone and the grey line shows the location of the wellbore. The
data are fit to a global χ-factor < 0.05 and the inversion took 5 iterations.

as the inversion model. For σ0, I use the scalar value for the background, 10−2 S/m

in all cells. The initial model was set slightly above zero (10−10) S/m so that not all

model cells were starting on the lower bound of ϕ = 0. The reference model is set to

to zero. Pushing the inversion to a χ-factor < 0.05 gives the result shown in Figure

6.14. I have added an additional panel and now show both the recovered concentration

model (d) and the corresponding conductivity model (e). The inversion result is quite

comparable to the model obtained through a log-conductivity inversion shown in Figure

6.6. The main notable difference is that there is no region in which the conductivity

of the background is underestimated; by bounding the concentration between 0 and 1,

there is no mechanism for the inversion to reduce the conductivity.

Next, I consider combining the effective medium theory map with the parametric
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Figure 6.15: Inversion result using a parametric model of the fracture concentra-
tion. The black dashed line outlines the geometry of the starting model.
The initial fracture concentration is 10−10 in the background and 10−4 in
the target. The data are fit to a global χ-factor < 0.05 and the inversion
took 11 iterations.

map. I invert for the volume concentration of fractures in the background and within

the target as well as the depth, vertical extent and radius of the target. Similar to the

starting model used to obtain the inversion result in Figure 6.10, I start with a target

at the correct depth and with the correct thickness; its radius is 10 m. For a starting

ϕ-values, I use 10−10 in the background and 10−4 in the target. In comparison to the

parametric inversions for log-conductivity, the fracture concentration, and thus electrical

conductivity are much closer to the range we are expecting. The recovered concentration

within the target is 4× 10−4 and its conductivity is 0.3 S/m. The vertical extent is 37

m which is an overestimate, and its radial extent is 22 m, which is an underestimate.

This result closely resembles the voxel model shown in 6.14 and thus provides some

evidence that using effective medium theory may be a more robust approach to the

parametric inversion.

Experimentation shows that using effective medium theory in combination with the
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Figure 6.16: Inversion result using a parametric model of the fracture concentra-
tion. The concentration is converted to electrical conductivity using the
effective medium theory mapping shown in equation 6.9. The black dashed
line outlines the geometry of the starting model. The initial fracture con-
centration is 10−10 in the background and 10−4 in the target. The data are
fit to a global χ-factor < 0.05 and the inversion took 12 iterations.

parametric inversion is less sensitive to the starting model. For example, starting with a

thin target as in Figure 6.9 (which resulted in a conductivity of 1010 S/m for the target),

I obtain the inversion result shown in Figure 6.16. The recovered concentration is 5×

10−4 S/m, which corresponds to a conductivity of 0.5 S/m. Its vertical extent is 39 m,

and its radial extent is 29 m. Although there are some differences between the results

obtained in Figures 6.15 and 6.16, these are quite minor, and are not nearly as dramatic

as the models obtained by inverting for log-conductivity. Note that no regularization

is used here, the difference that the effective medium theory mapping makes in the

parametric inversion is in its impact on the sensitivities as well as the bounds it imposes

on the conductivity. In particular, the modification of the sensitivity seems to be the

main contributing factor. As the inversion progressed, the fracture concentration within

the target never reached the upper bound.

For the DC problem, it seems that there is an element of non-uniqueness between
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Figure 6.17: Parametric inversion result where the center of the target is fixed at a
depth of 955 m. The concentration is converted to electrical conductivity
using the effective medium theory mapping shown in equation 6.9. The
black dashed line outlines the geometry of the starting model. The initial
fracture concentration is 10−10 in the background and 10−4 in the target.
The data are fit to a global χ-factor < 0.05 and the inversion took 6 itera-
tions.

the vertical thickness of the target and its radial extent. Starting the inversion with a

geometry closer to the true solution, as in Figure 6.11, results in the model shown in

Figure 6.17. The recovered concentration is 10−3, which corresponds to a conductivity

of 1 S/m. The recovered radius is 75 m and thickness is 7 m. This indicates that in order

to obtain meaningful inversion results, we will need to start in the correct proximity to

the solution. For example, if the fracture was monitored with microseismic, then the

volume interpreted with microseismic, which is likely an overestimate of the extent of

the propped volume, could be used as a starting model.

These inversions did not take advantage of the known volume of proppant and fluid

(235 m3). The inversion result in Figure 6.15 underestimates the volume at 88 m3.

Coincidentally, the inversion result in Figure 6.16 comes quite close to the true volume,

226 m3. The inversion which we might expect the best performance of, as its geometry
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is closest to the true fracture, is that in Figure 6.17; this inversion overestimates the

volume by a factor of two: 471 m3. In the next section, I examine if the inversion results

can be improved by including a-priori knowledge of the volume of injected material.

6.3.4 Adding a-priori volume information

Provided that we have an estimate of the total volume of injected material (which ac-

counts for leak-off of fluid), as well as an estimate of the relationship between the con-

centration of the injected material and the electrical conductivity, then the total volume

can be treated as a datum in the inversion, as described in Section 6.2. In the following

inversions, I include the volume data-misfit term (equation 6.13) in the statement of the

inverse problem:

φd = φDC +φV (6.14)

When combining two quantities into a single misfit function there is a need to balance

the two terms so that they each are effective. This could be done by introducing an

additional weighting parameter or by increasing or decreasing the uncertainty assigned

to the volume datum. I have chosen the latter route.

The volume term can be incorporated into both the voxel and the parametric in-

versions. For a voxel inversion, the “forward simulation” which computes the volume

is simply the sum over all cells in the forward modelling mesh of the product of the

fracture concentration, ϕ , and the volume of each cell. In practice, the addition of the

volume datum in a voxel inversion makes little difference on the result. Over the large

domain, the concentration values in each cell can be updated by an amount that is neg-

ligible to the electrical conductivity in order to fit the volume datum. Thus, I focus my

attention on the parametric inversion. To perform the “forward simulation” for the vol-

ume datum with the parametric model, I simply use the recovered radius, thickness and
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concentration of fractures within the target. An alternative approach would be to map

the parametric concentration model to the simulation mesh and integrate over the entire

mesh. In practice, this can lead to a very large contribution from the background. For

example, a background concentration of 6×10−7 was obtained for the inversion shown

in Figure 6.15. This value is insignificant in its impact on the electrical conductivity

model, however, when integrated over the entire modelling domain, including padding

cells, it translates to a large volume.

It is important to note that the “forward simulation” for volume has no spatial sen-

sitivity; the location of the target is irrelevant to the volume calculation, and there is a

clear non-uniqueness between the radius and the thickness of the target. Therefore, we

cannot expect that the addition of volume information to the inversions shown in Figures

6.15 or 6.16 provides much improvement to the estimate of the geometry of the target.

However, where I hypothesize some improvement is for inversions where the geometry

is a reasonable estimate of the true geometry, as in the inversion result obtained in Figure

6.17.

Using the same thin-sheet starting model as in Figure 6.17, I perform a “joint in-

version” for the DC data and the volume. The uncertainty on the volume was set to

5%. The recovered model is shown in Figure 6.18. The inversion result is quite similar

to that shown in Figure 6.17. The main differences are that in the inversion consider-

ing a volume term, the sheet was made thinner, 3 m, as compared to the 7 m thickness

recovered in the inversion not considering volume.

6.4 Conclusions

The inversions shown in this section provide a glimpse into the nonuniqueness of the in-

verse problem, particularly when steel-cased wells are present. Pushing the voxel inver-
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Figure 6.18: Parametric inversion using effective medium theory and a volume
data-misfit in the statement of the inverse problem. The uncertainty on the
volume datum was 5%. The starting model was the same as used in Figure
6.17 The inversion reached a global χ-factor < 0.05 after 5 iterations.

sion allows us to estimate the depth-center of the fractures, however a smooth inversion

provides diffuse structures by design and therefore is not particularly insightful for es-

timating the geometry of a compact target. Parametric inversions provide a strategy for

obtaining a simple geometric structure from the inversion. A standard approach to the

parametric inversion and inverting for log-conductivity of the target and the background

proved to be quite unstable, and, in particular, the recovered conductivity varied by or-

ders of magnitude depending on the starting model. I suspect that the high conductivity

of the casing, which is electrically in contact with the target, plays a significant role in

this instability. This could be further examined in a study which varies the conductivity

of the casing. If the casing is indeed the main cause of the instability, then reducing

the conductivity of the borehole should reduce the large fluctuations in the recovered

conductivity of the target.

If instead of inverting for log-conductivity, we invert for fracture concentration using

effective medium theory, the parametric inversion is much more stable. The effective
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medium theory mapping is an approximately linear relationship between the fracture

concentration and the electrical conductivity. It is likely that parameterizing the model

using linear conductivity rather than effective medium theory provides comparable ben-

efits in the sensitivities. Having a relationship between fracture concentration and con-

ductivity provides two additional benefits in the inversion: (1) it provides natural bounds

on the recovered conductivity and (2) it allows us to incorporate a volume data-misfit

term in the statement of the inverse problem. The relative importance of these features

will require further investigation.

With the presented inversion approach, the mathematical statement of the effective

medium theory relationship between fracture concentration electrical conductivity could

be replaced by an empirical relationship based upon lab-studies. Although I used ex-

amples with a constant background, this is not required. A variable background model,

based upon an inversion of data collected before the fracture, can be used.

Framing the inverse problem as one for fracture concentration resulted in a more

robust inversion scheme that was less sensitive to the starting model, but clearly, there

is significant non-uniqueness in the DC problem and we do not have much sensitivity

to the geometry of the target. Experimentation shows that even adding vertical electric

field data from an offset borehole does not significantly improve the results. Here is

where electromagnetics has significant potential to provide further insights. In addition

to the static excitation at DC, the time-variation of the fields causes induction processes

and variation in the direction and magnitude of the fields, resulting in a richer data

set. Chapter 3 examined details of the physics of the induction process for conductive

permeable wells. The next step, which is a topic of future research, is to combine those

research results with the insight I have developed in this inversion chapter to quantify

how much additional information can be obtained using the full EM data set.
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Chapter 7

Conclusions and outlook

Resource extraction and the storage of materials, such as CO2, in the subsurface are

current realities in our relationship with the earth. Making the best use of resources,

such as the water required to perform hydraulic fracturing, and minimizing potential

hazards, such as leakage of CO2, requires that we have access to data which can ground

and inform decisions. Electromagnetic geophysics has a role to play. In many cases, in-

jected materials have different electrical conductivity than the host rock and the change

in physical properties can be targeted with a non-invasive electrical or electromagnetic

survey. A variety of EM surveys can be considered. Sources can be grounded or induc-

tive, they can be positioned on the surface or within a borehole, and the data can consist

of electric and/or magnetic field measurements. Each combination results in a different

excitation and sensing of the earth. The main objective in designing a survey is to col-

lect high quality data that are sensitive to the target. These data can then be inverted to

obtain information about the subsurface structures of interest.

Inversions are an important tool for working with EM data, particularly when the

goal is to extract information from subtle time-lapse signals. To formulate a meaningful
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inverse problem requires that: (a) we have data that are sensitive to the target of interest,

(b) we have the ability to forward-simulate data and compute sensitivities, and (c) we

can incorporate the necessary a-priori information and select a set of inversion param-

eters that allow the question-of-interest to be investigated. The success (or not) of the

methods used to address each of these elements depends upon an understanding of the

governing physics. In reservoir settings, the behavior of the currents, charges, fields

and fluxes is significantly complicated by the presence of highly conductive, permeable

steel-cased wells. As a result, much of my thesis focussed on developing a fundamental

understanding of electrical and EM methods in the presence of steel-cased wells.

With respect to steel-cased wells, this thesis includes contributions in terms of nu-

merical modelling as well as physical understanding of the behavior of electromagnetic

fields and fluxes in settings with highly conductive, permeable wells. By discretizing

Maxwell’s equations on a 3D cylindrical mesh, I was able to design a mesh which finely

discretizes the casing and captures 3D survey geometries without the number of cells

in the mesh resulting in an intensive computation. I considered two forms of valida-

tion, both comparing values with published simulation results and comparing physical

behaviors with that predicted in formative papers on DC and EM with steel cased wells.

At DC, I demonstrated the transition between an approximately linear decay of currents

away from the source along short wells to an exponential decay in longer wells. This be-

havior was predicted by both Schenkel (1991); Kaufman and Wightman (1993) and has

important implications in terms of testing approximations to the steel cased well. If the

test is performed on a short well, there is minimal change in the behavior of the currents

with changing conductivity. However, in longer wells, the product of the conductivity

and the cross-sectional area controls the nature of the decay, and thus is the important

quantity to conserve when approximating a steel cased well by a coarser conductivity
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structure. Related to the currents is the distribution of charges along the well. For short

wells, the distribution is nearly constant while for longer wells, there is an exponential

decay. There is also a significant charge increase near the end of the well. Although no

closed-form solution exists for this behavior, Griffiths and Li (1997) similarly demon-

strated this effect using an asymptotic analysis. When considering inverse problems in

settings with steel-cased wells, this has the implication that the sensitivity is larger near

the end of the well and as a result causes the inversion to shift structure closer to the end

of the well.

The DC resistivity experiment is the starting point for building an understanding of

the behavior of currents, charges, and electric fields when steel-cased wells are present.

Using the application of casing integrity, I demonstrated that the location of the return

electrode can be an important parameter in terms of survey design: the source and re-

ceiver lines can be oriented such that the coupling of the primary-field with the receivers

is reduced as compared to a survey with a very distant return electrode. Reducing the

coupling means that the secondary signals of interest comprise a larger percentage of the

data, and therefore provide greater opportunity to extract meaningful information in an

inversion. Our ability to detect a target of interest depends on many factors: the conduc-

tivity of the background, casing, and target, the location of the target, the position of the

source electrodes, as well as the position and sensitivity of the receivers. The examples

I demonstrated in Chapter 4 provide some indication of the relative importance of these

parameters. Naturally, these details are site-specific and forward modelling is a critical

tool for assessing the feasibility of a successful DC or EM survey in a given setting. The

Jupyter Notebooks associated with this thesis can contribute to this task.

Electromagnetic problems introduce challenges both with respect to the time-variation

of the fields and fluxes as well as the additional complexity caused by the significant
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magnetic permeability of the pipe. In a “simple” grounded-source time-domain EM

experiment with one electrode connected to the top of the pipe and an offset return elec-

trode, a shadow zone develops along the azimuth opposite to the source wire. This is

caused by the image currents being channeled into the pipe. When permeability is in-

cluded in the simulation, we saw that a poloidal current develops within the pipe. Along

the inner wall, the current flows downwards, while along the outer wall, it flows up-

wards. The effects of permeability occur at later times and can alter radial electric field

data measured at the surface by > 100% as compared to a pipe which is only conduc-

tive. This shows that in order to accurately simulate EM data collected in settings with

steel-cased wells, it is critical that permeability be modelled. Depending on the survey

and site parameters (e.g. base frequency, background conductivity, etc.), it may even

influence data that are classically treated as DC; EM forward modelling can be used to

assess if this is a concern.

To reduce computational load, particularly when considering the inverse problem

where many forward simulations are required, it is of interest to represent the casing on

a coarse mesh. At DC, we could achieve this by approximating the hollow-cased well by

a solid cylinder that preserves the product of the conductivity and the cross sectional area

of the pipe. However, in an EM experiment, the image current, which diffuses through

time complicates the geometry of the currents and their interaction with the well. As a

result, it appears that to design an appropriate approximation to the well, we may need

to use a conductivity that varies through time and as a function of distance along the

well. In the upscaling work I contributed to in Caudillo-Mata et al. (2017a), we showed

that the values we estimated for a coarse-scale approximation to a fine-scale conductivity

structure depended upon sensitivity. For example a different conductivity value might be

obtained if we favored a value that replicated the behavior of the current density than if
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we favored a value that replicated the magnetic flux. Similarly, when approximating the

casing in an EM experiment, the galvanic source currents provide a different excitation

on the casing than the image current. Therefore, to capture each behavior on a coarse

scale may require a more sophisticated approach than simply replacing the well with

a constant conductivity. When permeability is included in the model, the behavior of

the currents and magnetic flux are intertwined. It may be the case that a single scalar

value can be used for the permeability, or it may be as complicated as conductivity and

require that both a spatially and temporally varying model is necessary to accurately

model the EM behavior. Designing a coarse-scale appropriate approximation to a steel-

cased well is an avenue for future research. The development of the 3D cylindrical mesh

simulation is an important contribution for this continuing work, as it provides a means

for accurately discretizing the casing and performing simulations which include both

permeability and conductivity.

The application of imaging hydraulic fractures was a primary motivator for the the-

sis. To create a sufficient contrast in electrical conductivity between the host rock and

the fractures, I considered fracture operations conducted with an electrically conductive

proppant and fluid. In order to estimate the electrical conductivity of a fractured volume

of rock, I used a two-step homogenization process based on effective medium theory. In

the first step, I estimate the conductivity of the proppant-fluid slurry and in the second, I

estimate the conductivity of a volume of rock containing conductive cracks that are filled

with the slurry. This approach provides a mathematical relationship between the con-

centration of conductive fractures and the coarse-scale conductivity. This relationship

can be incorporated into an inversion, so that rather than inverting for log-conductivity,

as is traditionally done in a DC or EM inversion, we can invert for a fracture concen-

tration given a background conductivity model. Furthermore, it provides a mechanism
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for incorporating a-priori knowledge of the volume of injected proppant and fluid into

the statement of the inverse problem. Although the workflow I adopted in this thesis

uses effective medium theory to connect the concentration of proppant and fluid to the

coarse-scale conductivity, the same methodology could be applied using an empirical

relationship found in a lab-study.

The features of interest in an imaging problem for fractures are primarily geometric.

For example, from an engineering standpoint, it is of interest to delineate the height

and lateral extent of the propped volume of the reservoir. A smooth voxel inversion is

then not necessarily an ideal approach as diffuse structures are recovered. Adopting a

parametric representation of the fractured volume of rock is one trajectory for estimating

its shape. I performed several parametric inversions for a DC resistivity experiment.

In particular, the inversion results demonstrated some of the complications that arise

due to the presence of the highly conductive steel casing. The parametric inversions

in which log-conductivity was used to describe the properties of the target were highly

sensitive to the starting model; the recovered conductivities varied by several orders of

magnitude with small changes in the starting model parameters. If instead of using log-

conductivity, we use effective-medium theory and invert for the fracture concentration

in a parametric inversion, the results were more robust. Minor variations in the starting

model did not drastically change the recovered model. The effective medium theory

mapping is an approximately linear mapping between the fracture concentration and

the conductivity, whereas the mapping from log-conductivity to conductivity is highly

non-linear. This changes the sensitivities, and in a setting with such significant physical

property contrasts, the non-linear log-conductivity mapping is not particularly stable.

The combination of a parametric description of the fractured volume of rock and the

effective-medium-theory mapping for the properties of the target resulted in reasonable
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model recoveries from the inversion. This was particularly true if the geometry of the

starting model was somewhat representative of the true model.

Although parameterizing the model in terms of fracture concentration improved the

stability of the inversion, there is still significant non-uniqueness. EM methods have

significant potential to reduce some of this non-uniqueness because they provide richer

information that comes with the variable excitation of the target through time. Exploring

the use of EM inversions to image the propped-volume of a fracture is another avenue

for future research. The software tools used to perform the DC inversions are imple-

mented within the SimPEG framework. As such, the DC forward simulation compo-

nent can readily be interchanged with an EM forward simulation and the same inversion

machinery employed, which should reduce the overhead for future research along this

trajectory.

The research conducted in this thesis required a significant amount of software to be

developed. I needed to be able to forward-simulate Maxwell’s equations at DC and in

both the frequency and time-domains and view the results in terms of fields, fluxes and

charges. For the EM simulations, permeability was included, and multiple formulations

(E-B vs. H-J) were necessary for simulating inductive and grounded sources. For the

inversion, I performed both voxel and parametric inversions in terms of log-conductivity

and in terms of fracture-concentration through effective medium theory. This requires

optimization machinery, computation of the sensitivities, and flexibility in how the in-

version model is defined. Taken together, the composite of these tasks is an enormous

effort and would be intractable if tackled in isolation. Further, much of the potential

contribution to the broader community would be lost if the software had been written

with the aim of “getting the job done” rather than written with the aim of re-use and

adaptation by others. Working within the open-source ecosystem provides opportuni-
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ties for researchers to leverage existing tools and to contribute new components into a

larger framework where their value can be realized by a broader community. The work

in this thesis has greatly benefited from work conducted by the SimPEG community

and more broadly by the Jupyter and scientific Python communities. I in turn hope that

the contributions I have made to the SimPEG ecosystem add long-term value to the

geophysics community.
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Appendix A

Source code

The source-code for each chapter is available as a stand-alone repository on GitHub and

has additionally been archived with digital-object-identifier (DOI). Here, we provide a

summary of where each code can be accessed and where the archive is:

• Chapter 2:

– GitHub: https://github.com/simpeg-research/heagy-2018-fracture-physprops

– DOI: 10.5281/zenodo.1434456

• Chapter 3:

– GitHub: https://github.com/simpeg-research/heagy-2018-emcyl

– DOI: 10.5281/zenodo.1220427

• Chapter 4:

– GitHub: https://github.com/simpeg-research/heagy-2018-dc-casing

– DOI: 10.5281/zenodo.1324543
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• Chapter 5:

– GitHub: https://github.com/simpeg-research/heagy-2018-em-casing

– DOI: 10.5281/zenodo.1434454

• Chapter 6:

– GitHub: https://github.com/simpeg-research/heagy-2018-injection-inversions

– DOI: 10.5281/zenodo.1434458

• Appendix D:

– GitHub: https://github.com/simpeg-research/heagyetal-2017-simpegem

– DOI: 10.5281/zenodo.1434469
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Appendix B

Concentric spheres in a uniform

electrostatic field

Coating proppant particles with a conductive material is one potential strategy for gen-

erating an electrically conductive proppant pack. In this appendix, we work through

a derivation of the electric potential outside of two concentric spheres in the presence

of a uniform electrostatic field. Using this solution, we estimate an effective electrical

conductivity of a composite particle.

B.1 Setup

The set-up is shown in Figure B.1

• primary electric field E0 = E0x̂

• background conductivity σ0,

• outer shell conductivity σ1 and radius R1

• inner sphere conductivity σ2 and radius R2
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Figure B.1: Problem setup. Concentric spheres in a uniform electric field.

The basic equations are

∇×E = 0 (B.1)

∇×H = J (B.2)

J = σE (B.3)

By equation B.1, we can express E as a gradient of a potential

E =−∇V (B.4)

and combining equations B.1, B.2 and B.3, we see

∇×H =−σ∇V

Taking the divergence gives

0 =−∇ ·σ∇V
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and in a region with constant σ

∇
2V = 0 (B.5)

At each of the conductivity interfaces, we have continuity of the normal component

of the current density, and continuity of the electric potential. Continuity of the normal

current density gives

σ0
∂V0

∂ r
= σ1

∂V1

∂ r
at r = R1 (B.6)

σ1
∂V1

∂ r
= σ2

∂V2

∂ r
at r = R2 (B.7)

Continuity of the potential gives

V0 =V1 at r = R1 (B.8)

V1 =V2 at r = R2 (B.9)

B.2 Solving for the Potential

The primary potential is given by

E0x̂ =−∂V P

∂x
x̂⇒ E0 =−

∂V P

∂x

By integrating in x and setting the reference point to V P(r = 0) = 0, we see

∫ x

0
E0dx =−

∫ x

0

∂V P

∂x

E0x =−V P
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which gives a primary potential of

V P = E0x = E0r cosθ (B.10)

In spherical coordinates, the Laplace equation, equation B.5, is given by

(
∂

∂ r

(
r2 ∂

∂ r

)
+

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

)
V (r,θ ,φ) = 0

by symmetry, V =V (r,θ), so the above equation simplifies to:

(
∂

∂ r

(
r2 ∂

∂ r

)
+

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

))
V (r,θ) = 0 (B.11)

which has general solution

V =
∞

∑
n=0

(
Anrn +

Bn

rn+1

)
Pn(cosθ) (B.12)

B.2.1 Solving for the coefficients

Regarding notation, on the coefficients A,B the subscript denotes the order of the Legen-

dre polynomial and the superscript denotes the region where that coefficient is applicable

(i.e. 0: outside the sphere, 1: in the shell, 2: in the inner sphere). On the radius, R, the

subscript denotes the region (1: outer shell, 2: inner sphere), while the superscript is an

exponent.
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Outside the sphere

Outside the spheres (r > R1), we require that V ⇒V P for r� R1

V0 = A0
0 +A0

1r cosθ +
∞

∑
n=2

A0
nrnPn(cosθ)+

∞

∑
n=0

B0
n

rn+1 Pn(cosθ)

for r� R1

V0⇒ A0
0 +A0

1r cosθ +
∞

∑
n=2

A0
nrnPn(cosθ)+

∞

∑
n=0

Since the Legendre polynomials, Pn(cosθ), are orthogonal, then A0
0,A

0
n = 0 ∀n, and

A0
1 =−E0. So

V0 =−E0r cosθ +
∞

∑
n=0

B0
n

rn+1 Pn(cosθ) (B.13)

In the outer shell

In the outer shell (R2 < r < R1)

V1 =
∞

∑
n=0

(
A1

nrn +
B1

n
rn+1

)
Pn(cosθ) (B.14)

Using the interface condition in equation B.8, we have

−E0R1 cosθ +
∞

∑
n=0

(
B0

n

Rn+1
1

)
Pn(cosθ) =

∞

∑
n=0

(
A1

nRn
1 +

B1
n

Rn+1
1

)
Pn(cosθ)

−E0R1 cosθ+
B0

0
R1

+
B0

1
R2

1
cosθ +

∞

∑
n=2

(
B0

n

Rn+1
1

)
Pn(cosθ)

= A1
0 +A1

1R1 cosθ +
B1

0
R1

+
B1

1
R2

1
cosθ +

∞

∑
n=2

(
A1

nRn
1 +

B1
n

Rn+1
1

)
Pn(cosθ)
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which must hold for all θ . Thus, we can break this up in to a series of smaller equations.

For the n = 0 polynomials, we have

B0
0

R1
= A1

0 +
B1

0
R1

⇒ B0
0 = R1A1

0 +B1
0

(B.15)

For the n = 1 polynomials, we have

−E0R1 +
B0

1
R2

1
= A1

1R1 +
B1

1
R2

1

⇒ −E0R3
1 +B0

1 = A1
1R3

1 +B1
1

(B.16)

and for n≥ 2 (using orthogonality of Pn(cosθ))

B0
n

Rn+1
1

= A1
nRn

1 +
B1

n

Rn+1
1

⇒ B0
n = A1

nR2n+1
1 +B1

n

(B.17)

Next, we look to the interface conditions on the derivative of the potential, as de-

scribed in equation B.6. We first find the derivatives of V0, V1 with respect to r:

∂V0

∂ r
=−E0 cosθ +

∞

∑
n=0
−(n+1)

B0
n

rn+2 Pn(cosθ) (B.18)

∂V1

∂ r
=

∞

∑
n=1

nA1
nrn−1Pn(cosθ)+

∞

∑
n=0
−(n+1)

B1
n

rn+2 Pn(cosθ) (B.19)
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Imposing the interface in equation B.6, we have,

−σ0E0 cosθ +σ0

∞

∑
n=0
−(n+1)

B0
n

Rn+2
1

Pn(cosθ)

= σ1

∞

∑
n=1

nA1
nRn−1

1 Pn(cosθ)+σ1

∞

∑
n=0
−(n+1)

B1
n

Rn+2
1

Pn(cosθ)

Breaking out coefficients up to n = 2 gives

−σ0E0 cosθ −σ0
B0

0

R2
1
−2σ0

B0
1

R3
1

cosθ −σ0

∞

∑
n=2

(n+1)
B0

n

Rn+2
1

Pn(cosθ)

= σ1A1
1 cosθ −σ1

B1
0

R2
1
−2σ1

B1
1

R3
1

cosθ +σ1

∞

∑
n=2

(
nA1

nRn−1
1 − (n+1)

B1
n

Rn+2
1

)
Pn(cosθ)

Again, this must hold for all θ , so we can break this up into a series of smaller equations.

For the n = 0 polynomials, we have

−σ0
B0

0

R2
1
=−σ1

B1
0

R2
1

⇒ σ0B0
0 = σ1B1

0

(B.20)

For the n = 1 polynomials, we have

−σ0E0−2σ0
B0

1

R3
1
= σ1A1

1−2σ1
B1

1

R3
1

⇒ −σ0E0R3
1−2σ0B0

1 = σ1A1
1R3

1−2σ1B1
1

(B.21)

and for the polynomials where n≥ 2, we have

−σ0(n+1)
B0

n

Rn+2
1

= σ1nA1
nRn−1

1 −σ1(n+1)
B1

n

Rn+2
1

⇒ −σ0(n+1)B0
n = σ1nA1

nR2n+1
1 −σ1(n+1)B1

n

(B.22)
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Inner sphere

In the inner-most sphere (r < R2), we have that

V2 =
∞

∑
n=0

(
A2

nrn +
B2

n
rn+1

)
Pn(cosθ)

as r⇒ 0, V2⇒ 0 by choice of our ref. point. This implies B2
n = 0 ∀n, and A2

0 = 0, so we

have

V2 =
∞

∑
n=1

A2
nrnPn(cosθ) (B.23)

Now we use the interface conditions at r = R2, given by equations B.7 and B.9. Starting

with the continuity of the potential V (equation B.9), we see

∞

∑
n=0

(
A1

nrn +
B1

n
rn+1

)
Pn(cosθ) =

∞

∑
n=1

A2
nrnPn(cosθ)

which must hold for all θ , giving

A1
0 +

B1
0

R2
= 0

⇒ A1
0R2 +B1

0 = 0

(B.24)

and for n≥ 1,

A1
nRn

2 +
B1

n

Rn+1
2

= A2
nRn

2

⇒ A1
nR2n+1

2 +B1
n = A2

nR2n+1
2

(B.25)
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For the continuity of the current density (equation B.7), we have

σ1

∞

∑
n=1

nA1
nRn−1

2 Pn(cosθ)−σ1

∞

∑
n=0

(n+1)
B1

n

Rn+2
2

Pn(cosθ) = σ2

∞

∑
n=1

nA2
nRn−1

2 Pn(cosθ)

which must hold for all θ , giving

−σ1
B1

0
R2

= 0

and since both σ1 and R2 are non-zero,

B1
0 = 0 (B.26)

and for n≥ 1

σ1nA1
nRn−1

2 −σ1(n+1)
B1

n

Rn+2
2

= σ2nA2
nRn−1

2

⇒ σ1nA1
nR2n+1

2 −σ1(n+1)B1
n = σ2nA2

nR2n+1
2

(B.27)

Now that we have equations B.15, B.16, B.17, B.20, B.21, B.22, B.24, B.25, B.26

and B.27, we have 10 equations and 10 unknowns. Therefore, we can proceed to solve

for each of the coefficients.

By combining B.24 and B.26, we see

A1
0 = 0. (B.28)

Combining this with equation B.15, we see

B0
0 = 0 (B.29)

From equation B.16, we know B1
1 = −E0R3

1 +B0
1−A1

1R3
1, which we put into equation
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B.21 to give

−σ0E0R3
1−2σ0B0

1 = σ1A1
1R3

1−2σ1(−E0R3
1 +B0

1−A1
1R3

1)

giving us an equation in A1
1 and B0

1, which we can simplify to

−E0R3
1(σ0 +2σ1) = 3σ1A1

1R3
1 +2(σ0−σ1)B0

1 (B.30)

From equation B.25, we know A2
nR2n+1

2 = A1
nR2n+1

2 +B1
n. Putting this in to eqn B.27, we

see

σ1nA1
nR2n+1

2 −σ1(n+1)B1
n = σ2n(A1

nR2n+1
2 +B1

n) n≥ 1

which simplifies to

n(σ1−σ2)A1
nR2n+1

2 = ((n+1)σ1 +nσ2)B1
nR2n+1

2 n≥ 1 (B.31)

In the case where n = 1, we have that

(σ1−σ2)A1
1R3

2 = (2σ1 +σ2)B1
1

⇒ A1
1 =

(
2σ1 +σ2

σ1−σ2

)
B1

1

R3
2

(B.32)

which we can put into equation B.30 giving

− (σ0 +2σ1)E0R3
1 = 3σ1

(
2σ1 +σ2

σ1−σ2

)(
R1

R2

)3

B1
1 +2(σ0−σ1)B0

1 (B.33)
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To get another equation in B0
1 and B1

1, we use equations B.16 and B.32 to get

B1
1 =−E0R3

1 +B0
1−
(

2σ1 +σ2

σ1−σ2

)(
R1

R2

)3

B1
1

⇒

(
1+
(

2σ1 +σ2

σ1−σ2

)(
R1

R2

)3
)

B1
1 =−E0R3

1 +B0
1

to ease notation, define

α =

(
R1

R2

)3

(B.34)

which lets us simplify the above to

B1
1 =

(
−E0R3

1 +B0
1
)(

1+
(

2σ1 +σ2

σ1−σ2

)
α

)−1

=
(
−E0R3

1 +B0
1
)((σ1−σ2)+(2σ1 +σ2)α

σ1−σ2

)−1

=
(
−E0R3

1 +B0
1
)( σ1−σ2

(σ1−σ2)+(2σ1 +σ2)α

) (B.35)

With equations B.33 and B.35, we finally have arrived at a set of two equations with

two unknowns (B1
1 and (B0

1). Putting equation B.35 into equation B.33 and using the
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definition of α as given in equation B.34, we see

− (σ0 +2σ1)E0R3
1

= 3σ1α

(
2σ1 +σ2

σ1−σ2

)(
σ1−σ2

(σ1−σ2)+(2σ1 +σ2)α

)
(−E0R3

1 +B0
1)+2(σ0−σ1)B0

1

⇒−(σ0 +2σ1)E0R3
1

= 3σ1α

(
2σ1 +σ2

(σ1−σ2)+(2σ1 +σ2)α

)
(−E0R3

1 +B0
1)+2(σ0−σ1)B0

1

⇒−(σ0 +2σ1)E0R3
1

=

(
3σ1(2σ1 +σ2)α

(σ1−σ2)+(2σ1 +σ2)α

)
(−E0R3

1 +B0
1)+2(σ0−σ1)B0

1

⇒−
(
(σ0 +2σ1)−

3σ1(2σ1 +σ2)α

(σ1−σ2)+(2σ1 +σ2)α

)
E0R3

1

=

(
3σ1(2σ1 +σ2)α

(σ1−σ2)+(2σ1 +σ2)α
+2(σ0−σ1)

)
B0

1

⇒−
(
(σ0 +2σ1)(σ1−σ2)+(σ0 +2σ1)(2σ1 +σ2)α−3σ1(2σ1 +σ2)α

(σ1−σ2)+(2σ1 +σ2)α

)
E0R3

1

=

(
3σ1(2σ1 +σ2)α +2(σ0−σ1)(σ1−σ2)+2(σ0−σ1)(2σ1 +σ2)α

(σ1−σ2)+(2σ1 +σ2)α

)
B0

1

⇒−((σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α)E0R3
1

= (2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α)B0
1

So the coefficient B0
1 is given by

B0
1 =−E0R3

1

(
(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(B.36)
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Putting this into equation B.35, we can solve for B1
1

B1
1 =−E0R3

1

(
1+

(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(

σ1−σ2

(σ1−σ2)+(2σ1 +σ2)α

)
⇒B1

1 =−E0R3
1

(
3σ0(σ1−σ2)+3σ0(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(

σ1−σ2

(σ1−σ2)+(2σ1 +σ2)α

)

B1
1 =−E0R3

1

(
3σ0(σ1−σ2)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(B.37)

Next, we solve for A1
1 using equation B.32.

A1
1 =

(
2σ1 +σ2

σ1−σ2

)
1

R3
2

(
−E0R3

1

(
3σ0(σ1−σ2)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

))

which simplifies to

A1
1 =−E0α

(
3σ0(2σ1 +σ2)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(B.38)

Now, using equation B.27 for n = 1, we can solve for A2
1

σ2A2
1R3

2 = σ1A1
1R3

2−2σ1B1
1

A2
1 =

σ1

σ2

(
A1

1−
2

R3
2

B1
1

)
=−E0α

σ1

σ2

(
3σ0(2σ1 +σ2)−2(3σ0(σ1−σ2))

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
=−E0α

σ1

σ2

(
3σ0(3σ2)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
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A2
1 =−E0α

(
3σ0(3σ1)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(B.39)

At this point, the remaining coefficients to be found are B0
n, A1

n and B1
n and A2

n for

n ≥ 2, and four remaining equations B.17, B.22, B.25 and B.27 for each n. These can

be written more concisely as a matrix equation, namely



0

0

0

0


=



1 0 −1 1

nσ1 0 (n+1)σ0 −(n+1)σ1

1 −1 0 1

nσ1 −nσ2 0 −(n+1)σ1





A1
nR2n+1

1

B0
n

A2
nR2n+1

2

B1
n


(B.40)

The solution to equation B.40 requires the matrix inverse. If the matrix is invertible,

than the unique solution is (0,0,0,0). To test if this is invertible, we perform Gaussian

elimination to try and reduce it to the identity:



1 0 −1 1

1 −1 0 1

nσ1 −nσ2 0 −(n+1)σ1

nσ1 0 (n+1)σ0 −(n+1)σ1



∼



1 0 −1 1

0 −1 0 1

0 0 (n+1)σ0 +nσ1 −(2n+1)σ1

0 −nσ2 nσ1 −(2n+1)σ1



264



∼



1 0 −1 1

0 1 0 −1

0 0 (n+1)σ0 +nσ1 −(2n+1)σ1

0 0 nσ1 −(2n+1)σ1−nσ2



∼



1 0 −1 1

0 1 0 −1

0 0 1 −(2n+1)σ1
(n+1)σ0+nσ1

0 0 0 −(2n+1)σ1−nσ2−nσ1
−(2n+1)σ1

(n+1)σ0+nσ1



∼



1 0 −1 1

0 1 0 −1

0 0 1 −(2n+1)σ1
(n+1)σ0+nσ1

0 0 0 1



∼



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Therefore,

A1
n = 0 ∀n≥ 2 (B.41)

B0
n = 0 ∀n≥ 2 (B.42)

A2
n = 0 ∀n≥ 2 (B.43)
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B1
n = 0 ∀n≥ 2 (B.44)

Now we have everything we need to express the potentials in each region. Outside

the sphere (r > R2)

V0 =−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

))
(B.45)

In the outer shell (R1 < r < R2)

V1 =−E0r cosθ
3σ0

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α(
(2σ1 +σ2)α +(σ1−σ2)

R3
1

r3

) (B.46)

In the inner sphere (r < R2)

V2 =−E0r cosθ

(
(3σ0)(3σ1)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

)
(B.47)

B.2.2 Sanity Checks

Before moving any further, there are a few end-member cases we can use to validate our

solution.

For a number of checks, it is useful to compare to the solution of a single sphere.

From Ward and Hohmann (pg. 282-285), we have that the potential exterior to the

sphere (r > R) is

Ve =−E0r cosθ

(
1+

R3

r3

(
σe−σi

2σe +σi

))
(B.48)
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where σe is the conductivity of the background, σi is the conductivity of the sphere, and

R is the radius of the sphere. The potential inside the sphere (r < R) is given by

Vi =−E0r cosθ

(
3σe

2σe +σi

)
(B.49)

Check 1: Equal conductivity of the inner sphere and outer shell

First, if σ2 = σ1, then R = R1, and we expect V0 = Ve and V1 = V2 = Vi. Starting with

V0, we see

V0 =−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ1)(σ1−σ1)+(σ0−σ1)(2σ1 +σ1)α

2(σ0−σ1)(σ1−σ1)+(2σ0 +σ1)(2σ1 +σ1)α

))
=−E0r cosθ

(
1+

R3
1

r3

(
(σ0−σ1)(3σ1)α

(2σ0 +σ1)(3σ1)α

))
=−E0r cosθ

(
1+

R3
1

r3

(
σ0−σ1

2σ0 +σ1

))
=Ve X

For V1, we have

V1 =−E0r cosθ
3σ0

2(σ0−σ1)(σ1−σ1)+(2σ0 +σ1)(2σ1 +σ1)α(
(2σ1 +σ1)α +(σ1−σ1)

R3
1

r3

)
=−E0r cosθ

3σ0

(2σ0 +σ1)(3σ1)α
((3σ1)α)

=−E0r cosθ
3σ0

(2σ0 +σ1)

=Vi X
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For V2, we have

V2 =−E0r cosθ

(
(3σ0)(3σ1)α

2(σ0−σ1)(σ1−σ1)+(2σ0 +σ1)(2σ1 +σ1)α

)
=−E0r cosθ

(
(3σ0)(3σ1)α

(2σ0 +σ1)(3σ1)α

)
=−E0r cosθ

(
3σ0

2σ0 +σ1

)
=Vi X

Check 2: Conductivity of the outer shell equals that of the background

If σ1 = σ0, then R = R2, and we expect V0 =V1 =Ve and V2 =Vi. For V0, we have

V0 =−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ0)(σ0−σ2)+(σ0−σ0)(2σ0 +σ2)α

2(σ0−σ0)(σ0−σ2)+(2σ0 +σ0)(2σ0 +σ2)α

))
=−E0r cosθ

(
1+

R3
1

r3

(
(3σ0)(σ0−σ2)

(3σ0)(2σ0 +σ2)α

))
=−E0r cosθ

(
1+

R3
1

r3

(
(σ0−σ2)

(2σ0 +σ2)α

))
=−E0r cosθ

(
1+

R3
1

r3

(
σ0−σ2

2σ0 +σ2

)
R3

2

R3
1

)
=−E0r cosθ

(
1+

R3
2

r3

(
σ0−σ2

2σ0 +σ2

))
=Ve X
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For V1, we have

V1 =−E0r cosθ
3σ0

2(σ0−σ0)(σ0−σ2)+(2σ0 +σ0)(2σ0 +σ2)α(
(2σ0 +σ2)α +(σ0−σ2)

R3
1

r3

)
=−E0r cosθ

3σ0

(3σ0)(2σ0 +σ2)α

(
(2σ0 +σ2)α +(σ0−σ2)

R3
1

r3

)
=−E0r cosθ

1
(2σ0 +σ2)α

(
(2σ0 +σ2)α +(σ0−σ2)

R3
1

r3

)
=−E0r cosθ

(
1+
(

σ0−σ2

(2σ0 +σ2)α

)
R3

1
r3

)
=−E0r cosθ

(
1+
(

σ0−σ2

2σ0 +σ2

)
R3

2

R3
1

R3
1

r3

)
=−E0r cosθ

(
1+
(

σ0−σ2

2σ0 +σ2

)
R3

2
r3

)
=Ve X

and for V2,

V2 =−E0r cosθ

(
(3σ0)(3σ0)α

2(σ0−σ0)(σ0−σ2)+(2σ0 +σ0)(2σ0 +σ2)α

)
=−E0r cosθ

(
(3σ0)(3σ0)α

(3σ0)(2σ0 +σ2)α

)
=−E0r cosθ

(
3σ0

2σ0 +σ2

)
=Vi X
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Check 3: Equal radius of the inner sphere and outer shell

If α = 1 (i.e. R1 = R2), we expect V0 =Ve, and V2 =Vi. For V0, we have

V0 =−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)

))
=−E0r cosθ

(
1+

R3
1

r3

(
σ0(σ1−σ2 +2σ1 +σ2)+σ1(2σ1−2σ2−2σ1−σ2)

2σ0(σ1−σ2 +2σ1 +σ2)+σ1(−2σ1 +2σ2 +2σ1 +σ2)

))
=−E0r cosθ

(
1+

R3
1

r3

(
σ0(3σ1)+σ1(−3σ2)

2σ0(3σ1)+σ1(3σ2)

))
=−E0r cosθ

(
1+

R3
1

r3

(
σ0−σ2

2σ0 +σ2

))
=Ve X

For V2, we have

V2 =−E0r cosθ

(
(3σ0)(3σ1)

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)

)
=−E0r cosθ

(
(3σ0)(3σ1)

2σ0(σ1−σ2 +2σ1 +σ2)+σ1(−2σ1 +2σ2 +2σ1 +σ2)

)
=−E0r cosθ

(
(3σ0)(3σ1)

2σ0(3σ1)+σ1(3σ2)

)
=−E0r cosθ

(
3σ0

2σ0 +σ2

)
=Vi X
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Check 4: limR2→ 0

If we take R2→ 0 (i.e. α−1→ 0), we expect V0→Ve and V1→Vi. For V0, we have

lim
α−1→0

V0 = lim
α−1→0

−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

))
= lim

α−1→0
−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ1)(σ1−σ2)α

−1 +(σ0−σ1)(2σ1 +σ2)

2(σ0−σ1)(σ1−σ2)α−1 +(2σ0 +σ1)(2σ1 +σ2)

))
=−E0r cosθ

(
1+

R3
1

r3

(
(σ0−σ1)(2σ1 +σ2)

(2σ0 +σ1)(2σ1 +σ2)

))
=−E0r cosθ

(
1+

R3
1

r3

(
σ0−σ1

2σ0 +σ1

))
=Ve X

and for V1, we have

lim
α−1→0

V1 = lim
α−1→0

−E0r cosθ
3σ0

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α(
(2σ1 +σ2)α +(σ1−σ2)

R3
1

r3

)
= lim

α−1→0
−E0r cosθ

3σ0

2(σ0−σ1)(σ1−σ2)α−1 +(2σ0 +σ1)(2σ1 +σ2)(
(2σ1 +σ2)+(σ1−σ2)α

−1 R3
1

r3

)
=−E0r cosθ

3σ0

(2σ0 +σ1)(2σ1 +σ2)
(2σ1 +σ2)

=−E0r cosθ

(
3σ0

2σ0 +σ1

)
=Vi X
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B.3 Effective Conductivity Expression

After all of that, now we want an expression for the effective conductivity of a coated

sphere. To clarify, I mean that we want to find a value σ∗ such that the potential external

to a sphere with radius R1 and conductivity σ∗ is equivalent to the potential due to the

concentric spheres with inner radius R2 and conductivity σ2, and outer radius R1 and

conductivity σ1.

To proceed, we equate V0 as defined in equation B.45 with the Ve given by equation

B.48 and specify that σe = σ0, σi = σ∗ and R = R1, giving

Ve =V0

−E0r cosθ

(
1+

R3
1

r3

(
σ0−σ∗

2σ0 +σ∗

))
=−E0r cosθ

(
1+

R3
1

r3

(
(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α

))
σ0−σ∗

2σ0 +σ∗
=

(σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α
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From this, we can solve for σ∗

((σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α)(2σ0 +σ
∗)

= (2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α)(σ0−σ
∗)

σ
∗ ((σ0 +2σ1)(σ1−σ2)+(σ0−σ1)(2σ1 +σ2)α

+2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α)

= σ0 (−2(σ0 +2σ1)(σ1−σ2)−2(σ0−σ1)(2σ1 +σ2)α

+2(σ0−σ1)(σ1−σ2)+(2σ0 +σ1)(2σ1 +σ2)α)

σ
∗ ((σ0 +2σ1 +2σ0−2σ1)(σ1−σ2)

+(σ0−σ1 +2σ0 +σ1)(2σ1 +σ2)α)

= σ0 (2(−σ0−2σ1 +σ0−σ1)(σ1−σ2)

+(−2σ0 +2σ1 +2σ0 +σ1)(2σ1 +σ2)α)

σ
∗ ((3σ0)(σ1−σ2)+(3σ0)(2σ1 +σ2)α)

= σ0 (2(−3σ1)(σ1−σ2)+(3σ1)(2σ1 +σ2)α)

We can cancel a factor of 3σ0 from each side, giving an expression independent of σ0

σ
∗ ((σ1−σ2)+(2σ1 +σ2)α) = (−2(σ1)(σ1−σ2)+(σ1)(2σ1 +σ2)α)

σ
∗ ((σ1−σ2)+(2σ1 +σ2)α) = σ1 (−2(σ1−σ2)+(2σ1 +σ2)α)

σ
∗ = σ1

−2(σ1−σ2)+(2σ1 +σ2)α

(σ1−σ2)+(2σ1 +σ2)α

With a slight re-arrangement and substituting in the definition of α , we see

σ
∗ = σ1

(2σ1 +σ2)R3
1−2(σ1−σ2)R3

2

(2σ1 +σ2)R3
1 +(σ1−σ2)R3

2
(B.50)

A few end-members can serve as checks. If σ1 = σ2, then σ∗ = σ1, as expected. If
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α→∞, (ie. R2→ 0), then σ∗ = σ1, as expected, and if α→ 1 (R1 = R2), then σ∗ = σ2,

as expected.
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Appendix C

Self consistent effective medium theory

derivatives

Here, I derive the sensitivity of the effective conductivity calculated via effective medium

theory, σ∗ with respect to the concentration of the included material φ for the inversions

discussed in Chapter 6. The effective conductivity is found by solving 6.9, which I

restate here:

(1−ϕ)(σ∗−σ0)R(0,∗)+ϕ(σ∗−σ1)R(1,∗) = 0 (C.1)

where σ0 is the conductivity of the background, σ1 is the conductivity of the included

phase, and R(i,∗) electric field concentration tensor for the i-th phase. For simplicity,

I assume that both phases are randomly oriented and thus the effective conductivity is

isotropic. For randomly oriented particles, R(i,∗) is given by (recalling that A is given in
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equation 2.4),

R( j,∗) =
1
3

trace
([

I+Aσ
∗−1(σ jI−σ

∗)
]−1
)

=
1
3

trace


I+

(σ j−σ∗)

σ∗


Q

Q

1−2Q



−1


=
1
3

trace

σ
∗


σ∗+Q(σ j−σ∗)

σ∗+Q(σ j−σ∗)

σ j−2Q(σ j−σ∗)


−1


=
σ∗

3

(
2

σ∗+Q(σ j−σ∗)
+

1
σ j−2Q(σ j−σ∗)

)
(C.2)

where Q is a scalar that depends on the geometry of the particles composing each phase

of material. For spherical particles, Q = 1/3, for ellipsoidal particles, the expression is

given in equations 2.6, 2.5.

For the sensitivity calculation, we require the derivative of σ∗ with respect to the

concentration φ . I will solve for it implicitly. Starting from equation C.1, we have

−(σ∗−σ0)R(0,∗)+(1−ϕ)R(0,∗)∂σ∗

∂ϕ
+(1−ϕ)(σ∗−σ0)

∂R(0,∗)

∂ϕ

+(σ∗−σ1)R(1,∗)+ϕR(1,∗)∂σ∗

∂ϕ
+ϕ(σ∗−σ1)

∂R(1,∗)

∂ϕ
= 0
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As the only dependence of R( j,∗) on ϕ is through σ∗, we can use the chain rule, giving

[
(1−ϕ)

(
R(0,∗)+(σ∗−σ0)

∂R(0,∗)

∂σ∗

)
+ϕ

(
R(1,∗)+(σ∗−σ1)

∂R(1,∗)

∂σ∗

)]
∂σ∗

∂ϕ

= (σ∗−σ0)R(0,∗)− (σ∗−σ1)R(1,∗)

Thus, the derivative of the effective conductivity with respect to the concentration of

phase-1 material is

∂σ∗

∂ϕ
=
[
(1−ϕ)R(0,∗)+ϕR(1,∗)+(1−ϕ)(σ∗−σ0)

∂R(0,∗)

∂σ∗
+ϕ(σ∗−σ1)

∂R(1,∗)

∂σ∗

]−1

(σ∗−σ0)R(0,∗)− (σ∗−σ1)R(1,∗)

(C.3)

The derivative of the electric field concentration tensor with respect the the effective

conductivity is given by

∂R( j,∗)

∂σ∗
=

1
3
(2 [σ∗+Q(σ j−σ

∗)]−1 +[σ j−2Q(σ j−σ
∗)]−1)

+
σ∗

3

(
−2(1−Q)

(σ∗+Q(σ j−σ∗))2 +
−2Q

(σ j−2Q(σ j−σ∗))2

) (C.4)
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Appendix D

A framework for simulation and

inversion in electromagnetics

D.1 Introduction

The field of electromagnetic (EM) geophysics encompasses a diverse suite of problems

with applications across mineral and resource exploration, environmental studies and

geotechnical engineering. EM problems can be formulated in the time or frequency

domain. Sources can be grounded electric sources or inductive loops driven by time-

harmonic or transient currents, or natural, plane wave sources, as in the case of the mag-

netotelluric method. The physical properties of relevance include electrical conductivity,

magnetic permeability, and electric permittivity. These may be isotropic, anisotropic,

and also frequency dependent. Working with electromagnetic data to discern infor-

mation about subsurface physical properties requires that we have numerical tools for

carrying out forward simulations and inversions that are capable of handling each of

these permutations.
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The goal of the forward simulation is to solve a specific set of Maxwell’s equations

and obtain a prediction the EM responses. Numerical simulations using a staggered grid

discretization (Yee, 1966), have been extensively studied in their application for finite

difference, finite volume and finite element approaches (c.f. Newman and Alumbaugh

(1999); Haber (2014)), with many such implementations being optimized for efficient

computations for the context in which they are being applied (Haber and Ascher, 2001;

Li and Key, 2007; Kelbert et al., 2014; Yang et al., 2014).

Finding a model of the earth that is consistent with the observed data and prior geo-

logic knowledge is the ‘inverse problem’. It presupposes that we have a means of solving

the forward problem. The inverse problem is generally solved by minimizing an objec-

tive function that consists of a data misfit and regularization, with a trade-off parameter

controlling their relative contributions. (Tikhonov and Arsenin, 1977; Parker, 1980;

Constable et al., 1987). Deterministic, gradient-based approaches to the inverse prob-

lem are commonplace in EM inversions. Relevance of the recovered inversion model

is increased by incorporating a priori geologic information and assumptions. This can

be accomplished through, the regularization term (Oldenburg and Li, 2005; Constable

et al., 1987) or parameterizing the inversion model (Pidlisecky et al., 2011; McMillan

et al., 2015a; Kang et al., 2015). Multiple data sets may be considered through cooper-

ative or joint inversions (Haber and Oldenburg, 1998; McMillan et al., 2015b).

Each of these advances relies on a workflow and associated software implementa-

tion. Unfortunately, each software implementation is typically developed as a stand-

alone solution. As a result, these advances are not readily interoperable with regard to

concepts, terminology, notations and software.

The advancement of EM geophysical techniques and the expansion of their applica-

tion requires a flexible set of concepts and tools that are organized in a framework so
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that researchers can more readily experiment with, and explore, new ideas. For exam-

ple, if we consider research questions within the growing application of EM for reser-

voir characterization and monitoring in settings with steel cased wells (cf. Hoversten

et al. (2015); Um et al. (2015); Commer et al. (2015); Cuevas (2014b); Hoversten et al.

(2014); Pardo and Torres-Verdin (2013)), the numerical tools employed must enable in-

vestigation into factors such as the impact of variable magnetic permeability (Wu and

Habashy, 1994; Heagy et al., 2015) and casing integrity (Brill et al., 2012) on electro-

magnetic signals. Various modelling approaches in both time and frequency domain

simulations are being explored, these include employing highly-refined meshes (Com-

mer et al., 2015), using cylindrical symmetry (Heagy et al., 2015) or approximating

the casing on a coarse-scale (Um et al., 2015), possibly 3D anisotropic approximations

(Caudillo-Mata et al., 2014). Beyond forward simulations that predict EM responses, to

enable the interpretation of field data with these tools requires that machinery to address

the inverse problem and experiment with approaches for constrained and/or time lapse

inversions be in place (Devriese and Oldenburg, 2016; Marsala et al., 2015). Typically,

addressing each of these complexities would require a custom implementations, partic-

ularly for the frequency domain and time domain simulations, although aspects, such as

physical properties, are common to both. Inconsistencies between implementations and

the need to implement a custom solution for each type of EM method under considera-

tion presents a significant barrier to a researcher’s ability to experiment with and extend

ideas.

Building from the body of work on EM geophysical simulations and inversions,

the aim of our efforts is to identify a common, modular framework suitable across the

suite of electromagnetic problems. This conceptual organization has been tested and de-

veloped through a numerical implementation. The implementation is modular in design
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with the expressed goal of affording researchers the ability to rapidly adjust, interchange,

and extend elements. By developing the software in the open, we also aim to promote an

open dialog on approaches for solving forward and inverse problems in EM geophysics.

The implementation we describe for EM forward and inverse problems extends a

general framework for geophysical simulation and gradient based inverse problems,

called SIMPEG (Cockett et al., 2015). The implementation of SIMPEG is open-source,

written in Python and has dependencies on the standard numerical computing packages

NumPy, SciPy, and Matplotlib (van der Walt et al., 2011; Oliphant, 2007; Hunter, 2007).

The contribution described in this chapter is the implementation of the physics engine

for problems in electromagnetics, including the forward simulation and calculation of

the sensitivities. Building within the SIMPEG ecosystem has expedited the develop-

ment process and allowed developments to be made in tandem with other applications

(http://simpeg.xyz). SIMPEGEM aspires to follow best practices in terms of documen-

tation, testing, continuous integration using the publically available services Sphinx,

Travis CI, and Coveralls (Brandl, 2010; Kalderimis and Meyer, 2011; Merwin et al.,

2015). As of the writing of this chapter, when any line of code is changed in the open

source repository, over 3 hours of testing is completed; documentation and examples

are also tested and automatically updated (http://docs.simpeg.xyz). We hope these prac-

tices encourage the growth of a community and collaborative, reproducible software

development in the field of EM geophysics.

The chapter is organized as follows. To provide context for the structure and im-

plementation of SIMPEGEM, we begin with a brief overview of the SIMPEG inver-

sion framework as well as the governing equations for electromagnetics in Section D.2.

In Section D.3, we discuss the motivating factors for the EM framework, and in Sec-

tion D.4, we discuss the framework and implementation of the forward simulation and

281



calculation of sensitivities in SIMPEGEM. We demonstrate the implementation with two

synthetic examples and one field example in Section D.5. The first example shows the

similarities between the time and frequency implementations for a 1D inversion. In

the second example, we invert field data from the Bookpurnong Irrigation district in

Australia. The final example demonstrates how the modular implementation is used to

compute the sensitivity for a parametric model of a block in a layered space where a

transmitter is positioned inside a steel cased well.

D.2 Background

We are focused on geophysical inverse problems in electromagnetics (EM), that is, given

EM data, we want to find a model of the earth that explains those data and satisfies prior

assumptions about the geologic setting. We follow the SIMPEG framework, shown in

Figure D.1, which takes a gradient- based approach to the inverse problem (Cockett

et al., 2015). Inputs to the inversion are the data and associated uncertainties, a descrip-

tion of the governing equations, as well as prior knowledge and assumptions about the

model. With these defined, the SIMPEG framework accomplishes two main objectives:

1. the ability to forward simulate data and compute sensitivities (Forward Simulation

- outlined in green in Figure D.1),

2. the ability to assess and update the model in an inversion (Inversion Elements and

Inversion as Optimization - outlined in red in Figure D.1).

The implementation of the framework is organized into the self-contained mod-

ules shown in Figure D.1; each module is defined as a base- class within SIMPEG.

The Mesh provides the discretization and numerical operators. These are leveraged by

the Problem, which is the numerical physics engine; the Problem computes fields
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Figure D.1: Inversion approach using the SIMPEG framework. Adapted from
Cockett et al. (2015)

and fluxes when provided a model and Sources. The Sources are specified in the

Survey, as are the Receivers. The Receivers take the Fields computed by

the Problem and evaluate them at the receiver locations to create predicted data. Each

action taken to compute data, when provided a model, has an associated derivative with

respect to the model; these components are assembled to create the sensitivity. Hav-
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ing the ability to compute both predicted data and sensitivities accomplishes the first

objective.

To accomplish the second objective of assessing and updating the model in the con-

text of the data and our assumptions, we consider a gradient-based approach to the

inversion. For this, we specify an objective function which generally consists of a

DataMisfit and Regularization. The DataMisfit is a metric that evaluates

the agreement between the observed and predicted data, while the Regularization

is a metric constructed to assess the model’s agreement with assumptions and prior

knowledge. These are combined with a trade-off parameter to form a mathematical

statement of the InvProblem, an optimization problem. The machinery to update

the model is provided by the Optimization. An Inversion brings all of the el-

ements together and dispatches Directives for solving the InvProblem. These

Directives are instructions that capture the heuristics for solving the inverse prob-

lem; for example, specifying a target misfit that, once reached, terminates the inversion,

or using a beta-cooling schedule that updates the value of the trade-off parameter be-

tween the DataMisfit and Regularization (cf. Parker (1994); Oldenburg and

Li (2005) and references within).

The output of this process is a model that must be assessed and evaluated prior

to interpretation; the entire process requires iteration by a human, where underlying

assumptions and parameter choices are re-evaluated and challenged. Be it in resource

exploration, characterization or development; environmental remediation or monitoring;

or geotechnical applications – the goal of this model is to aid and inform a complex

decision.

Here we note that the inversion framework described above is agnostic to the type of

forward simulation employed, provided the machinery to solve the forward simulation
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and compute sensitivities is implemented. Specific to the EM problem, we require this

machinery for Maxwell’s equations. As such, we focus our attention on the Forward

Simulation portion of the implementation for the EM problem and refer the reader

to Cockett et al. (2015) and Oldenburg and Li (2005) for a more complete discussion of

inversions.

D.2.1 Governing Equations

Maxwell’s equations are the governing equations of electromagnetic problems. They are

a set of coupled partial differential equations that connect electric and magnetic fields

and fluxes. We consider the quasi-static regime, ignoring the contribution of displace-

ment current (Ward and Hohmann, 1988; Telford et al., 1990; Haber, 2014) 1

We begin by considering the first order quasi-static EM problem in time,

~∇×~e+
∂~b
∂ t

=~sm

~∇×~h−~j =~se

(D.1)

where ~e, ~h are the electric and magnetic fields, ~b is the magnetic flux density, ~j is the

current density, and ~sm, ~se are the magnetic and electric source terms. ~se is a physical,

electric current density, while~sm is “magnetic current density”. Although~sm is unphys-

ical, as continuity of the magnetic current density would require magnetic monopoles,

the definition of a magnetic source term can be a useful construct, as we will later

demonstrate in Section D.4 (see also Ward and Hohmann (1988)).

By applying the Fourier Transform (using the eiωt convention), we can write Maxwell’s

1In most geophysical electromagnetic surveys, low frequencies or late-time measurements are em-
ployed. In these scenarios σ � ε0ω (eg. conductivities are typically less than 1S/m, ε0 = 8.85×
10−12F/m and frequencies considered are generally less than 105 Hz), so displacement current can safely
be ignored.
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equations in the frequency domain:

~∇× ~E + iω~B =~Sm

~∇× ~H− ~J =~Se

(D.2)

where we use capital letters to denote frequency domain variables. The fields and fluxes

are related through the physical properties: electrical conductivity σ , and magnetic per-

meability µ , as described by the constitutive relations

~J = σ~E

~B = µ~H
(D.3)

The physical properties, σ and µ are generally distributed and heterogeneous. For

isotropic materials, σ and µ are scalars, while for anisotropic materials they are 3× 3

symmetric positive definite tensors. The same constitutive relations can be applied in the

time domain provided that the physical properties, σ , µ are not frequency-dependent.

In an EM geophysical survey, the sources provide the input energy to excite re-

sponses that depend on the physical property distribution in the earth. These responses,

electric and magnetic fields and fluxes, are sampled by receivers to give the observed

data. The simulation of Maxwell’s equations may be conducted in either the time or

frequency domain, depending on the nature of the source; harmonic waveforms are

naturally represented in the frequency domain, while transient waveforms are better de-

scribed in the time domain.

The aim of the inverse problem is to find a model, m (which may be a voxel-based

or a parametric representation) that is consistent with observed data and with prior

knowledge and assumptions about the model. Addressing the inverse problem using
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a gradient-based approach requires two abilities of the forward simulation: (1) the abil-

ity to compute predicted data given a model

dpred = F [m] (D.4)

and (2) the ability to compute or access the sensitivity, given by

J[m] =
dF [m]

dm
. (D.5)

To employ second order optimization techniques, we also require the adjoint of the sen-

sitivity, J>. These two elements, when combined into the SIMPEG framework, enable

data to be simulated and gradient-based inversions to be run. As such, this work bene-

fits from other peoples’ contributions to the underlying inversion machinery, including:

discrete operators on a variety of meshes, model parameterizations, regularizations, op-

timizations, and inversion directives (Cockett et al., 2015).

D.3 Motivation

The motivation for the development of this framework is that it be a resource for re-

searchers in the field of electromagnetic geophysics. To best serve this goal, we require

a framework that is modular and extensible in order to enable exploration of ideas. An

associated numerical implementation is essential for this work to be tested and acted

upon. As such, we provide a tested, documented, fully open-source software implemen-

tation of the framework (under the permissive MIT license).

Specific to the EM problem, we require the implementation of Maxwell’s equa-

tions in both the time domain and frequency domain. The implementation must al-

low for variable electrical conductivity and magnetic permeability, anisotropic physical
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properties; various model parameterizations of the physical properties (e.g. voxel log-

conductivity or parametric representations); a range of sources including wires, dipoles,

natural sources; variable receiver types; variable formulations of Maxwell’s equations;

solution approaches such as using a primary-secondary formulation; and the flexibil-

ity to work with and move between a variety of meshes such as tensor, cylindrically

symmetric, curvilinear, and octree discretizations. Furthermore, the sensitivity compu-

tation must be flexible enough to be computed for any sensible combination of these

approaches. In the following section, we will outline the framework we have used to

organize and implement these ideas.

D.4 Simulation Framework

The aim of the forward simulation is to compute predicted data, dpred, when provided

with an inversion model2, m and Sources. SIMPEGEM contains implementations for

both time domain (TDEM) and frequency domain (FDEM) simulations, allowing data

from commonly used EM methods to be simulated.

The framework we follow to perform the forward simulation is shown in Figure D.2;

it consists of two overarching categories:

1. the Problem, which is the implementation of the governing equations,

2. the Survey, which provides the source(s) to excite the system as well as the

receivers to samples the fields and produce predicted data at receiver locations.

Here, we provide a brief overview of each of the components, and discuss them in more

detail in the sections that follow.
2We use the term inversion model to describe a parameterized representation of the earth (e.g. voxel-

based or parametric), even if the model is solely used for forward modelling, its form sets the context for
the inverse problem and the parameter-space that is to be explored.
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Figure D.2: Forward simulation framework.

The ‘engine’ of the forward simulation is the physics; it contains the machinery

to solve the system of equations for EM fields and fluxes in the simulation domain

when provided with a description of the physical properties and sources. In general,

the physics engine may be an analytic or numeric implementation of Maxwell’s equa-

tions. Here, we focus our attention on the numerical implementation using a standard

staggered-grid finite volume approach, requiring that the physical properties, fields,

fluxes and sources be defined on a mesh (cf. Haber (2014); Hyman et al. (2002); Hy-

man and Shashkov (1999); Yee (1966)). We discretize fields on edges, fluxes on faces

and physical properties in cell centers, as shown in Figure D.3. To construct the neces-

sary differential and averaging operators, we leverage the Mesh class within SIMPEG

(Cockett et al., 2015, 2016a).

To compute electromagnetic responses, the forward simulation requires the defini-

tion of a physical property model describing the electrical conductivity (σ ) and mag-

289



Figure D.3: Location of variables in the finite volume implementation for both a
unit cell in (a) cartesian and (b) cylindrical coordinates (after Heagy et al.
(2015))

netic permeability (µ) on the simulation mesh, as well as discrete representations of the

sources used to excite EM responses (se,sm). Often in solving an inverse problem, the

model which one inverts for (the vector m), is some discrete representation of the earth

that is decoupled from the physical property model. This decoupling requires the defi-

nition of a Mapping capable of translating m to physical properties on the simulation

mesh. For instance, if the inversion model is chosen to be log-conductivity, an exponen-

tial mapping is required to obtain electrical conductivity (i.e. σ = M (m)). To support

this abstraction, SIMPEG provides a number of extensible Mapping classes (Cockett

et al., 2015; Kang et al., 2015).

With both the physical property model and the source specified, we define and solve

the physics, a Maxwell system of the form

A(m)u = q(sm,se), (D.6)

for an electric or magnetic field or flux. Here, A is the system matrix that may eliminate

a field or flux to obtain a system in a single field or flux, u, the solution vector. Corre-

spondingly, the vector q is the second order right-hand-side. Note, if there are necessary
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manipulations to make equation D.6 easier to solve numerically (e.g. symmetry) we can

add these here; doing so has no effect on the derivative. The remaining fields and fluxes

can be computed from u anywhere in the simulation domain, through an operation of

the form

f = F(u(m),se(m),sm(m),m) (D.7)

where f is conceptually a vector of all of the fields and fluxes (i.e. e, b, h and j). This

vector is never stored in the implementation, instead the fields are computed on demand

through the subset of stored solution vectors (u). From the computed fields (f), predicted

data are created by the Receivers through an operation of the form

dpred = P(f) (D.8)

In the simplest case, the action of P selects the component of interest and interpolates

the fields to the receiver locations, more involved cases could include the computation

of ratios of fields, as is the case for impedance or tipper data. Obtaining predicted data

from the framework concludes the forward simulation.

The same framework is employed for both time domain (TDEM) and frequency do-

main (FDEM) implementations within SIMPEGEM. In the case of the FDEM implemen-

tation, the matrix A(m) and the solution vector u represent all frequencies. As these

frequencies are independent (i.e. a block diagonal matrix, ), each frequency can be

solved independently. In the TDEM code, the matrix A(m) and the solution vector u

represent all timesteps (Oldenburg et al., 2013; Haber, 2014) and take the form of a

lower triangular block matrix (bidiagonal in the case of Backward Euler, ), meaning

the computation of each time-step depends on previous time-steps. The form of these

matrices will be discussed further in the Physics section (Section D.4.2)

291



To perform a gradient-based inversion, we require the sensitivity of the data with

respect to the inversion model, thus, each action taken to calculate data from the model

must have an associated derivative. The full sensitivity is a dense matrix and is expen-

sive to form and store, but when the optimization problem is solved using an iterative

optimization approach, it does not need to be explicitly formed; all that is required are

products and adjoint-products with a vector. We treat this using a modular approach

so that individual elements of the framework can be rapidly interchanged or extended.

The process we follow to compute matrix-vector products with the sensitivity is shown

with red arrows in Figure D.4 (b). The sensitivity-vector product Jv is built in stages

by taking matrix vector products with the relevant derivatives in each module, starting

with the derivative of the physical property with respect to the model. The product with

the adjoint is similarly shown in Figure D.4 (c) starting with the adjoint of the receiver

operation.

Figure D.4: (a) Contributions of each module to the sensitivity. (b) process for
computing Jv and (c) J>v; stars indicate where the source derivatives are
incorporated.

Using electrical conductivity, σ , as the only active property described by the inver-
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sion model m for brevity, the sensitivity takes the form

J[m] =
dP(f)

df
df
dσ

dσ

dm
=

dP(f)
df︸ ︷︷ ︸

Receivers

(
∂ f
∂u

Physics︷︸︸︷
du
dσ

+
∂ f

∂ sm

Sources︷︸︸︷
dsm

dσ
+

∂ f
∂ se

Sources︷︸︸︷
dse

dσ
+

∂ f
∂σ

)
︸ ︷︷ ︸

Fields

dσ

dm︸︷︷︸
Properties

(D.9)

The annotations denote which of the elements shown in Figure D.4 are responsible for

computing the respective contribution to the sensitivity. If the model provided is in terms

of µ or a source/receiver location, this property replaces the role of σ . The flexibility

to invoke distinct properties of interest (e.g. σ , µ , source location, etc.) in the inversion

requires quite a bit of ‘wiring’ to keep track of which model parameters are associ-

ated with which properties; this is achieved through a property mapping or PropMap

(physical properties, location properties, etc.) within SIMPEG.

Although typically the source terms do not have model dependence and thus their

derivatives are zero, the derivatives of se and sm must be considered in a general im-

plementation. For example, if one wishes to use a primary-secondary approach, where

source fields are constructed by solving a simplified problem, the source terms may

have dependence on the model meaning their derivatives have a non-zero contribution

to the sensitivity (c.f. Coggon (1971); Haber (2014); Heagy et al. (2015)); this will be

demonstrated in the Casing Example in Section D.5.3.

The derivative of the solution vector u with respect to the model is found by implic-

itly taking the derivative of equation D.6 with respect to m, giving

du
dm

= A−1(m)

(
− ∂A(m)ufix

∂m︸ ︷︷ ︸
getADeriv

+
∂q
∂ sm

dsm

dm
+

∂q
∂ se

dse

dm
+

∂q
∂m︸ ︷︷ ︸

getRHSDeriv

)
(D.10)

The annotations below the equation indicate the methods of the Problem class that are
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responsible for calculating the respective derivatives. Typically the model dependence

of the system matrix is through the physical properties (i.e. σ , µ). Thus, to compute

derivatives with respect to m, the derivatives are first taken with respect to σ and the de-

pendence of σ on m is treated using chain rule. The chain rule dependence is computed

and tested automatically in SIMPEG using the composable Mapping classes.

In the following sections, we discuss the implementation of elements shown in Fig-

ure D.2 and highlight their contribution to the forward simulation and calculation of

the sensitivity. We begin by discussing the inversion model and its relationship to the

physical properties (Section D.4.1), move on to the core of the forward simulation, the

Physics (Section D.4.2), and to how Sources which excite the system are defined (Sec-

tion D.4.3). Following these, we then discuss how Fields are calculated everywhere in

the domain (Section D.4.4) and how they are evaluated by the Receivers to create pre-

dicted data (Section D.4.5). We conclude this section with a Summary and discussion

on testing (Section D.4.6).

D.4.1 Model and Physical Properties
For all EM problems, we require an inversion model that can be mapped to meaning-
ful physical properties in the discretized Maxwell system. Typically, we consider the
model to be a description of the electrical conductivity distribution in the earth. Often,
the model is taken to be log-conductivity, in which case, an exponential mapping is re-
quired (ExpMap) to convert the model to electrical conductivity. The inversion model
may be defined on a subset of a mesh and referred to as an ‘active cell’ model. For
instance, air cells may be excluded and only the subsurface considered; in this case an
InjectActiveCells map is used to inject the active model into the full simula-
tion domain. In the case of a parametric inversion, the inversion model is defined on
a domain that is independent of the forward modelling mesh and the mapping takes
the parametric representation and defines a physical property on the forward modelling
mesh (e.g. a gaussian ellipsoid defined geometrically) (Li et al., 2010; Pidlisecky et al.,
2011; McMillan et al., 2015b; Kang et al., 2015). Maps can be composed, for instance,
a layered, 1D log conductivity model defined only in the subsurface may be mapped to
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a 2D cylindrical Mesh, as shown in Figure D.5.

Figure D.5: Mapping an inversion model, a 1D layered, log conductivity model
defined below the surface, to electrical conductivity defined in the full sim-
ulation domain.

import numpy as np

from SimPEG import Mesh, Maps

mesh = Mesh.CylMesh([20, 20]) # SimPEG cylindrically symmetric mesh

m_air = np.log(1e-8) # value of the model in the air cells

indAct = mesh.vectorCCz < 0.0 # define active cells to be subsurface only

mapping = ( Maps.ExpMap(mesh) *

Maps.SurjectVertical1D(mesh) *

Maps.InjectActiveCells(mesh, indAct, m_air, nC=mesh.nCz) )

In the code above, the ‘multiplication’ performs the composition of the mappings. For

the contribution of this action to the sensitivity, the derivative of the electrical conduc-

tivity with respect to the model is computed using the chain rule for the composed maps

(cf. Kang et al. (2015); Heagy et al. (2014b)). During an inversion, the electrical con-

ductivity on the simulation mesh associated with the current inversion model and its

derivative are accessed through the BaseEMProblem, which is inherited by both the

TDEM and FDEM problems. In some cases, variable magnetic permeability must be con-

sidered; this is accomplished through a property mapping (PropMap). The PropMap

handles the organization and independent mappings of distinct physical properties (i.e.
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σ , µ).

D.4.2 Physics

To formulate a system of equations from Maxwell’s equations in time (equation D.1) or

frequency (equation D.2) that can be solved numerically using a finite volume approach,

we require a statement of the problem in terms of two equations with two unknowns,

one of which is a field (discretized on edges), and the other a flux (discretized on faces).

Thus, we can consider either the E-B formulation, or the H-J formulation. For the

frequency-domain problem, we can discretize the electric field,~e, on edges, the magnetic

flux,~b, on faces, physical properties σ and µ−1 at cell centers, and the source terms~sm

and~se on faces and edges, respectively (see Figure D.3). Doing so, we obtain the discrete

system:

Ce+ iωb = sm

C>M f
µ−1b−Me

σ e = se

(D.11)

where C is the discrete edge curl, M f
µ−1 is the face inner-product matrix for µ−1, Me

σ is

the edge inner-product matrix for σ ; these inner product matrices can be computed for

isotropic, diagonally anisotropic or fully anisotropic physical properties using operators

within SIMPEG’s Mesh class (Cockett et al., 2015, 2016a).

Note that the source-term se is an integrated quantity. Alternatively, the H-J formu-

lation discretizes~h on edges, ~j on faces, ρ and µ at cell centers, and the source terms

~sm,~se on edges and faces, respectively, giving

C>M f
ρ j+ iωMe

µh = sm

Ch− j = se.

(D.12)

296



Similarly, sm is an integrated quantity. In a full 3D simulation, the electric and magnetic

contributions for the two formulations are merely staggered from one another. However,

if using an assumption of cylindrically symmetry, the appropriate formulation must be

used to simulate either rotational electric or magnetic contributions (Heagy et al., 2015).

For both the basic FDEM and TDEM implementations, natural boundary conditions (b×

n̂= 0 ∀~x∈ ∂Ω in E-B formulation or j× n̂= 0 ∀~x∈ ∂Ω in H-J formulation), in which the

fields are assumed to have decayed to a negligible value at the boundary, are employed

to construct the differential operators, the framework and implementation are however,

extensible to consider other boundary conditions (cf. Haber (2014); Rivera Rios (2014)).

In order to solve either equation D.11 or equation D.12, we eliminate one variable

and solve the second order system. This elimination is performed by the FDEM problem

classes. For instance, in FDEM Problem e, we eliminate b and obtain a second order

system in e
A(m)︷ ︸︸ ︷(

C>M f
µ−1C+ iωMe

σ

)
︸ ︷︷ ︸

getA

u︷︸︸︷
e =

q(sm,se)︷ ︸︸ ︷
C>M f

µ−1sm− iωse︸ ︷︷ ︸
getRHS

(D.13)

FDEM Problem e has methods getA and getRHS to construct the system

def getA(self, freq):

MfMui = self.MfMui

MeSigma = self.MeSigma

C = self.mesh.edgeCurl

return C.T*MfMui*C + 1j*omega(freq)*MeSigma

def getRHS(self, freq):

s_m, s_e = self.getSourceTerm(freq)

MfMui = self.MfMui

C = self.mesh.edgeCurl

return C.T * (MfMui * s_m) -1j * omega(freq) * s_e

and associated methods getADeriv and getRHSDeriv to construct the derivatives

of each with respect to the inversion model. These function definitions are methods of

the Problem class, where the self variable refers to the instance of the class, and is

standard Python (cf. Python documentation - https://docs.python.org/3/tutorial/classes.html).
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For FDEM Problem e, getRHSDeriv is zero unless one or both of the source terms

have model dependence. However, if we eliminate e and solve for b (Problem b),

the right hand side contains the matrix Me
σ , and therefore will, in general, have a non-

zero derivative. To solve this linear system of equations, SIMPEG interfaces to stan-

dard numerical solver packages (e.g. SciPy, Mumps (Oliphant, 2007; Amestoy et al.,

2001, 2006), using for example pymatsolver https://github.com/rowanc1/pymatsolver).

The components used to perform the forward simulation are assembled in the fields

method of the BaseFDEMProblem class; the fields method solves the forward

simulation for the solution vector u (from equation D.13) at each frequency and source

considered.

Similarly, for the time-domain problem, the semi-discretized E-B formulation is

given by

Ce+
db
dt

= sm

C>M f
µ−1b−Me

σ e = se

(D.14)

and the semi-discretized H-J formulation is given by

C>M f
ρ j+

dMe
µh

dt
= sm

Ch− j = se.

(D.15)

For the time discretization, we use Backward Euler (cf. Ascher (2008)). To form the

TDEM Problem b, we eliminate e from equation D.14 and apply Backward Euler for
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the time discretization. A single timestep takes the form

(
CMe

σ

−1C>M f
µ−1 +

1
∆tk

)
︸ ︷︷ ︸

Ak+1
0 (m)

bk+1︸︷︷︸
uk+1

+
−1
∆tk I︸︷︷︸

Ak+1
−1 (m)

bk︸︷︷︸
uk

= CMe
σ

−1se
k+1 + sm

k+1︸ ︷︷ ︸
qk+1(sm,se)

(D.16)

where ∆tk = tk+1− tk is the timestep and the superscripts k, k + 1 indicate the time

index. Each TDEM problem formulation (ie. Problem e, Problem b, Problem h,

Problem j) has methods to create the matrices along the block-diagonals, Ak+1
0 (m)

and Ak+1
−1 (m), as well as a method to construct the right hand side, qk+1(sm,se), at each

timestep. When inverting for a model in electrical conductivity using Problem b, the

subdiagonal matrices are independent of m, however, in other formulations, such as

Problem e, the subdiagonal matrices do have dependence on electrical conductivity,

thus in general, the model dependence must be considered. Depending on the solver

chosen, it can be advantageous to make the system symmetric; this is accomplished by

multiplying both sides by M f
µ−1

>
. To solve the full time-stepping problem, we assemble

all timesteps in a lower block bidiagonal matrix, with on-diagonal matrices Ak
0(m) and

sub-diagonal matrices Ak
−1(m), giving



A0
0(m)

A1
−1(m) A1

0(m)

A2
−1(m) A2

0(m)

. . . . . .

An−1
−1 (m) An−1

0 (m)

An
−1(m) An

0(m)


︸ ︷︷ ︸

A(m)



u0

u1

u2

...

un−1

un


︸ ︷︷ ︸

u

=



q0

q1

q2

...

qn−1

qn


︸ ︷︷ ︸

q(sm,se)

(D.17)
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When solving the forward simulation, the full time-stepping matrix, A(m), is not formed,

instead the block system is solved using forward substitution with each block-row being

computed when necessary. The initial condition, u0, depends on the source type and

waveform; it is computed numerically or specified using an analytic solution. For ex-

ample, if using a grounded source and a step-off waveform, u0 is found by solving the

direct current resistivity or the magnetometric resistivity problem, depending on which

field we choose to solve for. When a general current waveform is considered, the initial

condition will be u0 = 0, and either sm or se, depending on type of the source used, will

have non-zero values during the on-time.

Derivatives of the matrices along the block-diagonals of A(m) along with deriva-

tives of the right-hand-side are stitched together in a forward time stepping approach to

compute the contribution of du
dm to Jv and in a backwards time stepping approach for the

contribution of du
dm
>

to J>v.

D.4.3 Sources

Sources input EM energy into the system. They can include grounded wires, loops,

dipoles and natural sources. Controlled sources are implemented in the FDEM and TDEM

modules of SIMPEGEM, and natural sources are implemented in the NSEM module. For

simulations, we require that the sources be discretized onto the mesh so that a right-

hand-side for the Maxwell system can be constructed (i.e. getRHS). This is addressed

by the eval method of the source which returns both the magnetic and electric sources

(sm,se, shown in Figure D.2) on the simulation mesh.

In some cases, a primary-secondary approach can be advantageous for addressing

the forward problem (cf. Coggon (1971); Haber (2014); Heagy et al. (2015)). We split

up the fields and fluxes into primary and secondary components (e = eP + eS , b =
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bP +bS ) and define a “Primary Problem”, a simple problem, often with an analytic

solution, that is solved in order to construct a source term for a secondary problem. For

instance, a point magnetic dipole source may be simulated by defining a zero-frequency

primary which satisfies

eP = 0

C>M f
µ−1

P
bP = se

P .

(D.18)

If we define µ−1P to be a constant, equation D.18 has an analytic solution for bP that

may be expressed in terms of a curl of a vector potential (cf. Griffiths (2007)). When

using a mimetic discretization, by defining the vector potential and taking a discrete curl,

we maintain that the magnetic flux density is divergence free as the divergence operator

is in the null space of the edge curl operator (∇ ·∇×~v = 0), so numerically we avoid

creating magnetic monopoles (c.f. Haber (2014)). The secondary problem is then

CeS + iωbS =−iωbP

C>M f
µ−1bS −Me

σ eS =−C>
(

M f
µ−1−

(
M f

µ−1

)P
)

bP
(D.19)

The source terms for the secondary problem are sm =−iωbP , and se =−C>(M f
µ−1−

M f
µ−1

P
)bP . In scenarios where magnetic permeability is homogeneous, the electric

source contribution is zero.

The left hand side is the same discrete Maxwell system as in equation D.11; the

distinction is that we are solving for secondary fields, and a primary problem was solved

(analytically or numerically) in order to construct the source terms. To obtain the total

fields, which we sample with the receivers, we must add the primary fields back to the

solution. To keep track of the primary fields, they are assigned as properties of the
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source class.

In most cases, source terms do not have a derivative with respect to the model. How-

ever, in a primary-secondary problem in electrical conductivity the source term depends

on the electrical conductivity and derivatives must be considered (see Section D.5.3).

This is similar to inverting for magnetic permeability using a primary-secondary ap-

proach described in equation D.19 (Coggon, 1971; Haber, 2014; Heagy et al., 2015).

It is also possible to consider your inversion model to be the location or waveform of

the source, in which case the derivative is also non-zero and source derivatives can be

included in the optimization procedure.

D.4.4 Fields

By solving the second-order linear system, as in equation D.13, we obtain a solution

vector, u, of one field or flux everywhere in the domain. In the case of a primary-

secondary problem, this solution is a secondary field. To examine all of the fields, we

require easy access to the total fields and total fluxes everywhere in the domain. This is

achieved through the Fields object.

For efficient memory usage, only the solution vector is stored, all other fields and

fluxes are calculated on demand through matrix vector multiplications. As such, each

problem type (e, b, h, j) has an associated Fields object with methods to take the so-

lution vector and translate it to the desired field or flux. For instance, Fields j stores

the solution vector from Problem j and has methods to compute the total magnetic

field in the simulation domain by first computing the secondary magnetic field from the

solution vector (u; in this example, u = j) and adding back any contribution from the

source

h =
1

iω
Me

µ

−1
(
−C>M f

ρu+ sm

)
(D.20)
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For their contribution to the sensitivity (equation D.9), the fields have methods to

compute derivatives when provided the vectors v and du
dmv (from the Physics). For

instance, for h

dh
dm

v =
dh
du

(
du
dm

v
)
+

(
dh
dse

dse

dm
+

dh
dsm

dsm

dm
+

∂h
∂m

)
v (D.21)

The derivatives for e, b, and j take the same form. Conceptually, the product of the

full derivative and a vector
( df

dmv
)

can be thought of as a stacked vector of all of the

contributions from all of the fields and fluxes, however, this is never formed in practice.

D.4.5 Receivers

The measured data consist of specific spatial components of the fields or fluxes sam-

pled at the receiver locations at a certain time or frequency. Receivers have the method

eval that interpolates the necessary components of the fields and fluxes to the receiver

locations and evaluates the data required for the problem, such as the frequency do-

main fields or natural source impedance data. For the frequency domain problem, real

and imaginary components are treated as separate data so that when inverting, we are

always working with real values. The separation of the data evaluation from fields in re-

ceiver objects allows the derivative computation to be performed and tested in a modular

fashion; this enables rapid development and implementation of new receiver types.

D.4.6 Summary

Having defined the role of each of the elements in the forward simulation framework

outlined in Figure D.2, the necessary machinery to compute predicted data and sen-

sitivities is at hand for both FDEM and TDEM problems. The modular nature of the

framework allows us to make several abstractions which make the code more transpar-
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ent and ensure consistency across implementations. For instance, the definition of the

physical properties and associated inner product matrices is common to all formulations

in both time and frequency domains. Thus, these are defined as properties of a BaseEM

class which is inherited by both the TDEM and FDEM modules. Within each of the TDEM

and FDEM modules, common methods for the calculation of the fields, sensitivities and

adjoint are defined and shared across the approaches that solve for e, b, h, or j (see the

documentation http://docs.simpeg.xyz).

Testing is conducted using comparisons with analytics, cross-comparisons between

formulations, order tests on the sensitivity, adjoint tests, examples, tests on the finite vol-

ume operators, projections, interpolations, solvers, etc. Tests are run upon each update

to the repository through the continuous integration service TravisCI (Kalderimis and

Meyer, 2011). This ensures that we can trust the tools that we use and move faster in

our research into new methods and implementations. This also supports new developers

and researchers in contributing to the code base without fear of breaking assumptions

and ideas laid out by previous development.

D.5 Examples

To demonstrate the application and structure of the framework, we explore three exam-

ples, one field example and two synthetic examples. The purpose of the first synthetic

example is to show simple time and frequency domain electromagnetic inversions, and

highlight the common framework. For this, we invert for a 1D layered Earth using

a 2D cylindrically symmetric mesh for the forward simulation. In the second exam-

ple, we show 1D inversions of field data (RESOLVE and SkyTEM) collected over the

Bookpurnong Irrigation district in Australia. The final example is a 3D synthetic ex-

ample that demonstrates a sensitivity analysis using a parametric model of a block in
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a layered space for a reservoir characterization problem where the transmitter is po-

sitioned down-hole in a steel-cased well. We use this example to demonstrate how

mappings, multiple physical properties (both electrical conductivity and magnetic per-

meability), and multiple meshes, a cylindrically symmetric and a 3D tensor mesh, can

be composed in a primary-secondary approach for performing the forward simulation

and computing the sensitivities. The scripts used to run these examples are available on

http://docs.simpeg.xyz.

D.5.1 Cylindrically Symmetric Inversions

The purpose of this example is to demonstrate the implementation of the electromag-

netic inversion in both time and frequency domains. We have chosen this example as

it is computationally light, can be run on any modern laptop without installing com-

plex dependencies, and yet it uses most of the elements and functionality needed to

solve a large 3D EM problem. The script used to run this simulation is available at:

https://doi.org/10.6084/m9.figshare.5035175.

We consider two 1D inversions for log-conductivity from an EM survey, one fre-

quency domain experiment and one time domain experiment. Both surveys use a verti-

cal magnetic dipole (VMD) source located on the surface. For simplicity, we consider

a single receiver, measuring the vertical magnetic field, located 50m radially away from

the source. The magnetic permeability is taken to be that of free space (µ = µ0), and

electrical conductivity is assumed to be frequency-independent.

Figure D.6 shows the setup used for: (a) the frequency domain simulation, (b) the

time domain simulation, and (c) the common inversion implementation. In both, a cylin-

drical mesh is employed for the forward simulation and a 1D layered earth, described

in terms of log-conductivity. To map the inversion model to electrical conductivity, a
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composite mapping is used to inject the 1D subsurface model into one including air

cells (InjectActiveCells), surject the 1D model onto the 2D simulation mesh

(SurjectVertical1D) and take the exponential to obtain electrical conductivity

(ExpMap), as described in the Model and Physical Properties section (Section D.4.1).

Figure D.6: Diagram showing the entire setup and organization of (a) the fre-
quency domain simulation; (b) the time domain simulation; and (c) the com-
mon inversion framework used for each example. The muted text shows the
programmatic inputs to each class instance.

The distinction between the frequency and time domain inversions comes in the

setup of the forward simulations. Each employs the appropriate description of the

physics (FDEM or TDEM) in the problem, and the definition of the survey, consist-

ing of both sources and receivers, must be tailored to the physics chosen. For the FDEM

survey, a vertical harmonic magnetic dipole located at the origin transmits at five fre-

quencies logarithmically spaced between 100 Hz and 1000 Hz. The receiver is located

at (50 m, 0 m, 0 m) and measures the secondary magnetic flux (with the primary be-

ing the free-space response of a harmonic magnetic dipole). The observed response is
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complex- valued, having both real and imaginary components. We consider these as

separate data, giving a total of ten data points for this example. For the time domain

survey, we again use a vertical magnetic dipole at the origin, however, we now use a

step-off waveform. The observed responses are defined through time, and thus are all

real-valued. For this example, we sample 10 time channels, logarithmically spaced be-

tween 10−4 s and 2× 10−3 s . These time channels were selected to be sensitive to

depths similar to the FDEM simulation.

With the forward simulation parameters defined in both the time and frequency do-

main simulations, we can generate synthetic data. The model used consists of a 100m

thick conductive layer (0.05 S/m) whose top boundary is 100 m-below from the surface,

as shown in Figure D.6. The conductivity of the half-space earth is 0.01 S/m. In both

cases, 3% gaussian noise is added to the simulated data, and these are treated as the

observed data (dobs) for the inversion.

For the inversions, we specify the inversion elements: a data misfit and a regulariza-

tion. We use an L2 data misfit of the form

φd =
1
2
‖Wd(dpred−dobs)‖2

2 (D.22)

where Wdii = 1/εi and we define εi = 3%|dobs
i |+floor. For both simulations the floor is

set to 10−5‖dobs‖. The regularization is chosen to be a Tikhonov regularization on the

1D model

φm =
1
2
(
αs‖m−mref‖2

2 +αx‖Dxm‖2
2
)

(D.23)

where mref is the reference model which is set to be a half- space of log(10−2). The

matrix Dx is a 1D gradient operator. For both examples αs = 0.5 and αx = 1. The data

misfit and regularization are combined with a trade-off parameter, β , in the statement
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of the inverse problem. To optimize, we use the second-order Inexact Gauss Newton

scheme. In this inversion, we use a beta-cooling approach, where β is reduced by a

factor of 4 every 3 Gauss Newton iterations.

The initial β is chosen to relatively weight the influence of the data misfit and regu-

larization terms. We do this by estimating the largest eigenvalue of J>J and Wm
>Wm

using one iteration of the power method. We then take their ratio and multiply by a

scalar to weight their relative contributions. For this example, we used a factor of 10.

For a stopping criteria, we use the discrepancy principle, stopping the inversion when

φd ≤ χφ∗d , with χ = 1 and φ∗d = 0.5Ndata (with φd as defined in equation D.22.)

The FDEM inversion reaches the target misfit after 9 iterations, and the TDEM inver-

sion reaches the target misfit after 6 iterations. Figure D.7 shows the recovered models

(a), predicted and observed data for the FDEM inversion (b) and predicted and ob-

served data for the TDEM inversion (c). In both the FDEM and TDEM inversions, the

data are fit well. The recovered models are smooth, as is expected when employing

an L2, Tikhonov regularization and both the location and amplitude of the conductive

layer. The structure of both models are comparable, demonstrating that the information

content in both the FDEM and TDEM data are similar. The recovered model can be

improved by many additional techniques that are not explored here (e.g. using compact

norms in the regularization). The SIMPEG package provides a number of additional

directives and regularization modules which can be useful for this purpose.

D.5.2 Bookpurnong Field Example

The purpose of this example is to demonstrate the use of the framework for invert-

ing field data and provide an inversion that can be compared with other results in the

literature. In particular, we invert frequency and time domain data collected over the
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Figure D.7: (a) True and recovered models for the FDEM and TDEM inversions;
predicted and observed data for (b) the FDEM example, and (c) the TDEM
example. In (b) the magnetic field data are in the negative z-direction.

Bookpurnong Irrigation District in Southern Australia. The Murray River and adjacent

floodplain in the Bookpurnong region have become extensively salinized, resulting in

vegetation die-back (Munday et al., 2006; Overton et al., 2004). Multiple electrical

and electromagnetic data sets have been collected with the aim of characterizing the

near-surface hydrologic model of the area (Munday et al., 2006). For a more complete

background on the geology and hydrogeology of the Bookpurnong region, we refer the

reader to Munday et al. (2006).

Here, we will focus our attention to the RESOLVE frequency-domain data collected
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in 2008 and the SkyTEM time-domain data collected in 2006. These data are shown in

Figure D.8. The RESOLVE system consists of 5 pairs of horizontal coplanar coils, with

nominal frequencies of 400 Hz, 1800 Hz, 8200 Hz, 40 000 Hz, and 130 000 Hz as well

as a vertical coaxial coil pair of coils which operates at 3200Hz. For the Bookpurnong

survey, the bird was flown at ∼50m altitude (Viezzoli et al., 2010). The SkyTEM time-

domain system operates in two transmitter modes that can be run sequentially. The high

moment mode has high current and operates at a low base frequency (25 Hz and can be

lowered to 12.5 Hz), and the low moment operates at a lower current and higher base

frequency (222.5 Hz) (Sørensen and Auken, 2004). The Bookpurnong SkyTEM survey

was flown at an altitude of ∼60m (Viezzoli et al., 2010).

Multiple authors have inverted these data sets; 1D spatially constrained inversions of

the SkyTEM and RESOLVE data were performed by (Viezzoli et al., 2009, 2010). Yang

(2017) independently inverted these data in 1D and provides a discussion at http://em.geosci.xyz/content/case histories/bookpurnong/index.html.

The SkyTEM data (high moment) were inverted in 3D by (Wilson et al., 2010). In the

example that follows, we select a location where both the RESOLVE and SkyTEM

datasets have soundings and invert them in 1D, we then proceed to perform a stitched

1D inversion of the RESOLVE data. The data have been made available with the per-

mission of CSIRO and are accessible, along with the script used to run the inversions at

https://doi.org/10.6084/m9.figshare.5107711.

1D Inversion of RESOLVE and SkyTEM soundings

We have selected a sounding location (462100m, 6196500m) at which to perform 1D

inversions of the RESOLVE and SkyTEM (High Moment) data. The observed data at

this location are shown in Figure D.9 (b) and (c). For the RESOLVE inversion, we

consider the horizontal co-planar data collected at 400 Hz, 1800 Hz, 8200 Hz, 40 000
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Figure D.8: 400 Hz In-phase RESOLVE data at (left) and High Moment SkyTEM
data at 156 µ s. The white dot at (462100m, 6196500m) on both images
is the location of the stations chosen to demonstrate the 1D inversions in
frequency and time.

Hz, and 130 000 Hz. For the noise model, we assign 10% error for the three lowest

frequencies and 15% error for the two highest; a noise floor of 20ppm is assigned to

all data. The inversion mesh uses cells that expand logarithmically with depth, starting

at the surface with a finest cell size of 1m. The forward simulation is carried out on

the cylindrically symmetric mesh, similar to the previous example. In the inversion,

we employ a Tikhonov regularization in which length scales have been omitted in the

regularization function. A fixed trade-off parameter of β = 2 is used, αz is set to be 1,

and αs is 10−3. A half-space reference model with conductivity 0.1 S/m is used, this

also served as the starting model for the inversion. The inversion reached target misfit

after 2 iterations. The resulting model and data fits are shown in Figure D.9. Very close

to the surface, we recover a resistor, while below that, we recover a conductive unit (∼2

S/m). Examining the data (Figure D.9b), we see that the real components are larger in

magnitude than the imaginary, and that with increasing frequency, the magnitude of the
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imaginary component decreases while the real component increases; such behaviour is

consistent with an inductive- limit response, and we thus expect to recover conductive

structures in the model.

For the time domain inversion, we consider the SkyTEM high moment data. We use

the source waveform shown in the inset plot in Figure D.9 (c). For data, we use 21 time

channels from 47 µs to 4.4 ms; the latest three time channels (5.6ms, 7ms and 8.8 ms)

are not included. For data errors, we assign a 12% uncertainty and a floor of 2.4×10−14

V/Am4. We again use a Tikhonov regularization, here with αz = 1 and αs = 10−1. The

trade-off parameter is β = 20. A half-space starting model of 0.1 S/m is again employed.

For the reference model, we use the model recovered from the RESOLVE 1D inversion.

As we are using the high-moment data, we do not expect the SkyTEM data to be as

sensitive to the near surface structures as the RESOLVE data. By using the model

recovered in the RESOLVE inversion as the starting model for the SkyTEM inversion,

we can assess agreement between the two and isolate structures that are introduced by

the SkyTEM inversion. The inversion reached the target misfit after 3 iteration and the

results are shown in Figure D.9. At this location, there is good agreement in the models

recovered from the RESOLVE and SkyTEM data, with both supporting a near-surface

resistor and showing a deeper conductive structure.

Stitched 1D inversion of RESOLVE data

Next, we perform a stitched 1D inversion of the RESOLVE data set. With this example,

we aim to demonstrate a practical inversion workflow that will run on modest compu-

tational resources. As such, we have heavily downsampled the data set, taking 1021

stations of the 40 825 collected. A 1D stitched inversion is a relatively straight-forward

approach for creating a conductivity model - each sounding is inverted independently
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Figure D.9: (a) Models recovered from from the 1D inversion of RESOLVE (back)
and SkyTEM (blue) data at the location (462100m, 6196500m). (b) Ob-
served (lines) and predicted (points) frequency domain data. (c) Observed
and predicted time domain data. (d) Source waveform used in for the
SkyTEM inversion, the x-axis is time (µ s) on a linear scale.

and the inversion results are then assembled to create a 3D model. This can be a valu-

able quality-control step prior to adopting more advanced techniques such as including

lateral or 3D regularization across soundings or even performing a 3D inversion. In

cases where the geology is relatively simple, a stitched 1D inversion may be sufficient.

The inversion parameters are the same as those used in the inversion of the RESOLVE

sounding discussed in the previous section. A plan- view of the recovered model 9.9m

below the surface is shown in Figure D.10a. A global χ - factor of 0.74 was reached,

and plots comparing the real component of the observed and predicted data at 400Hz

are shown in Figures D.10 (b) & (c).
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The recovered model (Figure D.10a), bears similar features to the models found

by Viezzoli et al. (2010) (Figure 4 of Viezzoli et al. (2010)) and by Yang (2017). In

general, the northwestern portion of the Murray river is more resistive, in particular near

(459 000m, 6 200 000m) and (460 000m, 6 198 000m) while the southeastern portion of

the river is more conductive. Two mechanisms of river salinization have been discussed

in Munday et al. (2006); Viezzoli et al. (2010): the resistive regions are attributed to

a “losing” groundwater system, in which freshwater from the Murray River discharges

to adjacent banks, while the conductive regions are attributed to a “gaining” system, in

which regional saline groundwater seeps into the river.

Figure D.10: (a) Conductivity model 9.9m below the surface from a stitched 1D
inversion of RESOLVE data. (b) Real component of the observed RE-
SOLVE data at 400Hz. (c) Real component of the predicted data at 400Hz.
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D.5.3 Steel-Cased Well: Sensitivity Analysis for a Parametric
Model

The purpose of this example is to demonstrate the modular implementation of sim-

pegEM and how it can be used to experiment with simulation and inversion approaches.

Conducting electromagnetic surveys in settings where steel casing is present is growing

in interest for applications such as monitoring hydraulic fracturing or enhanced oil re-

covery (Hoversten et al., 2015; Um et al., 2015; Commer et al., 2015; Hoversten et al.,

2014; Marsala et al., 2015; Cuevas, 2014a; Weiss et al., 2015; Yang et al., 2016b).

Steel is highly conductive (∼ 5.5× 106S/m), has a significant magnetic permeability

(∼ 50µ0− 100µ0) (Wu and Habashy, 1994). This is a large contrast to typical geo-

logic settings, with conductivities typically less than 1 S/m and permeabilities similar

to that of free space, µ0. In addition to the large physical property contrast, the geom-

etry of well casing also presents a significant computational challenge. Well casing is

cylindrical in shape and only millimeters thick, while the geologic structures we aim to

characterize are on the scale of hundreds of meters to kilometers. Inverting electromag-

netic data from such settings requires that we have the ability to accurately simulate and

compute sensitivities for models with casing and 3D geologic variations. One strategy

that may be considered is using a primary- secondary approach, simulating the casing

in a simple background and using these fields to construct a source for the secondary

problem which considers the 3 dimensional structures of interest (Heagy et al., 2015).

Here, we demonstrate how the framework can be employed to implement this approach

and compute the sensitivities. The parametric representation of the model allows us to

investigate the expected data sensitivity to specific features of the model such as the lo-

cation, spatial extent and physical properties of a geologic target. Such an analysis may

be used to investigate how well we expect certain features of the model to be resolved
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in an inversion and it could be employed as a survey design tool. In what follows, we

outline the general approach and then discuss a specific implementation. The script used

to generate this example is available at: https://doi.org/10.6084/m9.figshare.5036123.

Approach

In this example we design a survey to resolve a conductive body in a reservoir layer in

the presence of a vertical, steel-cased well as shown in Figure D.11. To calculate the

sensitivity of the data with respect to each model parameter requires that we be able to

simulate and calculate derivatives of each component used to simulate data.

Figure D.11: Setup of parametric models and calculation of the sensitivity for a
primary secondary approach of simulating 3D geology and steel casing.

We use a primary-secondary approach, as described in Heagy et al. (2015). The

physical properties, fields and fluxes are composed of two parts, a primary and a sec-

ondary part. For example in the E-B formulation, σ = σP + σS , µ = µP + µS ,

~E = ~EP + ~ES , ~B = ~BP +~BS . A primary problem, which includes the cylindrically
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symmetric part of the model (casing, source, and layered background) is defined

~∇× ~EP + iω ~BP = 0

~∇× µ
−1P~BP −σ

P~EP = ~se.

(D.24)

This primary problem is solved on a cylindrically symmetric mesh with cells fine enough

to capture the width of the casing and its solution yields the primary fields. The primary

fields are then interpolated to a 3D tensor mesh, suitable for discretizing 3D reservoir-

scale features. The primary fields are used to construct the source current density for the

secondary problem, given by

~∇× ~ES + iω~BS = 0

~∇× µ
−1~BS −σ~ES =~q

~q = (σ −σ
P)~EP .

(D.25)

By solving the secondary problem, we then obtain secondary fields and fluxes. These

are sampled by the receivers to create predicted data.

In equation D.25, we see that the source term, ~q has model dependence through σ ,

σP and ~EP . Typically primary-secondary approaches are used when the background

is assumed to be known, as it is captured in the primary. Here, however, we do not

wish to assume that the background is known; in practice it may be constrained, but

it is not generally well known. The primary solution is used instead to separate the

contributions of the casing and the block so that we can avoid a potentially crippling

assumption. This approach allows an appropriately tailored mesh to be constructed for

each problem. Thus, we require derivatives not only on the 3D secondary mesh, but also

derivatives of the primary fields (in this case on a cylindrically symmetric mesh). To
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implement this type of primary-secondary problem, we construct a Primary-Secondary

source which solves the primary problem to provide the primary fields. Since all deriva-

tives are implemented for the primary problem, when computing sensitivities for the

secondary problem, the derivatives due to the primary problem are accounted for in the

contributions of the source term to the derivative. This is conceptually shown in Figure

D.11.

For this example, we wish to investigate how sensitive the specified survey is to as-

pects of the model which we might want to resolve in a field survey, such as the geometry

and location of the anomalous body, as well as the physical properties of the geologic

units. A voxel-based description of the model does not promote investigation of these

questions, so we will instead apply a parametric description of the model. The model is

parameterized into nine parameters which we consider to be unknowns (log(σbackground),

log(σlayer), log(σblock), z0layer , hlayer, x0block , ∆xblock, y0block , ∆yblock). In what follows, we

examine the sensitivity of the data with respect to these model parameters.

Implementation

The model we use is shown in Figure D.11. It consists of a 1km long vertical steel

cased well (diameter: 10 cm, thickness: 1cm) with conductivity σ = 5.5× 106 S/m,

and magnetic permeability µ = 50µ0. The casing is assumed to be filled with fluid

having a conductivity of 1S/m. The background has a resistivity of 100Ωm, and the

100m thick reservoir layer has a resistivity of 10Ωm. The target of this survey is the

conductive block (2S/m) with dimensions 400m×250m×100m. The source used con-

sists of two grounded electrodes, a positive electrode coupled to the casing at a depth

of 950m, and a return electrode 10km from the wellhead on the surface. We consider a

frequency-domain experiment at a transmitting frequency of 0.5Hz and 1A current. For
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data, we consider two horizontal components (x and y) of the real part of the electric

field measured at the surface.

To accomplish this simulation and sensitivity calculation, we construct 3 mappings,

shown conceptually in Figure D.11, in order to obtain: (1) σP on the primary (cylin-

drical) mesh, (2) σP on the secondary mesh (as is needed in equation D.25) and (3) σ

on the secondary mesh. Differentiability of the electrical conductivity models with re-

spect to each of the 9 parameters is achieved by constructing the model using arctangent

functions (cf. Aghasi et al. (2011); McMillan et al. (2015b)). Each of these parameter-

izations can be independently tested for second-order convergence to check the validity

of the computation of the derivatives (cf. Haber (2014)).

The source term for the secondary fields requires that we simulate the primary fields.

For this, we use the mapping of m to σP on the primary mesh and employ the H-

J formulation of Maxwell’s equations in the frequency domain in order to describe a

vertically and radially oriented current density and a rotational magnetic field. In this

simulation, we also consider the permeability of the casing. The source consists of a

wire-path terminating downhole at -950m where it is coupled to the casing. At the sur-

face, the return electrode is 10km radially away from the well3. With these parameters

defined, we have sufficient information to solve the primary problem and thereby ob-

tain the primary electric field everywhere in the simulation domain. The real, primary

current density for this example is shown in Figure D.12.

This primary field is described on the cylindrical mesh, so in order to use it to con-

struct the source term for the secondary problem, we interpolate it to the 3D tensor mesh.

The remaining pieces necessary for the definition of the secondary source on the 3D

3Due to the symmetry employed, the return electrode is a disc. Numerical experiments over a half-
space show that the real, radial electric field from the cylindrical simulation exhibits the same character
as the 3D simulation but is slightly reduced in magnitude.
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Figure D.12: Cross sectional slice of primary (casing + background) real current
density. The colorbar is logarithmically scaled and shows the amplitude of
the real current density.

mesh are defining σ and σP ; this is achieved through the mappings defined above. The

primary problem and source, along with the mapping required to define σP , are used to

define a primary-secondary source, which solves a forward simulation to compute the

secondary source-current, se, shown in Figure D.13. Note that the source current density

is only present where there are structures in the secondary model that were not captured

in the primary, in this case, where the conductive block is present.

With the source term for the secondary problem defined, the secondary problem is

then solved resulting in the predicted data at the surface. Here, we focus our attention

to the real x, y components of the electric field, as shown in Figure D.14. The top two

panels show the total (casing and conductive target) x-component (a) and y-component

(b) of the electric field while the bottom two panels show the secondary (due to the con-

ductive target, outlined in white) x-component (c) and y-component (d) of the electric
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Figure D.13: Depth slice at z=-950m showing the source current density for the
secondary problem.

field. As expected, the total electric field is dominated by the source that is located in

the casing. As shown in Figure D.12 the majority of the current is exiting into the layer

at depth, but current is still emanating along all depths of the casing. Measured elec-

tric fields at the surface are sensitive to the currents that come from the top part of the

casing and hence the observed fields are strongest closest to the pipe and they fall off

rapidly with distance. The behavior of the secondary electric field is, to first order, like

that expected from a dipole at depth oriented in the x-direction. It has a broad smooth

signature at the surface.

Now that the pieces are in place to perform the forward simulation, we want to

compute the sensitivity. Generally, we do not form the full sensitivity when performing

an inversion as it is a large, dense matrix. Here however, since the inversion model is

composed of only nine parameters, the final sensitivity matrix is small (nine by number

of data). The steps followed to stitch together and compute the sensitivity are shown

in the diagram in Figure D.11. To check the simulation approach for this example, the

sensitivity is tested for second-order convergence (cf. Haber (2014)).

Figures D.15, D.16 and D.17 shows the sensitivity of both the real Ex(left), and real
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Figure D.14: Simulated real electric field data as measured at the surface using a
primary secondary approach for casing and a conductive target (outlined in
white). The upper panels show the total Ex (a) and Ey (b); the lower panels
show the secondary (due to the conductive block) Ex (c) and Ey (d). Note
that the colorbars showing the secondary electric fields are not on the same
scale. The limits of the colorbars have been set so that the zero-crossing is
always shown in the same color.

Ey (right) data with respect to each of the 9 model parameters. Note that the colorbars

are not identical in each image and the units of the sensitivity are dependent on the

parameter under consideration. In each image, the white outline shows the horizontal

location of the block.

In Figure D.15, we focus on the physical properties of the background layer and

block, all parametrized in terms of log(σ). Clearly, the conductivity of the background

has the largest influence on the data, in particular near the well (at the origin), followed

by the conductivity of the layer, where the injection electrode is situated. There are 4
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Figure D.15: Sensitivity of surface real Ex (left) and Ey (right) data with respect to
the physical properties, ((V/m)/(log(σ)))

orders of magnitude difference between the maximum sensitivity of the data with respect

to the conductivity of the block and that of the background. This indicates that in order

to resolve such an anomalous body, the background must be well-constrained. When

looking at Figure D.15 (f), we see that the areas of largest sensitivity of the Ey data with

respect to the physical properties of the block are spatially distant from the body and the

well. This indicates that if one is designing a survey, it may be advantageous to collect
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Figure D.16: Sensitivity of surface real Ex (left) and Ey (right) data with respect to
the layer geometry, ((V/m)/m)

data in these regions as these are also regions where the influence of the properties of

the background are less dominant.

In Figure D.16, we focus on the depth and thickness of the layer. Note that the depth

and thickness of the block are constrained to be the same as the layer, so the character of

the sensitivity is influenced by the presence of the block. Here, the units of the sensitivity

are (V/m)/m. Similarly, Figure D.17 shows the sensitivity with respect to the geometric

properties of the block.

To compare between the physical properties and geometry of the model, the scales

of interest must be taken into consideration. In Table D.1, we show the maximum am-

plitude of the sensitivity with respect to each individual model parameter. From this, we

approximate the sensitivity as linear about the true model and compute the perturbation
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Figure D.17: Sensitivity of surface real Ex (left) and Ey (right) data with respect to
the block geometry, ((V/m)/m)
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required to cause a change of 10−9 V/m in the data (∆mi = 10−9/max |Ji|). For ease

of comparison, the perturbations in the log-conductivity of the background, layer, and

block were converted to linear conductivity by

∆σunit =
exp[log(σ)unit +∆ log(σ)unit]− exp[log(σ)unit−∆ log(σ)unit]

2
. (D.26)

In table D.1, we see that to cause a perturbation in the Ex data by ∼ 10−9 V/m,

requires a 0.007% change in the conductivity of the background, while the conductivity

of the block would need to change by 0.8% to have a comparable impact in the Ex data.

In comparing between physical properties and geometric features of the model, we see

that a change in the conductivity of the block by 0.8% has a similar impact in the Ex

data as moving x0 of the block by ∼ 16 m. For a change in y0 of the block to have a

comparable impact in the Ex data would require that it be perturbed by∼ 85 m. However,

the Ey data are more sensitive to y0; a perturbation of∼ 24 m , about 1/3 of that required

in the Ex data, would result in a ∼ 10−9 V/m change in the measured responses.

Examining the nature of the sensitivity with respect to parameters describing the

target of interest provides insight both into how one might design a survey sensitive to

the target, and how well we may be able to resolve various geometric features or physical

properties in the model. For the example shown here, we see that it may be advantageous

to collect data away from the well and hundreds of meters offset from the block. These

are regions where both the Ex and Ey data have high sensitivity to features of the target

and are distant from the steel-cased well, where we have the highest sensitivity to the

background. Thus, data collected in these regions may improve our ability to resolve

the target of interest. The parametric definition of the model provides a mechanism

for examining how well we might expect to resolve various aspects of the target, such
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as its spatial extent. There are clearly further questions that may be investigated here,

including exploring survey parameters such as the impact of varying the frequency on

our ability to resolve the block, or performing the same analysis for a time-domain

survey. A modular framework, with accessible derivatives, is an asset for exploring

these types of questions.

D.6 Conclusion

The framework we have laid out has rigorously separated out various contributions to

the electromagnetic equations in both time and frequency domain. We have organized

these ideas into an object oriented hierarchy that is consistent across formulations and

attends to implementation details and derivatives in a modular way. The organization of

the EM framework and numerical implementation are designed to reflect the math. The

goal is to create composable pieces such that electromagnetic geophysical inversions

and forward simulations can be explored and experimented with by researchers in a

combinatorial, testable manner.

We strive to follow best practices in terms of software development including ver-

sion control, documentation unit testing, and continuous integration. This work and the

SIMPEG project are open-source and licensed under the permissive MIT license. We

believe these practices promote transparency and reproducibility and we hope that these

promote the utility of this work to the wider geophysics community.
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Appendix E

Open source practices for education

E.1 Introduction

Just as visualizing and interacting with simulation results is useful in a research context,

it can be a powerful mechanism by which learners can build their understanding on

concepts in geophysics. With the availability of tools such as Jupyter (Perez et al., 2015),

as well as platforms like Binder (Project Jupyter et al., 2018) which provide hosting and

computational resources, software developed in a research context can be readily re-

purposed and used in a teaching context. Much of the difference between learning in an

educational context and learning in a research context is essentially whether the concepts

being learned are well-established in the field, or at the edge of our knowledge. As such,

a common set of tools can be used to serve both purposes.

Beyond the ability to interact with content, hosting resources on the web provides the

opportunity for multiple contributors to be involved in the development, maintenance

and curation of the resources. Unlike print textbooks, which are static, open-source

web based resources can be continually updated as mistakes are found, new examples

generated and explanations improved. Further, there are a host of tools within the open
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source software ecosystem that enable interactive content, which connect computation

to images and explanations, to be built.

In the GeoSci.xyz project (https://geosci.xyz), we have been working to take prac-

tices for open-source software development and apply them to the development of ed-

ucational resources. GeoSci.xyz is a collection of collaboratively developed resources

for research and education in the geosciences. To date, it includes three modules that

each have “textbook” component and a collection of Jupyter-notebook apps associated

with them:

• GPG: Geophysics for practicing geoscientists (https://gpg.geosci.xyz)

• EM: Electromagnetic geophysics (https://em.geosci.xyz)

• Toolkit: Geophysical toolkit for geologists (http://toolkit.geosci.xyz)

The GPG is targeted at the undergraduate level and provides introductory material

and an overview of the physical principles governing geophysical methods including

magnetics, seismic, ground penetrating radar and electromagnetics. This is used as the

primary textbook in the course EOSC 350: Environmental, Geotechnical and Explo-

ration Geophysics I offered at the University of British Columbia.

The EM module is an in-depth resource for electromagnetics. It covers fundamen-

tals, starting at Maxwell’s equations, through to the suite of electromagnetic geophysical

techniques (e.g. DC resistivity, Induced Polarization, Airborne Electromagnetics, ). It

also includes case-histories which methodically walk through an application of elec-

tromagnetics to answer a geoscientific question. In 2017, the Society of Exploration

Geophysics Distinguished Instructor Short Course (SEG DISC) on Geophysical Elec-

tromagnetics: Fundamentals and Applications was given by Dr. Douglas Oldenburg,

myself and Dr. Seogi Kang; em.geosci.xyz served as the main resource for participants.
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The Toolkit is the most recent addition to the GeoSci.xyz ecosystem. This mod-

ule is the result of a collaborative project between the Mineral Deposits Research Unit

(MDRU) and the Geophysical Inversion Facility (GIF) at the University of British Columbia.

It is intended to be a resource for geologists who are interested in incorporating geo-

physical data into their interpretation workflow. The main focus is on techniques for

incorporating magnetic data into a geologic interpretation.

Each of the GeoSci.xyz modules bring together text, images, software, live-computation

and practices from open source software development to create training and educational

resources. The contents is open-source, licensed under the Creative Commons Attri-

bution 4.0 International (CC BY 4.0) license which allows reuse and adaptation of the

content. The development and maintenance of these resources follows open develop-

ment practices including version control, issue tracking, and testing. Suggested edits

and enhancements to the resources can be made by anyone, and all content additions or

changes are peer-reviewed prior to updating each module. Source-code used to generate

figures is captured with those figures; it is tested upon each update to any of the modules

and accessible to users so that they can reproduce the results or change the inputs. These

same codes are connected are used to generate “apps” using Jupyter notebooks and the

ipywidgets package which allow users to interact with a numerical simulations through

slide-bars and toggle buttons.

This appendix provides an overview of the underlying technology and some of the

implications of capturing content in a modern, web-based framework that interoper-

ates with open-source software. Section E.2 discusses the technology used to build the

“textbook” component of each of the modules, including how source-code is captured

to ensure figures are reproducible. Section E.3 demonstrates how Jupyter notebooks are

used to make interactive content that connects live numerical simulations with widgets
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and visualizations. Finally, Section E.4 discusses open development practices including

peer-review, testing, and collaboration.

E.2 GeoSci.xyz Textbooks

More than two decades ago, Claerbout and Karrenbach (1992) articulated the poten-

tial for using web-technology to improve reproducibility, particularly of computational

work. Since then, the open-source software ecosystem has grown significantly. As a

result, there a many more high-quality tools that are freely available and interoperable

with one another, simplifying the task of creating reproducible web-based content.

All of the GeoSci.xyz content is hosted and maintained on GitHub (https://github.org/geoscixyz).

The GeoSci.xyz modules leverage a common python documentation generator, Sphinx

(http://sphinx-doc.org), to build the websites. Each site is built and maintained as a col-

lection of simple text-files that are compiled to the html website that users see. The

pages can be edited in any text editor or directly on GitHub.

There are several Sphinx-extensions which we make use of in order to capture scien-

tific content, including to manage bibliographies and to create plots from code. Figure

E.1 shows a page on em.geosci.xyz that discusses the solution for a conductive sphere in

a whole-space subject to a uniform electric field. The plot compares total and secondary

electric fields for both conductive and resistive spheres. This plot is built from Python

code; the text-file from which this page is built is shown in Figure E.2. Rather than

storing the image file, the source- code is written into the page and compiled when the

site is built. In this way, readers can always access the source code, and engaged readers

can download the code, update the input parameters, run the computation, and explore

the impact on the resultant image. In terms of maintenance, if errors are found in the

computation or mistakes in labels or annotations of the figure, the source code can be
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Figure E.1: Web-page on a conducting sphere in a uniform electric field
(https://em.geosci.xyz/content/maxwell2 static/fields from grounded sources dcr
/electrostatic sphere.html). The plot shown on this page is compiled from
Python code and can be downloaded and run by users, or update by
maintainers if there are improvements that can be made.

altered and the figure rebuilt.

Simple sites, without intensive computation can be hosted on the free documentation

hosting service ReadTheDocs (https://readthedocs.org). Several of the examples on the

GeoSci.xyz sites involve simulations of Maxwell’s equations, and have thus exceeded
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Figure E.2: Text source from which the web-page shown in Figure E.1 is built.
The code used to build the plot starts under the plot-directive on line 134.

the resource limits on ReadTheDocs, so instead we build the modules on a continuous

integration service and deploy to a Google App Engine website.

E.3 Interactive content

Static figures can be made dynamic and interactive by connecting them with a live com-

putational environment. The Jupyter Notebook combines text, images, lines of code,

outputs and interactive widgets into a single “computational narrative” (Perez et al.,

2015). Much of the research conducted in this thesis relied on Jupyter Notebooks and
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benefited from the iterative workflow it supports as well as the widget architecture that

allows computation to be connected to visualization through slide-bars and toggle but-

tons. Millions of researchers, data analysts, and journalists have adopted the Jupyter

notebook (or similar computational notebooks) as a tool for authoring computational

workflows and analyses (Rule et al., 2018).

The ability to include narrative text to document a workflow, visualize results inline,

and conduct iterative analyses are all reasons that the Jupyter Notebook is a valuable

research tool. For many of the same reasons, it is a powerful medium for developing and

delivering educational content. Text which provides instructions or prompts questions

to guide a learner can be included in the Notebook and provide context for the “app”

or simulation tool. Depending on the purpose of the exercise, lines of code can be

displayed, for example if the aim of the exercise is to walk through how to discretize the

DC resistivity problem. Alternatively, if the physics is the central focus, the code can be

abstracted-away, and the learner provided with widgets to run a simulation (see Figure

E.3).

To date, there are 17 Notebooks associated with the GPG, > 30 with the EM module,

and 10 for the Toolkit. We provide instructions for downloading the Notebooks and set-

ting up the necessary software environment to run them. However, many of the learners

we are working to reach are not necessarily familiar with setting up a software envi-

ronment or launching applications from the command-line, and so these steps present

a significant overhead. To overcome this barrier, we use Binder (http://mybinder.org,

Project Jupyter et al. (2018)), which is a web-service that provides cloud-based hosting

of Jupyter notebooks. As notebook authors, we provide the set of dependencies re-

quired to run the notebooks, and these are automatically installed when the user follows

the Binder-url to the notebooks. The user is then served the Notebook in a live computa-
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Figure E.3: A sample Jupyter notebook “app” that simulates a DC resistivity over
a halfspace with a cylinder. The widgets control the visualization. The user
can change the model parameters (e.g. the resistivity of the cylinder and
of the background), the survey geometry, and select the visualization (e.g.
electric field, currents, charges, etc.)
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tional environment that is accessed from their web-browser. Using services like Binder

means that learners do not need to open a command-prompt nor do they need to be fa-

miliar with how to manage a software environment. The focus then, can remain on the

content.

Using Jupyter Notebooks as the medium for authoring educational content has the

added benefit that many researchers and graduate students are already familiar with

Notebooks. The simulation tools and tutorials are built on research code such as Sim-

PEG, that are already a part of many of the contributors research toolbox. This removes

the need for contributors to learn a new set of tools for the sole purpose of sharing educa-

tional content. In the long-run, we hope that by bringing research codes into education,

engaged learners then have a trajectory to move beyond using the “apps” for learning

a concept in geophysics and can further explore the computational steps taken to run

those same simulations.

E.4 Open development

Best practices in open-source software development have enabled the growth and main-

tenance of software tools for that support large communities of researchers (e.g. As-

tropy in astronomy (Astropy Collaboration et al., 2013), SciPy in scientific computing

Oliphant (2007)). In many of these projects, it is a handful of “core developers” who

are responsible for generating the majority of the software, but each benefits from the

minor enhancements, bug-fixes, and additions made by the “long tail” of contributors.

In contrast, most educational resources are authored and maintained by a individual in-

structors. There is minimal opportunity for feedback or improvements to be made by

others in a scalable way. Seeing the success of the open-source software ecosystem, we

have sought to adopt many of the same practices in the hopes of fostering a commu-
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nity of educators and learners around open-source educational material. This section

outlines some of those practices.

Modern version control using git and GitHub (or similar) is an essential tool for

allowing multiple contributors to productively work on different aspects of a project

and have their improvements incorporated back into the main project. New content or

edits on existing content incorporated into the module through a pull-request process.

A pull-request shows a comparison between the main version of the module and the

version containing the suggested changes and provides the opportunity for peer-review.

Suggested changes to any of the GeoSci.xyz modules are peer-reviewed on GitHub prior

to being merged into the main version of the module. Each web-page in the GeoSci.xyz

textbooks has an “edit on GitHub” button that allows anyone to edit the current page

and submit a pull request for their edits to be included in the live-site.

Issue trackers are used in software projects to notify developers of bugs that are

found in the software and to keep track of the progress of a bug-fix, or similarly, to

submit and track feature requests. The same concepts can be applied to the development

of educational content. For example, some mathematical typos are subtle and require

discussion to sort-out; prior to suggesting an edit, a contributor might create an issue to

prompt that discussion.

When multiple contributors are working on a single code-base, testing is important

to ensure that changes do not break existing functionality. For the GeoSci.xyz textbook-

modules, we test that the website comiles. This ensures that no syntax errors have been

introduced into the text and that the code used to build the figures runs without error.

We also test that all of the external links that the site points to for additional resources

are valid. If, for some reason, a web-page that we were referencing is taken-down, the

testing provides an alert and we can find a new resource or remove the broken link. All
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of the associated Jupyter notebooks are also tested. These tests execute all of the code

in each of the notebooks and alert us if any errors are raised. Each of the GeoSci.xyz

modules is tested on a monthly basis using TraviCI (https://travis-ci.org/), a continuous

integration and testing service that is free for open source projects. This ensures that the

website continues to compile and provides alerts if there have been changes in upstream

software dependencies that cause any computations included in the resource to fail.

In addition to the practices state above, there are also best practices that can be

learned from a well-architected code-base. Aspects of a well-designed code-base in-

clude modularity and the use of inheritance to promote a consistent structure across the

project. If a software package is well-structured and well-organized, it becomes easier

to invite contributors as it is evident where their contribution fits into the project. The

case-histories in em.geosci.xyz are one place where we have used the concept of inher-

itance, in which a base-class provides the outline or template of the content, to provide

structure. Each case history is structured in seven steps, as shown in Figure E.4. As a

contributor, this is a well-structured template that can be followed and filled-in. As a

learner, this structure provides consistency across content that is contributed by multiple

authors and a framework in which to organize concepts.

E.5 Conclusions and outlook

Applied geophysics is a relatively small community. There are not many methods-

oriented textbooks or resources available. As a result there is significant duplication of

efforts as many educators develop their own set of resources, often in isolation. Even if

these resources are captured and made available in the form of a textbook, the content

rapidly becomes out-of-date as instrumentation and data analyses techniques continu-

ally improve. An open-source approach to the development of software has enabled
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Figure E.4: Seven step framework used for the case histories in
https://em.geosci.xyz. (1) Setup: describe the geoscientific question
and objectives that are to be addressed. (2) Properties: identify the
diagnostic physical properties (e.g. density, electrical conductivity, mag-
netic susceptibility, etc.). (3) Survey: design a survey that is suitable
for detecting the physical property contrasts relevant to the application.
(4) Data: carry out the field survey and collect the data set(s). (5) Pro-
cessing: plot the data and apply the analysis steps needed to interpret
the data (e.g. invert the data). (6) Interpretation: interpret the results
in terms of the identified physical properties and original geoscience
objective. (7) Synthesis: integrate the interpretation with geologic
and other information relevant to the application in order to address
the original geoscience objective. This image and caption are adapted
from: https://em.geosci.xyz/content/geophysical surveys/fundamentals/
seven steps.html

widespread collaboration on the tools that support communities of researchers. Our

hope is that an open-source approach to the development of educational resources can

catalyze a similar community in the geosciences.
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