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Abstract

Accurate and efficient simulation of electromagnetic responses in realistic geo-

physical settings is crucial to the exploration, imaging, and characterization of

buried natural resources, such as mineral and hydrocarbon deposits. However, in

practice, these simulations are computationally expensive. The geophysical set-

tings consider highly heterogeneous media and features at multiple spatial scales

that require a very large mesh to be accurately represented. This results in a

system of equations to be solved that often exceeds the limits of average com-

puters. Thus, the key is to reduce the problem size but retain the accuracy of the

electromagnetic responses.

Upscaling and multiscale techniques have been successfully applied to the

problem of simulating fluid flow through heterogeneous porous media, where they

are able to drastically reduce the size of the resulting fine-mesh system by casting

it into a coarse-mesh system that is much cheaper to solve, while achieving a

level of accuracy similar to that obtained with conventional discretization schemes.

Recognizing the success that such techniques have had in fluid flow applications,

this dissertation extends their use for application to electromagnetic modeling.

In this dissertation, two new parallel simulation methods for the quasi-static

Maxwell’s equations in the frequency domain are proposed: an upscaling frame-

work for the electrical conductivity, and a multiscale finite volume with oversam-

pling method. Both methods are combined with an adaptive mesh refinement

technique (OcTree) to boost their computational performance. The performance

of these methods is demonstrated by using field-inspired and synthetic examples

that include a large electrical conductivity contrast.
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This investigation shows that both proposed methods are feasible to tackle

geophysical electromagnetic problems, where being able to reduce the size of the

problem can be particularly advantageous when extended domains are consid-

ered or when the mesh must capture the spatial distribution of the media hetero-

geneity outside the region where the electromagnetic responses are measured.

Furthermore, both methods are new contributions to the literature in the field of

computational methods in geophysical electromagnetics. Finally, both methods

increase the current predictive and analytic capabilities by making the simulation

of electromagnetic responses in larger and more complex geophysical settings

more feasible than currently is possible.
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Lay Summary

The focus of this investigation is to study how to reduce the computational cost

of simulating the behavior of electromagnetic fields in complicated geophysical

settings. This type of simulations are crucial to the exploration of buried natural

resources (mineral, groundwater and hydrocarbon deposits) using electromag-

netic methods. However, the size of the computation they involve often exceeds

the limits of average computers. This investigation proposes two innovative math-

ematical alternatives (an upscaling and a multiscale with oversampling method)

that achieve a great reduction of the problem’s size and the simulation cost with-

out sacrificing much accuracy. It also opens the door to use such alternatives to

create more powerful computational environments capable of simulating electro-

magnetic fields in larger and more complex geophysical settings than currently

is possible. Furthermore, this study is the first one in the literature to demon-

strate the practical use of the proposed alternatives in the context of geophysical

electromagnetic problems.
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Chapter 1

Introduction

Everything can be taken from a person but one thing: the last of the
human freedoms – to choose one’s attitude in any given set of

circumstances, to choose one’s own way. — Viktor Frankl

1.1 Motivation

Since their inception in the early 1900s, geophysical electromagnetic (EM) meth-

ods have been used in industrial, geoscientific and engineering applications world-

wide to detect, locate and characterize buried natural resources of economic sig-

nificance. Currently, the two dominant commercial uses of geophysical EM meth-

ods are in exploration and monitoring of mineral deposits and hydrocarbon (oil and

gas) reserves (see [91, 139, 153, 166, 179] and references within). Other com-

mercial uses include exploration of geothermal and groundwater deposits (e.g.

[42, 155]), detection of buried unexploded ordnance (e.g. [154]), and monitoring

environmental impact, such as carbon dioxide sequestration (e.g. [42]).

Geophysical EM methods infer underground structures from measurements

of electric and/or magnetic fields that are acquired through a variety of survey

settings [144, 161]. A geophysical EM survey consists of one or several EM ex-

periments. Figure 1.1 shows an example of a typical EM experiment setup used

in the mining exploration.

A typical EM experiment starts by energizing the ground using an electro-

magnetic source, which can be harmonic or transient, natural or controlled (cf.
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[144]). The energy propagates throughout the subsurface and induces secondary

electromagnetic fields in the regions where there is a (high) contrast in electrical

conductivity (Figure 1.1). Electrical conductivity is the physical property of the

ground that quantifies the ability of a material to allow the flow of electric currents,

and it is used in exploration geophysics to characterize Earth’s (conductive or re-

sistive) materials [161]. Next, EM measurements or data containing information

of the distribution of the subsurface conductivity are recorded by placing receivers

at the Earth’s surface, in the air, in the sea, or in wells. The experiment is typically

repeated for various source and receiver locations, resulting in a large volume of

data. Subsequent processing, modeling and inversion of EM data is performed to

construct detailed subsurface electrical conductivity models. The geological inter-

pretation and assessment of these conductivity models allows the understanding

of the spatial distribution of the underground structures, and it ultimately leads

to better-informed exploration decisions. Figure 1.2 shows the concept of a geo-

physical inversion of EM data.

Figure 1.1: Sketch of a geophysical large-loop EM experiment used in min-
ing exploration and the induced secondary EM fields generated by
the mineralized conductive body. Figure courtesy of Boliden Group
(www.boliden.com).
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Figure 1.2: Geophysical inversion of EM data for natural resource explo-
ration. The output is an electrical conductivity model of the under-
ground structures that were surveyed. Figure taken from the EM geosci
website: https://em.geosci.xyz, which distributes its content under Cre-
ative Commons 4.0.

Modeling and inversion of geophysical EM data are powerful interpretation

tools; however, using them as part of exploration programs in industry is both time

consuming and computationally challenging [19, 68, 134, 139, 153, 166, 179].

Inversion of EM data is achieved by solving a non-linear and (often) large-

scale inverse problem using optimization techniques [138, 159]. The major bot-
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tleneck of performing an inversion is to solve the forward problem. The EM for-

ward problem is the mathematical procedure by which, given information of the

physical properties of the medium and the sources, we can predict (simulate) EM

data through numerically solving the corresponding governing Maxwell’s equa-

tions [156, 159, 169]. That is, the solution of the forward problem involves a

numerical process for solving a partial differential equation (PDE) or a system of

PDEs (depending on the formulation of Maxwell’s equations that is chosen to work

with). In the geosciences, solving a forward problem is also referred as forward

modeling or just modeling. Besides playing a key role within an inversion, the EM

forward problem is by itself crucial to simulate physical processes governed by

EM induction phenomena — which has a rich spectrum of applications in differ-

ent fields of knowledge, including, medical imaging and the various engineering

branches (electrical, mechanical, materials, to name a few) [58, 78, 129, 156].

Even though there has been significant progress in advancing existing com-

putational EM capability, solving the forward problem for realistic, large-scale geo-

physical settings remains a computational challenge (see [19, 68, 134, 139, 153,

166, 179] and references within). As we will see in the next section, such chal-

lenge consists on dealing effectively with the elevated computational cost (both

in CPU memory and run time) of this type of simulations. Therefore, working to-

wards faster and more accurate computational solutions for the geophysical EM

forward problem will have a tangible impact in the overall processes of imaging

and monitoring buried natural resources using geophysical EM methods.

1.2 Problem Statement

Accurate and efficient simulation of EM responses — EM fields and fluxes —

through solving the EM forward problem for realistic, large-scale geophysical set-

tings can be a very computationally expensive task, specially when conducted

within an EM inversion procedure (see [22, 68, 134, 179] and references within).

The major challenge in practice to perform this type of (forward) simulation is the

size of the computation it involves.

Realistic geophysical settings typically consider large computational domains

in 3D; geologic, topographic, and other simulation-related features that vary at
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multiple spatial scales; and a wide variation over several orders of magnitude of

the physical properties (e.g. electrical conductivity) of the heterogeneous media.

Figure 1.3 shows one example of a complex geophysical setting that can be en-

countered in practice, where some features in the model can vary from millimeters

upward (e.g. the thickness of the casing of wells), while the simulation domain can

be on the order of hundreds of kilometers. In addition, the electrical conductivity

of Earth’s materials varies over many orders of magnitude [161]. For the example

shown in Figure 1.3, the values of the electrical conductivity can range from 10−8

to 106 S/m, when the setting considers air and steel well casing, which correspond

to the features in the model that are less and most conductive, respectively.

Since all of the features considered in a geophysical setting can have a sig-

nificant impact on the behavior of the EM responses of interest (that are typically

measured at the surface), if we need to obtain an accurate approximation to the

responses, the mesh used in traditional discretization techniques, such as finite

volume or finite element, should be able to capture the structure of the hetero-

geneity present in the setting with sufficient detail. This need leads to the use

of a very large mesh to discretize the model, which results into solving a very

large, and often very ill-conditioned, system of equations — in some cases, in

the order of millions (106), or even larger than billions (109) of unknowns. For the

geophysical setting shown in Figure 1.3, the system of equations (depending on

the level of detail considered in the model) can lead to a system in the order of

1012 of unknowns. Such a large system of equations require specialized comput-

ing resources (e.g. clusters) to be solved. When an EM simulation is conducted

in practice (e.g. for different frequencies or survey configurations) or within an

EM inversion procedure (where there is the need to deal with adjoint operators

per frequency and/or source), several forward EM simulations must be conducted

(the book in [68] gives a more detail estimate of the number of linear systems to

be solved). This can lead to a very computational expensive process overall, and

therefore it is of interest to reduce effectively the computational cost of individual

EM simulations.

Conventional approaches used to reduce the computational cost of EM for-

ward simulations are: parallel computing, adaptive mesh refinement, and iterative

solvers. The combination of these three approaches is one of the most efficient
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Figure 1.3: Example of a realistic geophysical EM setting that considers
a large computational domain, features that vary at multiple spatial
scales (millimeters, meters, and kilometers), and a wide variation
over several orders of magnitude of the physical properties of the
medium. Figure not drawn to scale. Figure courtesy of Rockware,
Inc (www.rockware.com).

ways currently used to tackle this problem [68, 134]. However, the ever increasing

need to accurately simulate larger and more complex settings, which requires us

to be able to include more detail in the modeling stage, limits their sustainability

[22]. As we see next, each individual approach faces some issues to reduce the

size of the computation, in terms of both CPU memory and time requirements.

Parallel computing drastically reduces the run time of the simulation by break-

ing the problem into discrete pieces of work that can be carried out simultaneously

using multiple processors; however, the size of the system of equations is not re-

duced. The workload is merely distributed among processors. See [100, 134] for

a recent review of high-performance computational strategies for EM modeling.

Adaptive mesh refinement (AMR) approaches have been used to overcome

(reduce) the computational cost of EM modeling in geophysical applications (e.g.
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[72, 86, 108, 118, 149]). They do so by refining selected areas of the mesh to meet

certain error bounds based on the requirements of the problem. AMR approaches

have produced accurate approximations to the EM responses at an affordable

cost; however, when used to simulate geophysical EM responses in heteroge-

neous settings, the mesh must still capture the relevant features in the spatial

distribution of the media heterogeneity both inside and outside the region where

we measure the EM responses. This restricts the ability of AMR approaches to

reduce the size of the system to be solved.

Efficient iterative solvers and preconditioners have been developed for the

large, sparse, and ill-conditioned system of equations that results from the dis-

cretization of the Maxwell’s equations (e.g. [63, 64, 68, 70, 71, 83, 134, 172]).

These solvers lead to substantial savings on time and memory usage, as they are

based on optimized (sparse) matrix-vector product multiplications and do not re-

quire to store the matrix of the system [146]. Nevertheless, using iterative solvers

to solve the EM forward problem as part of an EM inversion routine suffer a ma-

jor drawback: the system needs to be solved multiple times for the number of

sources and the different frequencies or time steps in the geophysical EM survey

configuration [68], which can be in the order of thousands or even millions (e.g.

an airborne survey) [144]. In such cases, being able to use direct solvers to de-

compose the matrix of the system of equations is the most cost-effective way to

overcome this issue [43, 68]. However, a matrix factorization requires us to be

able to store the matrix.

The issues described suggest the need for a new computational framework

capable of reducing the size of the system of equations more effectively. Fur-

thermore, the new framework needs to be able to compute accurate approxima-

tions for the EM problem at a coarser resolution, such that the impact caused by

small-scale features in the model is still included but without resolving for such

small-scale features. For instance, in the example provided in Figure 1.3, we can

not afford to mesh the model at the millimeter scale when the domain varies over

hundreds of kilometers. Instead, we need an accurate approximation to the solu-

tion at the meter scale that includes the effect due to the presence of the relevant

millimetric conductive feature (casing) in the model. Moreover, the new frame-

work must be able to leverage most, if not all, of the advantages of the methods
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described above. That is, it needs to run in parallel, be able to work with adaptive

mesh refinement, and be accurate and cost-effective.

The literature reports that upscaling and multiscale (finite volume and finite

element) methods provide parallel methods to solve linear, elliptic PDE problems

with multiple scale features and highly heterogeneous settings. For such type

of PDE problems, both of these methods are able to compute large-scale physi-

cal solutions that capture the small-scale effect accurately and efficiently without

resolving for the small-scale features in the model [49, 51, 56, 88, 89].

Favorably, upscaling and multiscale methods have been rigorously studied in

the field of petroleum engineering for the problem of modeling (single-phase) fluid

flow through highly heterogeneous porous media, whose governing PDE model

is the steady-state, linear Poisson’s equation (cf. [6, 51]). Such a problem shares

several key challenges similar to the problem of simulating geophysical EM re-

sponses in highly heterogeneous settings, namely, the governing PDE model in

both problems is linear, the simulation considers large-scale computational do-

mains, features varying at multiple spatial scales, and a wide variation over several

orders of magnitude of the physical properties (e.g. permeability) of the media.

For single-phase flow in porous media problems, these two methods have been

successfully used to drastically reduce the size of the fine-mesh system from the

discretization of the Poisson’s equation by constructing a coarse-mesh version of

the system that is much cheaper to solve, while achieving a level of accuracy sim-

ilar to that obtained with traditional discretization schemes (e.g. finite element or

finite volume) on a fine mesh [49–51, 56, 60, 80, 81, 88, 101, 122, 123, 132, 141,

175].

Since the use of upscaling and multiscale techniques has not been rigorously

investigated for application to geophysical EM modeling, in this dissertation, I in-

vestigate how these two techniques can be extended to do so. At present, de-

veloping efficient multiscale methods using different discretization schemes and

tailoring them for use to diverse applications is an active research area (e.g.

[38, 39, 59, 87, 114] and references within).
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1.3 Aim and Scope of the Study

The aim of this study is to investigate the applicability and feasibility of using up-

scaling and multiscale (finite volume and finite element) techniques to efficiently

solve the geophysical EM forward problem for complex settings that include fea-

tures varying at multiple spatial scales and several orders of magnitude. I develop

the aim of this study by focusing on answering the following research questions:

• How to extend the core mathematical ideas of some successful upscaling

and multiscale methods developed for the problem of simulating fluid flow in

highly porous media for application to the problem of simulating geophysical

EM responses in highly heterogeneous conductive media? That is, how to

extend some of the core mathematical procedures developed for a linear

scalar PDE model (i.e. the Poisson’s equation) to a linear vector PDE model

(i.e. the Maxwell’s equations)?

• How do upscaling and multiscale methods perform for geophysical EM prob-

lems with highly heterogeneous settings when they are combined with an

adaptive mesh refinement technique? In particular, can these methods be

used to drastically reduce the size of the system of equations to be solved?

In order to answer these questions, the scope of this study is focused solely

on geophysical EM problems in the frequency domain where the quasi-static ap-

proximation applies. The quasi-static approximation of EM fields refers to the fact

that the contribution of the electric current displacement is negligible compared to

the electric current density when working at frequencies lower than 105 Hz [169].

This is the case for a wide range of geophysical EM surveys used in practice.

For example, we can model the EM responses of controlled-source EM surveys

(e.g. large-loop surface and airborne surveys) and natural-source EM surveys

(e.g. magnetotellurics and ZTEM surveys). The books in [144, 161] include a

thorough description for each of these surveys.

Since most geophysical EM surveys in the quasi-static regime aim to charac-

terize the electrical conductivity, we assume that the electrical conductivity is the

primary medium’s physical property of interest in this study [138, 144, 161, 179].
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1.4 Overview of the Study

Given the background information and proposed problem statement in this intro-

ductory chapter, the rest of this dissertation is organized as follows.

Chapter 2 introduces the quasi-static Maxwell’s equations in the frequency

domain, which is the mathematical model I focus on in this dissertation; provides

an overview of the mimetic finite volume discretization method, which is used as

a building block to develop the upscaling and multiscale techniques proposed in

this work; and provides a summary of the relevant problem characteristics, the

literature review as well as related work.

Chapter 3 develops an upscaling framework for the electrical conductivity of

the quasi-static Maxwell’s equations in the frequency domain. The goal of such

framework is to construct accurate coarse-mesh conductivity models from given

fine-mesh ones that can be used to accurately simulate EM responses on a

coarse mesh. The main contribution of this chapter is to pose upscaling as a

parameter estimation problem to be solved on each coarse-mesh cell, which is

fundamentally different than other upscaling formulations proposed in the litera-

ture. This chapter starts by introducing the components for the framework that

are used to propose a general least-squares formulation for the upscaling prob-

lem in geophysical EM applications. Then, I use a 1D example to illustrate the

general principle behind the framework and to show its performance to upscale

well log electrical conductivity data from the Canadian McMurray formation. This

example provides the perfect scenario to test our upscaling framework and to

offer a potential alternative to upscale well log electrical conductivity data in prac-

tice. Afterwards, I adapt the upscaling formulation to construct coarse-mesh 3D

anisotropic electrical conductivity models from given fine-mesh isotropic models.

Finally, I show the performance of the adapted upscaling formulation for 3D prob-

lems using two upscaling examples on a single coarse cell, and one example of

a synthetic electrical conductivity model from inversion results of field measure-

ments over the Canadian Lalor mine. The last example also shows how the up-

scaling method can be combined with OcTree (a type of adaptive mesh refinement

technique) in a parallel environment to boost its performance.

Chapter 4 develops a multiscale finite volume method with oversampling for
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the quasi-static Maxwell’s equations in the frequency domain. The goal of this

method is to provide more accurate approximations to the EM responses than

those obtained with the multiscale finite volume technique (without oversampling)

developed by [73] for tensor meshes and at a fraction of the cost of traditional dis-

cretization techniques (such as mimetic finite volume) on a fine mesh. The main

contribution of this chapter is to show how the core mathematical ideas used to

develop one of the most successful oversampling techniques for flow in porous

media applications can be extended to geophysical EM problems, as well as to

show how the multiscale finite volume method with and without oversampling can

be combined with OcTree meshes in a parallel environment to tackle more chal-

lenging geophysical EM simulations. This chapter starts by providing a summary

of a multiscale finite volume method for geophysical EM problems. I discuss how

the accuracy of such method can be improved by complementing it with an over-

sampling technique. Finally, I show the performance of the method using two 3D

synthetic models: the Lalor model (introduced in Chapter 3), and one with random

isotropic heterogeneous media.

Finally, Chapter 5 summarizes the work, discusses the contribution of this

investigation to the field of computational EM, and discusses the remaining chal-

lenges and future research directions of the work presented in this dissertation.
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Chapter 2

Mathematical Background

Live as if you were to die tomorrow.
Learn as if you were to live forever. — Mahatma Gandhi

2.1 Overview

This chapter provides a literature review of the numerical methods used to solve

the quasi-static EM forward problem in the frequency domain, introduces the

mathematical model I focus on in this dissertation, provides an overview of the

mimetic finite volume discretization method, discusses the existing solvers for the

resulting system of equations obtained from the discretization of the Maxwell’s

equations using the mimetic finite volume method, and concludes with a literature

review of the related upscaling and multiscale techniques developed for flow in

porous media problems that are used as a building block to develop the upscaling

and multiscale with oversampling methods proposed in this doctoral dissertation

for application to geophysical EM problems.

2.2 The Electromagnetic Forward Problem

This section provides a literature review of the conventional methods that are used

to solve the geophysical quasi-static EM forward problem in the frequency domain.

In Geophysics, the EM forward problem or forward modeling refers to the

mathematical procedure by which given information of the physical properties of
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the medium (e.g. spatial distribution of both the electrical conductivity and mag-

netic permeability) and the sources, we can predict (compute) geophysical EM

data (responses) by numerically solving the Maxwell’s equations [158, 169]. The

empirical Maxwell’s equations are widely accepted in the scientific community as

the mathematical model that governs all macroscopic EM phenomena [58, 156].

Over the last four decades, the scientific community has been proposing effi-

cient numerical methods to solve the EM forward problem for different geophys-

ical applications [5, 7, 19, 34, 53, 68, 70, 76, 106, 142, 153, 157, 166, 179].

The progress has happened on several fronts in the fields of scientific and high-

performance computing. Nowadays, we have a broader set of numerical methods

(e.g. adaptive mesh refinement and discretization techniques, solvers and pre-

conditioners) to use as well as more powerful machines to run the simulations.

This progress has enabled modelers to increase the complexity of the simula-

tion. For example, we went from 1D settings to 3D settings, from small-scale to

large-scale domains, from simple homogeneous or layered models that consider

targets in the form of blocks to highly heterogeneous models that consider more

complicated geological and topographical structures. In particular, performing 3D

simulations has been possible due to the increase in computing power we have

had over the last two decades [134, 179]. Currently, we are still not at the point

where we can fully tackle computationally this problem. For example, running

an EM forward simulation on a geophysical setting as the one showed in Figure

1.3 can not be handled without specialized computing resources (e.g. a cluster

supercomputer), to which few people have access.

To propose a better strategy to solve the geophysical EM forward problem, we

first need to understand how it has been traditionally solved. The conventional

approach to solve this problem consists of the following three major steps:

1. Select a well-posed boundary value problem (in the sense of Hadamard)

that represents the physical phenomenon of interest. A well-posed bound-

ary value problem in the sense of Hadamard consist of a PDE model with

boundary conditions that has a unique solution, which depends continu-

ously on the input [77].

The quasi-static Maxwell’s equations are the established mathematical PDE
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model to simulate physical responses resulting from a geophysical EM ex-

periment [68, 169]. This model can be formulated in the frequency or time

domain. For the sake of simplicity of exposition, I focus on frequency-

domain EM problems. In addition, the model can be formulated in first-order

or second-order form. The literature reports that using the first-order form

leads to more accurate results when both EM fields and fluxes need to be

computed [68]. In this dissertation, I work with the first-order formulation for

this reason.

Section 2.3 provides full details about the boundary value problem I work

with in this dissertation.

2. Discretize the quasi-static Maxwell’s equations using an appropriate mesh

and discretization method.

The mesh used in this step can be structured, semi-structured or unstruc-

tured. The literature reports that structured and semi-structured meshes are

used more often than unstructured meshes for the geophysical EM forward

problem. However, there is increasing research on how to use effectively

unstructured meshes as well (e.g. [100, 115, 150] and references within).

Structured and semi-structured meshes have the advantage of leading to

more accurate solutions, structured, symmetric and sparse matrices, as

well as being simpler to program and parallelize. Their main disadvantage

is that they cannot model effectively complicated geometries (e.g. Figure

1.3). The most common structured and semi-structured meshes used in

practice are: tensor meshes (i.e., any mesh that has a constant width along

the entire axis such that it can be defined by a single width vector), or-

thogonal locally refined meshes (e.g. QuadTree and OcTree), and logically

orthogonal meshes (i.e., a distorted orthogonal mesh) [68].

Conventional discretization methods for this step are: the finite difference

discretization method (FD) (e.g. [41, 99, 106, 178] and references within),

the finite element discretization method (FE) (e.g. [100, 104, 115, 130, 131,

149]), the finite volume discretization method (FV) (e.g. [54, 68, 100]), and

the Integral Equation method (e.g. [8, 126, 168]). The Integral Equation
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method has been reported to be less competitive than the other methods

[149]; it cannot deal with large conductivity contrasts neither with compli-

cated geometries and it involves large dense matrices, which increase the

cost of solving the system of equations. Currently, the most common dis-

cretization methods used in practice for our problem are FD and FV meth-

ods on orthogonal structured or semi-structured meshes, and FE on struc-

tured and unstructured meshes.

The state-of-the-Art is to use a mimetic discretization method as it results

on discrete solutions that preserve (mimic) the relevant underlying math-

ematical and physical properties of the continuum PDE model on general

polygonal and polyhedral meshes, and it leads to sparse and symmetric

systems of equations [68, 121]. Mimetic discretizations have been derived

for FD, FE and FV methods [93–96, 104, 121, 131]. In this dissertation,

we use the mimetic finite volume discretization method (covered in detail

in Section 2.4) on tensor and OcTree meshes. Section 2.4 elaborates fur-

ther on the advantages of using this discretization method as well as on the

physical properties that this mimetic discretization preserves for the quasi-

static Maxwell’s equations.

3. Solve the linear system of algebraic equations resulting from the previous

step to obtain an approximation to the EM responses. Section 2.5 discusses

the solver options for the system of equations that we actually solve in this

dissertation.

Using the conventional approach outlined above to solve the quasi-static EM

forward problem in practice is computationally very expensive. As discussed in

Section 1.2, the cost comes from solving a very large system of equations that

results from the discretization of a complex geophysical setting that includes fea-

tures at multiple spatial scales (e.g. Figure 1.3), which often requires a very de-

tailed mesh. As pointed out in [22, 23, 122], just building more powerful ma-

chines does not constitute a sustainable methodology to solve this problem as

the amount of processing increases too steeply with the rise in problem size. As

discussed in Section 1.2, this study proposes two new methods, an upscaling

method and a multiscale method with oversampling, to overcome this situation.
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2.3 The Quasi-static Maxwell’s Equations in the
Frequency Domain

This section introduces the boundary value problem I focus on in this dissertation.

More detailed discussions on EM theory for geophysical applications can be found

in [144, 156, 161, 169].

Due to attenuation of the EM responses in the earth, geophysical EM sur-

veys usually utilize frequencies in the range (0,105) Hz, in which case electrical

displacement currents can be neglected [169]. For this scenario, the governing

mathematical model is given by the first-order form of the quasi-static Maxwell’s

equations ([68, 169]):

∇× ~E + ıω~B = ~0, in Ω, (2.1)

∇× µ
−1~B−Σ~E = ~Js, in Ω, (2.2)

where ~B denotes the magnetic flux density, ~E denotes the electric field intensity,
~Js denotes the source term, ω denotes the angular frequency, ı is the unit imag-

inary number, and Ω ⊂ R3 denotes the domain. The PDE coefficients, µ and Σ,

denote the magnetic permeability and electrical conductivity, respectively. Note

that the system of equations (2.1)-(2.2) constitutes a linear, complex and vector

PDE system.

The PDE coefficients, µ and Σ, can be scalars or Symmetric Positive Definite

(SPD) tensors. For the sake of generality in the exposition, let us assume that both

coefficients are 3×3 SPD matrices of the form

µ(~x) =

µ1(~x) µ4(~x) µ5(~x)

µ4(~x) µ2(~x) µ6(~x)

µ5(~x) µ6(~x) µ3(~x)

 , Σ(~x) =

σ1(~x) σ4(~x) σ5(~x)

σ4(~x) σ2(~x) σ6(~x)

σ5(~x) σ6(~x) σ3(~x)

 , (2.3)

where µ l,σ l : Ω→ R; l = 1, ...,6. Under these assumptions, these coefficients

model the anisotropic and highly heterogeneous behavior of the medium in the

geophysical problem that is considered. Since in practice these coefficients tend

to vary over multiple spatial scales and several orders of magnitude, let us as-

sume that the entries of these coefficients are piecewise smooth functions with
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jump discontinuities at the material interfaces. These coefficients are referred

as the medium parameters throughout this dissertation. The stated PDE system

assumes International System Units and eıωt time dependence.

Note that taking the divergence of equation (2.1) leads to

∇ · ~B = 0, in Ω, (2.4)

which implies that ~B must be divergence free for every point in the domain. This

condition is known as the Gauss’s law for magnetic fields [58].

As shown in [68, 169], the system (2.1)-(2.2) is typically closed with the natural

boundary conditions given by

µ
−1(~x)~B(~x)×~n =~0, ∀~x ∈ ∂Ω, (2.5)

or with the non-homogeneous Dirichlet boundary conditions given by

~E(~x)×~n = ~E0(~x)×~n, ∀~x ∈ ∂Ω, (2.6)

were ∂Ω denotes the boundary of Ω,~n denotes the unit outward-pointing normal

vector to ∂Ω, and ~E0 specifies the tangential components of ~E at ∂Ω. However,

more general boundary conditions can be imposed to the Maxwell’s system (2.1)-

(2.2) as discussed in [104, 169]. For the sake of simplicity in the exposition, the

discussion is limited to the boundary conditions (2.5) and (2.6).

For realistic geophysical settings with highly heterogeneous medium param-

eters, the quasi-static Maxwell’s equations do not have analytical solutions [169].

In such cases, a numerical solution is computed. The next section provides an

overview of the mimetic finite volume discretization method, which is the dis-

cretization method I use in this dissertation to do so.

2.4 The Mimetic Finite Volume Discretization

In this section, I provide an overview of the mimetic finite volume discretization

method (MFV). Full derivation details can be found in [68, 93–98]. Since the

MFV method provides a conservative, consistent and stable discretization of the
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Maxwell’s equations introduced in Section 2.3, I use it as a building block to de-

velop the multiscale and upscaling approaches proposed in this work. However,

edge-based FE or FD discretization methods as the ones proposed in [104, 121,

131, 135, 149, 165], which also provide a conservative, consistent and stable

discretization for Maxwell’s equations, can be used as well.

The MFV is an extension of Yee’s FD method ([178]) that constructs discrete

curl, divergence and gradient operators satisfying discrete analogs of the main

theorems of vector calculus involving such operators. For example, ∇× (∇φ)=~0,

where φ is a scalar potential, and ∇ · (∇× ~A) = 0, where ~A is a vector potential.

Therefore, the discrete differential operators obtained with MFV do not have spu-

rious solutions and the divergence-free condition for the magnetic field (2.4) is

automatically satisfied in the discrete setting. In addition, MFV models the correct

behavior of the tangential and normal components of ~E and ~B through material in-

terfaces (i.e., the tangential components of ~E and the normal components of ~B are

continuous through material interfaces, and the normal components of ~E and the

tangential components of ~B are discontinuous through material interfaces [169]).

Due to these reasons, the discretization is called mimetic as it preserves (mimics)

the underlying relevant mathematical and physical properties of the quasi-static

Maxwell’s equations. Furthermore, MFV leads to sparse and symmetric linear

systems of equations and it can be implemented on general polygonal and poly-

hedral meshes [98].

Following the guidelines provided by Hyman and Shashkov ([93, 94]), the MFV

method begins by considering the weak form of the Maxwell’s system (2.1)-(2.2):

(∇× ~E,~F)+ ıω(~B,~F) = 0, (2.7)

(∇× µ
−1~B, ~W )− (Σ~E, ~W ) = (~Js, ~W ), (2.8)

where ~F ∈H (div;Ω) and ~W ∈H (curl;Ω) are arbitrary test functions; H (div;Ω)

and H (curl;Ω) are the Hilbert spaces of square-integrable vector functions on

Ω with square-integrable divergence and curl, respectively; and (·, ·) denotes

the inner product given by (~P, ~Q) =
∫

Ω
PxQx + PyQy + PzQz dV . In particular,

~E ∈ H (curl;Ω) and ~B ∈ H (div;Ω). For a more detailed description of the

arbitrary test functions ~F and ~W used here, the interested reader is referred to
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[93, 94, 131].

As shown in [68], after integrating by parts the term (∇× µ−1~B, ~W ) in equa-

tion (2.8) and applying the natural boundary conditions (2.5), the boundary term

vanishes and equation (2.8) becomes

(µ−1~B,∇× ~W )− (Σ~E, ~W ) = (~Js, ~W ). (2.9)

The resulting weak system formed by equations (2.7) and (2.9) is more convenient

to work with. It only requires the tangential components of ~E and ~W be differen-

tiable, and eliminates the differentiability condition on the tangential components

of ~B, which may be discontinuous across material interfaces. Furthermore, the

discretization of the anisotropic discontinuous coefficients, Σ and µ , will be done

via the numerical approximation of their corresponding inner products; as we will

see, this allows an adequate treatment in such cases.

Next, the method proceeds by numerically approximating the differential op-

erators and the inner products in the weak system formed by equations (2.7) and

(2.9). To elaborate further, let us first introduce some mathematical notation. For

simplicity in the exposition, let us assume Ω to be a cuboid domain that is dis-

cretized with a staggered tensor mesh, M. In particular, M=∪nx,ny,nz

i, j,k=1 Ωh
i, j,k, where

nx, ny and nz are the number of cells along the x, y and z axis, respectively; and

Ωh
i, j,k denotes the (i,j,k)th cell. The lengths of Ωh

i, j,k along the x, y and z axis are

hx
i , hy

j and hz
k, respectively. Let us number the cell center of Ωh

i, j,k as (i, j,k), the

x, y and z edges of Ωh
i, j,k as (i, j± 1

2 ,k±
1
2), (i±

1
2 , j,k± 1

2) and (i± 1
2 , j± 1

2 ,k),

respectively; and the x, y and z faces of Ωh
i, j,k as (i± 1

2 , j,k), (i, j± 1
2 ,k) and

(i, j,k± 1
2), respectively. Let us discretize ~E and ~Js on the edges, ~B on the faces,

and the PDE coefficients µ and Σ at the cell centers. Figure 2.1 shows a control

volume cell with the allocation of these variables. According to [58, 68], edge vari-

ables can be physically interpreted as (electric) fields, as they represent a (line)

force moving on a path around a surface. Similarly, face variables can be physi-

cally interpreted as (magnetic) fluxes, as they represent a (magnetic) flux inwards

or outwards the cell. The physical meaning of such variables explains the choice

of discretization location. The corresponding grid functions on M for the variables

mentioned before are denoted as e, js, b, µµµ and ΣΣΣ, respectively.
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Figure 2.1: Control volume cell showing the staggered discretization for ~E
and ~Js on its edges, ~B on its faces, and the medium parameters µ and
Σ at the cell centers.

To discretize the curl operator on each of the faces of the cell Ωh
i, j,k, let us use

its integral form as given in [145], which is convenient as it provides a geometrical,

coordinate-free expression for the definition of this operator. That is,

(∇× ~E) ·~nS = lim
AS→0

(
1

AS

∫
S

∇× ~E ·dS
)
= lim

AS→0

(
1

AS

∮
∂S
~E ·dl

)
, (2.10)

where S denotes a face of Ωh
i, j,k, ~nS denotes the outward unit normal vector to

S, ∂S denotes the boundary of S, and AS denotes the area of S. In the above

expression, the Stoke’s theorem was applied ([145]).

To compute the integrals in (2.10), let us use the midpoint quadrature rule

([6]). For example, the discretization for the (i+ 1
2 , j,k)th face, which is denoted

as Si+ 1
2 , j,k

, can be written as

(∇× ~E) ·~nS
i+ 1

2 , j,k
≈
−hy

j

(
Ey

i+ 1
2 , j,k+

1
2
−Ey

i+ 1
2 , j,k−

1
2

)
+hz

k

(
Ez

i+ 1
2 , j+

1
2 ,k
−Ez

i+ 1
2 , j−

1
2 ,k

)
hy

jh
z
k

.

(2.11)

The discretization for the rest of the faces of Ωh
i, j,k can be done in a similar way.
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The above computation is performed for every cell and its corresponding faces in

the staggered mesh M. The result can be expressed in matrix form as follows

∇× ~E ≈ CURLe = S−1CLe, (2.12)

where S is a diagonal matrix that contains the area of each face in our mesh, L
is a diagonal matrix that contains the length of each edge in our mesh, and C is

a matrix that contains the values 0 and ±1 that indicates the mesh connectivity

(i.e., it encodes the signs in equation (2.11)).

The discretization of the divergence and gradient operators can be done in

a similar manner using their corresponding geometrical, coordinate-free definition

(as given in [145]). The interested reader is referred to [68, 94, 96] for more details

on how to do so. In such references, the authors demonstrate that the discrete

operators obtained in this way satisfy that

CURLGRAD = 0M, DIVCURL = 0M, (2.13)

where GRAD denotes the discrete gradient operator, DIV denotes the discrete

divergence operator, and 0M is a matrix with all entries equal to zero. Further-

more, they demonstrate that GRAD spans the non-trivial null space of CURL.

These discrete relationships are known as the mimetic properties of the discrete

operators.

To complete the discretization procedure, we need to approximate the inner

products (Σ~E, ~W ), (µ−1~B,∇× ~W ), (~Js, ~W ) and (~B,~F). As we will see, the approx-

imation of (∇× ~E,~F) will be done in an analogous way as the approximation of

(~B,~F). We continue to follow Hyman and Shashkov ([93, 95–97]), and use low-

order quadrature formulas to do so. One of the main differences between MFV

and an edge-based FE discretization for Maxwell’s equations ([104, 131]) is that

MFV uses low-order quadrature formulas (e.g. midpoint or trapezoidal rules) for

the numerical integration of the corresponding inner products, whereas FE uses

Gauss numerical integration rules.

First, let us consider the approximation of (Σ~E, ~W ). Recall that the x, y and z

components of ~E and ~W are discretized on the edges and that Σ is discretized at
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the cell center of each cell (Figure 2.1), which implies that Σ is considered to take

a constant value within each cell. Since Σ is a SPD matrix of the form (2.3), the

computation of the integrand Σ~E ·~W involves cross-term products of the tangential

components of ~E and ~W that are not discretized at the same location; thus no low-

order quadrature formulas (e.g. midpoint or trapezoidal rules) can be applied in

this case. To overcome this problem, one first projects the tangential components

of ~E and ~W to the nearest node in the cell; then one computes Σ~E · ~W . This

process is referred to as nearest-neighbor interpolation ([68]) and it is illustrated

in Figure 2.2(a). After applying this process, one obtains an approximation to

(Σ~E, ~W ) as follows

∫
Ω

Σ~E · ~W dV ≈ w>
(

1
8

8

∑
n=1

Pe
n
>V

1
2 M(ΣΣΣ)V

1
2 Pe

n

)
e = w>Me(ΣΣΣ)e, (2.14)

where V is a diagonal matrix with the volume of each cell in the mesh, Pe
n, n =

1, . . . ,8, are the matrices that project the three adjacent components of the electric

field to the nth node of each cell, and M(ΣΣΣ) is given by

M(ΣΣΣ) =

diag (σσσ1) diag (σσσ4) diag (σσσ5)

diag (σσσ4) diag (σσσ2) diag (σσσ6)

diag (σσσ5) diag (σσσ6) diag (σσσ3)

 , (2.15)

where each diag (σσσ i) represents a diagonal matrix containing the grid function of

σσσ i; i = 1, ...,6, respectively. Let us define Me(ΣΣΣ) in (2.14) as the edge mass ma-

trix. Note that when Σ is a diagonal matrix, the edge mass matrices is identical

to the one obtained by discretizing (Σ~E, ~W ) using low-order quadrature formu-

las [70]. The described discretization method naturally extends the use of Yee

meshes (i.e., staggered tensor meshes) to the anisotropic case. Its advantage

is that it only requires integration over one cell at a time; the averaging (2.14)

is a result of the integration over the domain. This is similar to FE methods,

where averaging is performed implicitly through the assembly of the mass matrix

[104, 131].

Next, let us approximate (µ−1~B,∇× ~W ). Since µ is a SPD matrix of the

form (2.3), computing the integrand µ−1~B ·∇× ~W leads to a similar problem as
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Figure 2.2: Schematic representation of the nearest-neighbor interpolation
process for approximating (a) the edge inner product (Σ~E, ~W ) and (b)
the face inner product (µ−1~B,~F) in the cuboid cell Ωh

i, j,k.

the one described before for the numerical integration of (Σ~E, ~W ). In this case,

one uses the nearest-neighbor interpolation method on the faces of M and the

discrete expression of the curl operator obtained in (2.12) in order to approximate

(µ−1~B,∇× ~W ), which leads to

∫
Ω

µ
−1~B · (∇× ~W )dV ≈ w>CURL>

(
1
8

8

∑
n=1

Pf
n
>V

1
2 M(µµµ−1)V

1
2 Pf

n

)
b

= w>CURL>Mf(µµµ
−1)b, (2.16)

where Pf
n; n= 1, ...,8 are the matrices that project the three adjacent components

of the magnetic flux to the nth node of each cell (see illustration of this process in

Figure 2.2(b)), V is defined as before in (2.14), and M(µµµ−1) is given by

M(µµµ−1) =

diag (µµµ−11
) diag (µµµ−14

) diag (µµµ−15
)

diag (µµµ−14
) diag (µµµ−12

) diag (µµµ−16
)

diag (µµµ−15
) diag (µµµ−16

) diag (µµµ−13
)

 , (2.17)

where each diag (µµµ−1i
) represents a diagonal matrix containing the grid func-

tion of the ith entrance of the inverse of the matrix µ given by (2.3), denoted as

µ−1i; i = 1, ...,6, respectively. Mf(µµµ
−1) in (2.16) is defined as the face mass

matrix.
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Next, let us approximate (~Js, ~W ). Since the three tangential components of

the integrand ~Js ·~W are placed at the same location for every cell of the mesh (i.e.,

at the edges), one uses a combination of the trapezoidal and midpoint quadrature

rules ([6]) to approximate this inner product, which leads to∫
Ω

~Js · ~W dV ≈ w>
(
diag (Acc

e )>v
)

js, (2.18)

where Acc
e is a sparse matrix that averages edge variables into the cell centers

and it contains only 1
4 where the edge variables are averaged ([68]), and v is the

vector of cell volumes arising from applying the quadrature rules on each cell of

the mesh.

Next, let us approximate (~B,~F). Since the three normal components of the

integrand ~B · ~F are placed at the same location for every cell of the mesh (i.e.,

at the faces), one uses the midpoint quadrature rule to approximate this inner

product, which leads to∫
Ω

~B ·~F dV ≈ f>
(
diag (Acc

f )>v
)

b, (2.19)

where Acc
f is a sparse matrix that averages face variables into the cell centers and

it contains only 1
2 where the face variables are averaged [68], and v is defined as

before in (2.18). The approximation of the inner product (∇× ~E,~F) can be done

in an analogous way as for (~B,~F) and also uses the discrete expression of the curl

operator that was obtained in (2.12). Doing so results in the following expression∫
Ω

∇× ~E ·~F dV ≈ f>
(
diag (Acc

f )>v
)

CURLe. (2.20)

Combining equations (2.14), (2.16), (2.18), (2.19), (2.20) and applying some

standard mathematical manipulations, one obtains the following discrete analog

to the quasi-static Maxwell’s equations

CURLe+ ıωb = 0, (2.21)

CURL>Mf(µµµ
−1)b−Me(ΣΣΣ)e = diag

(
(Acc

e )>v
)

js =: q, (2.22)

where 0 is a column vector with all its entries equal to zero. Now, from equation
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(2.21), one can obtain a discrete analog to the magnetic flux as follows

b =− 1
ıω

CURLe. (2.23)

Note that multiplying (2.23) times DIV and using (2.13) implies that

DIVb = 0; (2.24)

that is, one obtains the discrete analog to Gauss’s law for the magnetic field (2.4).

Now, substituting (2.23) into (2.22) one obtains the following system of linear

equations in terms of e
A(ΣΣΣ)e =−ıωq, (2.25)

where

A(ΣΣΣ) = CURL>Mf(µµµ
−1)CURL+ ıωMe(ΣΣΣ). (2.26)

The matrix A(ΣΣΣ) is complex, sparse, symmetric, and, in practice, it tends to

be severely ill-conditioned. Section 2.5 provides an overview of the direct and

iterative solvers that can be used to solve this system.

As shown in [68], to impose the non-homogeneous Dirichlet boundary con-

ditions (2.6), which imply the values of the tangential components of the electric

field at the boundary are known, the matrix A(ΣΣΣ) and the vectors e and q from

equation (2.25) are reordered into interior edges (ie) and boundary edges (be).

Thus, the system to be solved in terms of the unknown eie is

Aie,ieeie =−
(

ıωqie+Aie,beebe
)
, (2.27)

where Aie,ie, Aie,be, and qie represent the corresponding partitions of the matrix

A(ΣΣΣ) and the vector q of the system (2.25), eie is the discretized electric field at

the interior edges, and ebe is the discretized electric field at the boundary.

As shown in [68, 96], the MFV method is second order accurate assuming an

orthogonal mesh and that the PDE coefficients are smooth or piecewise constant,

which is our case. The works in [124, 131] propose discretization schemes for

Maxwell’s equations with higher orders of accuracy. However, these schemes are

more complicated and more computationally expensive to solve. The order of

25



accuracy provided by MFV is sufficient for the type of large-scale geophysical EM

simulations we are interested in this study.

The ideas presented in this section have been extended to OcTree meshes

(for details see [72, 86]) and to logically orthogonal meshes (for details see [68]).

Let us finish this section by providing a mimetic discrete approximation for the

electric current density ~J, as it will be used later in Chapter 3. The continuous

form of Ohm’s law ([169]) states that

~J = Σ~E. (2.28)

In order to obtain a discrete analog of the electric current density, j, one first

interpolates the tangential components of ~E to the cell centers of our mesh. Next,

one performs a point-wise multiplication of such components with the conductivity

to obtain ~J at the cell centers. Finally, one interpolates the three components

of ~J to its normal directions (i.e., to the cell faces). This procedure results in

a conservative interpolation for ~J that preserves its continuous properties in the

discrete setting. The grid function of ~J is denoted as j, which is given by

j = Af
ccMe(ΣΣΣ)Acc

e e, (2.29)

where Acc
e represents the averaging matrix taking information from edges to cell

centers as defined in (2.18), Me(ΣΣΣ) is given by (2.15) and Af
cc is a sparse matrix

that averages cell-center variables into the faces and it contains only 1
2 where the

cell-center variables are averaged ([68]).

2.5 Solvers

This section provides an overview of the direct and iterative solvers used to solve

the large, complex, symmetric, and sparse linear system of algebraic equations

(2.25) that result from the MFV discretization of the quasi-static Maxwell’s equa-

tions.

Before discussing the solver alternatives for the system of equations (2.25),

a brief discussion about the conditioning of such system of equations is given.

A severe ill-conditioning problem can arise in practice when solving the system
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of equations (2.25) for the cases where the EM survey configuration considers

very low frequencies, i.e., ω ≈ 0; and/or when the geophysical setting considers

very low conductivity values (e.g. when the setting considers air, whose electrical

conductivity is 0 S/m, but for simulation purposes this conductivity value is typically

assumed to be 10−8 S/m). For such cases, the matrix system (2.26) is close to

be singular and its condition number is expected to be quite large.

The ill-conditioning of the system matrix (2.26) for the cases described above

can be primarily explained by the fact that the discrete curl operator obtained

using the MFV discretization has a non-trivial null space, namely the discrete

gradient operator (see equation (2.13)). This feature is expected from using a

mimetic method to discretize the quasi-static Maxwell’s system. That is, the dis-

crete system is expected to inherit the near-singularity of the underlying continu-

ous Maxwell’s system [5, 68].

More generally, the conditioning of the system matrix (2.26) can be explained

by analyzing separately its two parts. The work in [40, 68] shows that the eigen-

values of the term Me(ΣΣΣ) in equation (2.26) are bounded by the minimum and

maximum values (assuming volume scaling) of the electrical conductivity consid-

ered in the geophysical setting. On the other hand, the largest eigenvalue of the

term CURL>Mf(µµµ
−1)CURL is not bounded. Such term comes from the MFV

discretization of the differential operator ∇× (µ−1∇×). As one refines the mesh,

its largest eigenvalue goes to infinity, while its smallest eigenvalue is zero (due to

the non-trivial null space of the curl operator) (cf. [68]).

Once the conditioning of the system (2.25) has been discussed, lets discuss

the solver alternatives for solving such system.

Iterative solvers are the natural choice to solve the large, sparse and sym-

metric system of equations (2.25). They lead to substantial savings on time

and memory usage, as they use optimized (sparse) matrix-vector product mul-

tiplications at each iteration and do not require to store the matrix of the system

[146]. The literature suggests using BiCGSTAB, MINRES or GMRES solvers for

the system (2.25) [68, 134, 146]. Such solvers can experience extremely slow

convergence rates or non-convergence at all when the system (2.25) is extremely

ill-conditioned (e.g. when simulation setting considers very low frequencies and

very low conductivity values) [75]. For such cases, the literature suggests that we
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first reformulate the PDE model to obtain a better conditioned system. And sec-

ond, that we precondition the system of equations obtained from the reformulation

of the problem. Doing so results in faster convergence rates to the solution (e.g.

[5, 12, 66, 68, 70, 100, 115, 128, 135, 149, 157, 168, 172]). Below, we briefly

discuss these two complementary steps:

1. The first step is to reformulate the Maxwell’s system (2.1)-(2.2) using the

Helmholtz decomposition together with a Coulomb gauge condition such

that, after applying an adequate discretization method, the resulting ma-

trix is better conditioned. The Helmholtz decomposition is a fundamental

theorem of vector calculus that expresses the electric field as the sum of

a curl-free potential field and a divergence-free potential field [145]. This

approach can lead to a saddle point system of equations, which can be

solved leveraging its special structure (see [63, 64] and references within).

To avoid solving the saddle point system, further algebraic manipulations

can be done to the reformulated system in order to obtain a much better

conditioned system to be solved (see [68, 152] and references within).

2. After the issues associated with the null space of the curl have been taken

care of by reformulating the PDE system as discussed in step 1, the sec-

ond second step is to construct a preconditioner matrix. Such precondi-

tioner should transform the reformulated system to be solved into another

system with more favorable properties, such as a clustered spectrum, for

iterative solution [15, 146]. The literature suggests the use of the follow-

ing preconditioners: Jacobi, Symmetric Gauss-Seidel, Incomplete LU and

SSOR [68, 100, 134]. As discussed in [68], these preconditioners are easy

to apply and work well for a moderate-sized system, if the system is not

poorly conditioned. For much larger ill-conditioned systems, more sophisti-

cated preconditioners are needed, such as multigrid [27, 164]. Research on

multigrid solvers and preconditioners for Maxwell’s equations can be found

in [4, 83, 84, 105, 133].

Although using iterative methods (complemented with a reformulation of the

PDE model as described above) is one of the most efficient ways currently used to

tackle EM forward simulations, using iterative methods as part of an EM inversion
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routine can suffer a major drawback: the system needs to be solved multiple

times for the number of sources and the different frequencies considered in the

geophysical EM survey configuration [68], which can be in the order of thousands

or even millions (e.g. an airborne survey) [144]. In such cases, being able to use

direct solvers to decompose the matrix of the system of equations is the most

cost-effective way to overcome this issue [43, 68]. However, a matrix factorization

requires us to be able to store the matrix. This requirement is what motivates my

interest on being able to reduce the size of the system of equations, so that direct

methods can be used to solve the system. Let us discuss next the options for

direct solvers for the linear system (2.25).

Direct solvers are based on a version of Gaussian elimination to compute a

LU factorization [43]. Since the factors are stored, these methods require to have

enough CPU memory available. These type of solvers are known to produce more

reliable and robust solutions than iterative solvers. The research in [149] pointed

out that for settings that use frequencies and conductivities very close to zero, the

system is severely ill-conditioned and the PDE problem may benefit from being

first reformulated as discussed previously.

For 1D problems and most 2D problems direct factorization methods are avail-

able on most packages and can be used without specialized computing resources.

However, for 3D problems it is not always possible to factorize the system without

specialized software and hardware. There are some parallel direct solvers pack-

ages available, such as MUMPS [3], SuperLU [116], STRUMPACK [62], PARDISO

[148], WSMP [65], that can solve problems with millions of unknowns. These

packages use optimized memory saving strategies and its matrix factorization is

done in parallel architectures on powerful hardware, large-scale problems can be

handled with direct solvers. My research group has used the solver MUMPS for

several years with satisfactory results, thus the simulation results presented in this

dissertation use such direct solver.

2.6 Literature Review

This section reviews some of the most successful upscaling and multiscale meth-

ods, developed for single-phase flow in porous media problems, that are used
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as a building block to develop their counterparts for application to geophysical

EM modeling. In addition, it discusses some of the existing connections between

multiscale and multigrid methods.

Upscaling and multiscale methods have been extensively studied also for

problems in the fields of materials science, computational mechanics, petroleum

engineering and computational water resources [51, 60]. All of these problems

share the same underlying mathematical model: a Poisson-type equation (i.e., a

scalar, linear and elliptic PDE). Since the amount of research for both upscaling

and multiscale methods for (linear) elliptic problems is quite extensive, the follow-

ing sections only discuss the closest investigations to the upscaling and multiscale

approaches used in this dissertation. Fewer research along these lines has been

done for the quasi-static Maxwell’s equations discussed in Section 2.3.

2.6.1 Upscaling Methods

Upscaling or homogenization methods seek to derive a coarse-scale PDE and to

pre-compute its coefficients from a given fine-scale PDE model with highly dis-

continuous coefficients (see [49, 56, 60, 111, 143, 147, 175] for reviews). The

coarse-scale PDE coefficients are referred in the literature as upscaled, equiva-

lent, averaged, homogenized or effective coefficients [122]. In practice, the setup

for an upscaling method assumes a fine mesh, which accurately discretizes the

fine-scale PDE, and a much coarser mesh, which is overlaid on top of the fine

mesh, where the coarse-scale PDE is ultimately solved. The computation of the

upscaled coefficients is done for every coarse-mesh cell. Once the upscaled co-

efficients are computed, one can use them to solve the coarse-scale PDE on a

much coarser mesh using fewer computational resources.

Using methods from asymptotic homogenization theory ([14]), it was proved

that for a Poisson’s equation that satisfies certain conditions (e.g. scale separation

and periodic boundary conditions), the fine- and coarse-scale equations are of the

same form, except that the fine-scale coefficient is replaced by the upscaled one

(see [51, 122] for details). In general, by using similar analysis techniques to study

fine-scale heterogeneous structures can result in full tensor upscaled coefficients

(see [119, 163] and references within). For example, the investigation in [103]
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demonstrates that upscaling two-scale periodic media can result in a full SPD

tensor upscaled coefficient, even though the fine-scale coefficient is a scalar.

Although technically replacing the fine-scale Poisson’s equation with its anal-

ogous coarse-scale equation is only valid under very particular conditions, the

literature provides numerical evidence that justifies such replacement in practice

(cf. [49, 122]). In light of this knowledge, when using upscaling methods to solve

flow in porous media problems in practice, the focus goes in computing the up-

scaled coefficient.

The research works in [102, 110, 173, 174] propose similar proofs (under sim-

ilar restrictive assumptions) for the case of the quasi-static Maxwell’s equations in

the frequency domain. Based on these studies, in this work, I also assume that

the fine- and coarse-scale Maxwell’s equations are of the same form and I will

focus on computing the upscaled coefficients of this mathematical model.

There is extensive research on how to compute accurate upscaled coefficients

for flow in porous media problems. Some of the most popular procedures have

the potential to be extended for application to geophysical EM problems, such as

analytical upscaling, flow-based upscaling, and output least-squares upscaling.

Analytical Upscaling

One of the simplest ways to compute upscaled coefficients is using an analyti-

cal procedure. Analytical procedures seek to derive closed-form expressions for

the upscaled coefficients using averaging principles. It is often the case that an

upscaled coefficient is computed by using simple averages of the fine-scale coef-

ficient information inside the target coarse-mesh cell. See [49, 56, 60, 141, 175]

for reviews of analytical upscaling procedures.

Analytical procedures work well when the fine-scale coefficient varies over a

fixed number of distinctive length scales and it has a particular structure (e.g. a

layered medium or a medium with a small correlation length). Similar closed-form

expressions for the upscaled coefficients can be obtained using asymptotic ho-

mogenization theory or effective medium theory. Along these two lines, the works

in [28, 102, 103, 110] and in [18, 127, 151, 163] propose analytical procedures

to compute the upscaled electrical conductivity in the context of EM problems,
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respectively.

Analytical upscaling procedures have the advantage of being simple, very

cheap to compute, and accurate in the (limited) cases where the assumptions

are satisfied; however, their underlying fundamental limitation is that these pro-

cedures are quite inaccurate for arbitrary fine-scale coefficient variations, which

appear most of the time in practice [49, 56, 122, 132, 175].

Flow-based Upscaling

A more general and accurate, but more expensive, way to compute upscaled

coefficients for flow in porous media problems is to use a so-called flow-based

procedure (cf. [45, 49, 170]). This method has its origins in early 1960s. Currently,

this is one of the most popular procedures to perform upscaling in the field of

petroleum engineering.

The goal of a flow-based upscaling procedure is to construct an upscaled co-

efficient (e.g. permeability) for every coarse-mesh cell by averaging fine-scale flow

information within the target coarse-mesh cell. Such fine-scale flow is computed

by numerically solving a set of local diffusion (steady-state elliptic) boundary-value

problems (without source term) for a given set of boundary conditions on the tar-

get cell. The upscaled coefficient is determined such that the total flow across

the coarse cell is preserved as much as possible. These types of procedures can

produce full-tensor upscaled coefficients.

Flow-based procedures can be classified as local, extended, or global meth-

ods, depending on the size of the computational region used to determine the up-

scaled coefficient (see [49, 56, 60, 175] for reviews and discussion). With a local

upscaling method, the upscaled permeability is computed using only fine-mesh

information within the target coarse cell. For an extended method, the upscaled

permeability is computed using fine-mesh information within an extended coarse-

mesh cell, which includes the target coarse cell and a neighborhood of fine-mesh

cells around the target coarse cell. Extended methods are more accurate than lo-

cal methods mainly because they allow larger heterogeneous connectivities in the

target cell to be represented more accurately as well as they mitigate the effect

of the chosen local boundary conditions, but they are also computationally more
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expensive. In a global method, the upscaled permeability for a target coarse cell

is computed using the entire fine-mesh model. Global procedures are significantly

more accurate as they can better capture the connectivity effects of the perme-

ability throughout the domain, and they do not require local boundary conditions.

Global upscaling procedures can be quite computationally expensive for large-

scale problems as they require to solve the fine-mesh PDE problem more than

once. For very large-scale 3D problems, they are still not practical.

With a proper setup, flow-based procedures can drastically reduce the cost

of a fluid flow simulation, while providing an accuracy comparable to the one ob-

tained with traditional fine-mesh discretization techniques, such as FE or FV (see

[35, 36, 48, 49, 60, 61, 175] for details). However, local and extended flow-based

procedures can lack accuracy when the local boundary conditions chosen are not

properly chosen, and when heterogeneous connectivities have a spatial extent/s-

cale that is larger than the target coarse cell.

To overcome the lack of accuracy in local and extended flow-based proce-

dures, global procedures can be combined with local or extended flow-based

methods. Such combined procedures are referred in the literature as local-global

upscaling methods. The investigations in [35–37, 49, 61] are examples of some

local-global methods that show how global upscaling procedures can be per-

formed using a simplified version of the fine-scale PDE in order to obtain a better

set of boundary conditions to setup a local or an extended upscaling procedure.

A significant amount of research has been developed in order to improve the

flow-based upscaling procedures. Some of the most important research directions

to do so are: a) testing different boundary conditions for the set of local diffusions

problems that need to be solved for 2D and 3D problems, b) understanding how to

better capture full-tensor effects derived from the upscaling procedure c) investi-

gating how the combination of different upscaling procedures perform for different

problems, d) proposing flow-based coarse-mesh generation methods and investi-

gating the effect of this type of mesh setup in the resulting upscaled coefficients,

and e) assessing the quality of the resulting upscaled permeability model. See

[35, 36, 49, 50, 60, 61, 112] and references within for details and discussion re-

garding these topics.
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The Output Least-Squares Upscaling

Among the various existing global upscaling formulations for flow in porous media

problems, there is one that can be generalized to solve upscaling problems in

different contexts: the output least-squares global method (OLS) (for reviews see

[35, 49, 56, 175]). The OLS method can be considered as a global procedure

as it computes upscaled coefficients by performing computations on the entire

fine-mesh model.

The OLS method was introduced in early 2000s in the studies by [85, 136],

where the authors propose a least-squares formulation for the upscaling problem.

All the upscaled permeabilities are computed at once by minimizing the regular-

ized least-squares difference between the pressure and the velocity fields gen-

erated using the fine and coarse-scale pressure equations. These studies only

provided examples for constructing scalar upscaled coefficients for 2D problems

with promising results. However, the OLS method is quite expensive to perform

as the fine-mesh problem needs to resolved several times.

A least-squares formulation can be customized to compute either isotropic or

fully anisotropic upscaled coefficients, depending on the definition of the objective

function and the purpose of the simulation. Due to the flexibility and generality that

this formulation offers, I extend and adapt it to solve geophysical EM problems in

Chapter 3.

2.6.2 Multiscale Finite Element and Finite Volume Methods

There is a considerable body of research proposing multiscale approaches for

problems with features at multiple length scales. Most of the work has been de-

veloped for flow in porous media problems. Among the most popular methods

are the FE heterogeneous multiscale method [1, 171], the variational multiscale

method [92], the generalized FE multiscale method [9–11], and the multiscale

FE/FV methods [51, 89, 101]. The book in [51] provides a comprehensive review

on this topic.

In this dissertation, I focus on the multiscale FE/FV methods develop for linear

elliptic problems originally proposed by [74, 89, 101]. This type of multiscale meth-

ods have been successful in reducing the size and cost of the computation while
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producing accurate solutions similar to that obtained with FE or FV discretization

schemes on a fine mesh.

Multiscale FE/FV methods belong to the family of projection-based model re-

duction methods, where the fine-mesh system resulting from the discretization

of the PDE model is projected onto a reduced subspace [51, 89]. Projected-

based methods approximate the unknown physical responses using a basis of

reduced dimension and project the governing PDE onto a suitably defined low-

dimensional subspace [13]. The setup for these method assumes a fine mesh,

which accurately discretizes the fine-scale PDE, and a much coarser mesh, which

is overlaid on top of the fine mesh, where the problem is ultimately solved. Multi-

scale FE/FV methods construct multiscale basis functions for every coarse-mesh

cell. The multiscale basis functions are computed by solving sets of local (elliptic)

boundary-value problems. This process ensures that the basis captures the fine-

scale variations of the PDE coefficients. A global variational formulation couples

these basis functions to provide an accurate coarse-mesh solution to the problem.

According to [51], the multiscale FE method was born in early 1980s from

the work in [9, 10], where the authors extended the Galerkin FE method for lin-

ear steady-state elliptic problems by constructing multiscale basis functions that

depend on a particular type of multiscale coefficient. By early 1990s, the inves-

tigations in [89, 90] generalized the construction of multiscale basis functions for

arbitrary coefficients. In particular, these investigations pointed out that the ac-

curacy of the method strongly depends on the local boundary conditions chosen

to construct the multiscale basis functions in the target coarse cell and they pro-

posed oversampling techniques to solve the related accuracy issues. By early

2000s, multiscale FE methods were extended to non-linear, time-dependent (el-

liptic and parabolic) problems and various other global variational formulations

to couple the multiscale basis functions were proposed (see [51] and reference

within). During this time, the investigations in [79, 81, 101, 160] proposed mul-

tiscale FV methods, where a FV global formulation is used and the multiscale

basis functions are computed by discretizing local boundary-value problems in

a staggered mesh (as opposed to a nodal mesh as in multiscale FE). By doing

so, the multiscale FV method is able to produce mass-conservative, coarse-mesh

solutions.
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Since early 2010s, some of the most important research directions in the mul-

tiscale FE/FV community have been: a) extending the range of applicability of

these methods to simulate other physical phenomena, b) analyzing error con-

vergence and improving the approximation properties of the method for different

settings, c) generalizing the method by using more basis functions and improving

oversampling techniques, d) developing multilevel multiscale methods as well as

designing efficient parallel implementations, and e) developing hybrid multiscale

methods using ideas from upscaling techniques (see [39, 50–52, 82, 114] for dis-

cussion and details on these topics).

Contrary to upscaling methods, which have not been applied to geophysical

EM problems, Haber and Ruthotto ([73]) extended the work by Hou and Wu ([89]),

Jenny et al. ([101]), and MacLachlan and Moulton ([123]) that propose multiscale

FE/FV for elliptic equations, to develop a multiscale FV method for the quasi-static

Maxwell’s equations in the frequency domain. However, their work did not include

oversampling and therefore, their method can result in inaccurate solutions due to

‘resonance errors’ (i.e., errors that appear when the mesh size and the wavelength

of the small-scale oscillation of the coefficient are similar) [51, 89, 90].

In Chapter 4, I extend the oversampling technique proposed by Hou and Wu

([89]) developed for elliptic equations, for application to the quasi-static Maxwell’s

equations. I

In parallel to the multiscale community, the multigrid community has also been

very active in proposing solutions to tackle boundary-value problems with multiple-

scale features (for reviews see [22, 167] and references within). In the next sec-

tion, I discuss some of the connections between the multiscale FE/FV and multi-

grid approaches proposed by these two communities.

2.6.3 Links between Multiscale FE/FV and Algebraic Multigrid

Multigrid or multilevel algorithms, introduced in the seminal paper by Brandt in

1977 ([21]), provide a methodology to design faster iterative solvers for systems

of algebraic equations. Such a methodology delineates the principles to combine

local processing on different levels (scales) with inter-level (inter-scale) transfer

operators in order to design solvers that can yield linear (optimal) complexity, i.e.,
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the computing processing is proportional to the problem size [24]. Since their

inception, this methodology continues to be generalized to tackle a wide range

of problems. Multigrid can be classified into two main branches: geometric and

algebraic methods (see [24, 164] for details).

The design of an efficient algebraic multigrid (AMG) solver requires an effec-

tive coarsening process, i.e., the process of generating coarse-level problems (or

operators) and inter-level restriction and interpolation operators. Such operators

must satisfy certain weak-approximation properties, i.e., some necessary condi-

tions for the iterative process to be convergent [55, 167]. The coarsening process

is usually automatic and operator dependent (i.e., it uses information of the matrix

of the system to be solved). An effective coarsening process to design robust

AMG solvers is the so-called variational Galerkin coarsening [164].

Variational Galerkin coarsening automatically generates a hierarchy of coarse-

level problems and coarse-to-fine interpolation operators by using minimization

principles. For example, for a two-level method, given the finest-level operator

(A f , which is the matrix of the system to be solved), a coarse mesh, and an in-

terpolation operator (P, which is also computed using variational principles), the

coarse-mesh Galerkin operator (Ac =PT A f P) that minimizes the error in the range

of the interpolation operator P is readily obtained [109, 164]. In this method, the

restriction operator (R) is given by R = PT . The construction of P gives rise to a

coarse space defined by the range of P. That is, the construction of interpolation

operators for a hierarchy of levels implies that a sequence of coarse spaces is

also generated [26].

On the other hand, (Galerkin) multiscale FE/FV methods, discussed in the

previous section, compute multiscale basis functions by solving local problems on

each coarse-mesh cell. These basis functions are used in the weak formulation

of the boundary-value problem of interest in order to create a coarse-mesh dis-

cretization operator Ac that has a similar form as the Galerkin operator described

above (i.e., Ac = PT A f P), where the columns of P contains the assembled mul-

tiscale basis functions computed in each coarse-mesh cell. The above outlines

one of the main connections between AMG and multiscale FE/FV methods.
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AMG as a Numerical Upscaling Tool

The AMG methodology has also been used as a numerical upscaling tool, i.e., to

solve a coarse-mesh problem (of the form PT A f Pxc = PT b) rather than a large

system of equations (of the form A f x = b) that results from the FE discretization

of a PDE on a fine mesh (see [167] for a review). Note that in the AMG context,

the word ‘upscaling’ has a rather different meaning than the one given in Section

2.6.1. Here, it refers to an upscaled model, instead of a model with upscaled

coefficients. Two AMG-based upscaling methods that are related to multiscale

FE/FV methods for elliptic problems are the element-based AMG method and the

multilevel multiscale mimetic method.

The element-based AMG (AMGe) method, originally proposed to design effi-

cient AMG solvers in [26] and later extended for upscaling purposes in [113, 140],

uses FE information in order to create a hierarchy of coarse spaces with guar-

anteed approximation properties that can be used as FE discretization spaces.

The approximation properties of the constructed FE-based coarse spaces refer to

the necessary and sufficient conditions to guarantee proper error estimates when

AMGe is used as a discretization method. For a given level, AMGe computes the

corresponding interpolation operator P by assembling local element-based inter-

polation operators that are computed on each algebraically-defined element in this

level. For each element, the corresponding interpolation operator is computed by

solving a local problem that is formulated using the FE information (including the

local stiffness matrix) of such element. AMGe focuses on constructing hierarchies

of FE-based coarse spaces for the De Rham complex, i.e., the sequence of H1-

conforming, H(curl)-conforming, H(div)-conforming and L2-conforming spaces.

The De Rham complex constitutes a convenient sequence of spaces where a

broad class of PDEs problems can be handled. The method can work for unstruc-

tured (conforming) meshes and high-order FE. AMGe upscaling has been mostly

applied to elliptic problems (e.g. [38, 114]). To the best of my knowledge, AMGe-

upscaling applications for the Maxwell’s equations have not been published yet.

The multilevel multiscale mimetic (M3) method proposed in [119, 120] for time-

dependent elliptic problems is also inspired in using the AMG methodology as an

upscaling tool. M3 uses Galerking coarsening in order to construct a hierarchy of
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mimetic FD-based coarse-mesh problems. The accuracy of this coarsening pro-

cedure to generate a sequence of coarse-mesh discretizations was first shown in

[122, 123], where a variational upscaling method is proposed for the Poisson’s

equation. However, this method does not produce locally conservative mass

fields. In contrast, the M3 is locally mass conservative in all levels and works

for polyhedral meshes. To the best of my knowlege, extensions of M3 to solve

Maxwell’s equations have not been published yet.
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Chapter 3

An Upscaling Framework for the

Electrical Conductivity

Look closely at the present you are constructing:
it should look like the future you are dreaming. — Alice Walker

3.1 Overview

This chapter1 proposes an upscaling framework for the electrical conductivity of

the mathematical model introduced in Section 2.3. The goal of this framework is

to construct accurate coarse-mesh electrical conductivity models from given fine-

mesh ones that can be used for faster simulation of the quasi-static EM responses

on a coarse mesh.

The main idea behind the proposed framework is to pose upscaling as a pa-

rameter estimation problem to be solved on each coarse-mesh cell. As we will see

in Section 3.2, this formulation is fundamentally different than others proposed in

the upscaling literature. This chapter starts by introducing the components of the

framework. Then, a 1D example that upscales well log conductivity data from

the Canadian McMurray formation is used to illustrate the general principle be-

hind the framework. Afterwards, the upscaling formulation is adapted in order to

1This chapter contains extended and revised versions of the material published in [29] and [32].
I am the lead author in both of these publications.
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obtain a practical method for constructing 3D full-tensor conductivity models. Fi-

nally, the performance of the 3D upscaling formulation is demonstrated by using

two examples on a single coarse cell, and one synthetic example based on the

Canadian Lalor mine. The last example shows the feasibility of combining the pro-

posed upscaling method with OcTree meshes in a parallel environment to boost

its performance.

3.2 A Least-Squares Formulation of the Upscaling
Problem

This section introduces the mathematical framework that poses the upscaling pro-

cedure as a parameter estimation problem.

Remember, the goal is to simulate EM responses for large-scale geophysical

settings that consider highly heterogeneous media and features varying at mul-

tiple spatial scales. Often, the small-scale features have a significant effect on

the measured EM responses (e.g. the thickness of a steel-cased well in Figure

1.3). In such cases, the accuracy of the computed EM responses of interest de-

pends on our ability to capture the relevant fine-scale features into the simulation

mesh. This results on using a large mesh, which leads to solving a huge system of

equations, making the simulation computationally expensive, or even intractable.

Here, we propose an upscaling framework for the electrical conductivity that

provides an alternative to avoid computing the EM responses of interest on a

very large and fine mesh. To do so, the framework constructs upscaled electrical

conductivities that vary on a coarser spatial scale and that emulate the effect of

the fine-mesh electrical conductivity in the EM responses of interest. This set of

upscaled electrical conductivities can be used for discretization on a much coarser

mesh, thus reducing the size of the system of equations to be solved, and, in

some cases, making the simulation doable. The upscaling process is illustrated

in Figure 3.1.

Note that we cannot simply replace the fine mesh with a coarse mesh in the

simulation procedure. Overlaying a coarse mesh over the fine mesh implies that

several fine-mesh cells are captured into each of the coarse-mesh cells. This is

illustrated for a single coarse cell in the central part of Figure 3.1. As a result,
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Figure 3.1: Upscaling process. Maxwell’s equations are solved over the do-
main Ω, where the electrical conductivity can vary over multiple spatial
scales and several orders of magnitude. The smallest spatial scale
over which the conductivity varies defines the size of the fine mesh on
which the model is discretized. The goal of an upscaling procedure
is to homogenize the conductivity inside a subregion Ωup of Ω in or-
der to construct an upscaled electrical conductivity model suitable for
simulation on a much coarser mesh.

a single coarse cell contains a heterogeneous fine-scale conductivity structure.

From the continuity conditions of the EM fields across material interfaces [169],

this implies that the EM responses within this coarse cell are non-smooth. In

this case, using a standard discretization technique on the coarse mesh, such as

FE or FV, will produce inaccurate approximations to the EM responses because

such techniques assume a certain degree of smoothness in the function to be

discretized. To avoid this complication when replacing the fine mesh with a coarse

mesh, we first need to homogenize the fine-scale conductivity inside the coarse

cells. That is, for each coarse cell, we need to assign a representative quantity for

the heterogeneous, fine-scale conductivity contained in it. Doing so, we ensure

smoothness in the resulting EM responses inside each cell. Afterwards, we can
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safely apply traditional discretization techniques on the coarse mesh. We now

proceed to develop the mathematical formulation for the upscaling procedure we

propose.

We begin the development of the proposed upscaling framework by consider-

ing the quasi-static Maxwell’s equations in the frequency domain subject to nat-

ural boundary conditions. These equations were introduced in Section 2.3. For

simplicity of exposition, we assume that the magnetic permeability (µ) takes its

free space value, namely µ = µ0 = 4π×10−7 Vs/Am. We use these quasi-static

Maxwell’s equations to define a fine- and a coarse-scale Maxwell’s problem.

The fine-scale problem considers the Maxwell’s equations where the hetero-

geneous electrical conductivity varies over small spatial scales. In our case, the

term fine scale refers to the relevant smallest spatial scale over which the con-

ductivity varies, such that this scale defines the size of the fine mesh on which

the model is discretized to obtain an accurate approximation to the EM responses

(see left-hand side of Figure 3.1). We use the superscript f to denote the fine-

scale Maxwell’s problem given by:

∇× ~E f + ıω~B f = ~0, in Ω, (3.1)

∇× (µ−1
0 )~B f −Σ

f~E f = ~Js, in Ω, (3.2)

(µ−1
0 )~B f (~x)×~n =~0, ∀~x ∈ ∂Ω, (3.3)

where Ω, ∂Ω, ~E f , ~B f , ~Js, Σ f , ω ,~n and ı are defined as before in Section 2.3.

On the other hand, the coarse-scale problem considers the Maxwell’s equa-

tions where the electrical conductivity does not vary over small scale hetero-

geneities. The research work in [16, 17, 110, 173, 174] also assumes that the

coarse-scale Maxwell’s equation have the same form as the fine-scale Maxwell’s

equations except that the coefficients are replaced by upscaled coefficients. In

our case, the term coarse scale refers to the largest spatial scale over which we

can construct upscaled conductivities suitable for accurate simulation on a much

coarser mesh (see right-hand side of Figure 3.1). We use the superscript c to
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denote the coarse-scale Maxwell’s problem given by:

∇× ~Ec + ıω~Bc = ~0, in Ω, (3.4)

∇× (µ−1
0 )~Bc−Σ

c~Ec = ~Js, in Ω, (3.5)

(µ−1
0 )~Bc(~x)×~n =~0, ∀~x ∈ ∂Ω, (3.6)

where Ω, ∂Ω, ~Ec, ~Bc, ~Js, ω ,~n and ı are defined as before in Section 2.3.

The fine- and coarse-scale problems use the same source term ~Js as it is inde-

pendent of the fine and coarse-scale variation of the conductivity. The upscaling

problem consists on constructing a coarse-scale electrical conductivity Σc (without

small scale heterogeneities) such that the solution of the coarse-scale problem is,

in some sense, close to the solution of the fine-scale problem [56, 136].

Now, we define the coarse-scale electrical conductivity Σc as

Σ
c(~x;σup) =

{
σup, if ~x ∈Ωup

Σ f (~x), otherwise
(3.7)

where Ωup⊂Ω is an upscaling region where we aim to homogenize the fine-scale

conductivity (Figure 3.1), and σup is an upscaled electrical conductivity that aims

to capture the effect of the fine-scale heterogeneous conductivity inside Ωup on

the EM responses. In this framework, the definition of σup depends on the context

of a simulation. For example, σup may be given by a positive scalar, a real or even

a complex matrix, depending on the complexity and purpose of the simulation.

We explore this idea further through examples in Sections 3.3 and 3.5.

We continue by rewriting the fine-scale problem (3.1)-(3.2) and the coarse-

scale problem (3.4)-(3.5) as

L (Σ f (~x))~u f =~q f and L (Σc(~x;σup))~uc =~qc, (3.8)

respectively. Here, L represents the Maxwell operator (in matrix form), ~u f =

(~B f ,~E f )> and~uc = (~Bc,~Ec)> represent the fine- and coarse-scale EM responses,

respectively; and ~q f and ~qc represent the corresponding source and boundary

conditions as given in (3.3) and (3.6), respectively. The fine- and coarse-scale EM
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responses are obtained by inverting the Maxwell operator; that is,

~u f (Σ f (~x)) = L −1(Σ f (~x))~q f and ~uc(Σc(~x;σup)) = L −1(Σc(~x;σup))~qc. (3.9)

In practice, a geophysical EM forward modeling simulation is used to compute

predicted data at the receiver locations or over the entire domain. The computa-

tion of the predicted EM data can be expressed as the action of a linear functional,

P , on the fine- and coarse-scale EM responses as follows

~D f (Σ f (~x)) = P~u f (Σ f (~x)) and ~Dc(Σc(~x;σup)) = P~uc(Σc(~x;σup)). (3.10)

Throughout this work, we refer to ~D f and ~Dc as the fine- and coarse-scale EM

data, respectively. Note that when P equals the identity operator, (3.10) returns

the EM responses in the entire simulation domain.

To complete the construction of Σc, we need to define a criterion for choosing

the ‘best’ upscaled conductivity σup in the upscaling region Ωup. As mentioned

before, the coarse-scale conductivity (Σc) should be able to emulate the effect of

the fine-mesh electrical conductivity in the EM responses of interest. That is, we

require a criterion able to construct a σup such that the coarse- and fine-scale

data are similar. We therefore propose the following definition.

Definition 1. Let Σ f be a given fine-scale electrical conductivity model and let

~u f = (~B f ,~E f )> be their induced fine-scale EM responses (i.e., fine-scale elec-

tric field and magnetic flux) given by (3.9), for a given angular frequency ω and

sources including boundary conditions ~q f and ~qc. Let ~D f and ~Dc, be some pre-

dicted fine- and coarse-scale EM data as defined in (3.10), then the upscaled

electrical conductivity in the upscaling region Ωup, denoted as σ∗up, is defined as

the solution of the following parameter estimation problem:

σ
∗
up = argmin

σup

c(σup) =
1
2

∥∥∥~Dc(Σc(~x;σup))−~D f (Σ f (~x))
∥∥∥2

2
. (3.11)

We refer to c(σup) as the upscaling criterion.

The parameter estimation problem (3.11) satisfies that the number of param-

eters is less than (or equal) to the number of data and it is a well-posed least-
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squares problem, hence no additional regularization is required. Our formulation

is a type of global upscaling procedure within the classification of upscaling tech-

niques proposed in [49, 56] for fluid flow problems in porous media. In a global

upscaling procedure, the entire fine-scale model is simulated for the calculation of

the coarse-scale PDE coefficient(s).

The investigations in [85, 136] propose another least-squares upscaling for-

mulation for fluid flow problems in porous media. In such investigations, all the

upscaled permeabilities are computed at once by minimizing the regularized least-

squares difference between the pressure and the velocity fields generated by the

fine- and coarse-scale pressure equations.

We solve the parameter estimation problem (3.11) numerically. We use the

discretize-then-optimize approach, where in the first stage we discretize the for-

ward problem and in the second stage we solve the finite-dimensional discrete

optimization problem. This approach is typically used in the literature to solve

PDE-constrained optimization problems in EM Geophysics (see [20, 67, 68], and

references within). The main advantages of this approach are that it allows for

an efficient integration of convex optimization algorithms with advanced PDE dis-

cretization techniques and solvers, and that it leads to more consistent solutions.

In order to use this approach, we require both a stable discretization and an ap-

propriate convex optimization method to solve the discrete version of (3.11). In

the examples presented in Sections 3.3 and 3.5 we specify the choices we made

in each case.

Remarks

1. The upscaling definition 1 we propose may look rather involved at first; how-

ever, an analogy can be drawn from the computation of an apparent con-

ductivity (or resistivity) in a Direct Current Resistivity experiment. Although it

would not be used for the purposes of simulation, the apparent conductivity

can be considered as an upscaled quantity. For a given electrode geometry,

the apparent conductivity is the homogeneous halfspace conductivity that

produces an upscaled response to the one observed [169]. Within this up-

scaling context, the apparent conductivity corresponds to the quantity σ∗up,
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Ωup is the homogeneous earth (in this case, Ωup = Ω), ~q are the sources,

~u are the potentials, P projects the fields onto the receiving electrode loca-

tions, and the data ~D f and ~Dc are the measured voltages.

2. One aspect of the upscaling definition 1 is that the upscaling region Ωup can

include its surrounding conductivity structure. That is, the upscaled conduc-

tivity can correspond to an on-site sampling of the electrical conductivity.

We demonstrate that constructing upscaled conductivities in this manner

yields to more accurate approximations to their corresponding induced EM

responses in the examples included in Sections 3.3 and 3.5.

3. The upscaling formulation 3.11 considers the connection between the par-

ticular EM experiment configuration used in the simulation and the type of

EM responses that it produces into the calculation of the upscaled conduc-

tivities. This is accomplished both through the source term and boundary

conditions (~q), and the choice of data of interest (~Dc, ~D f ). For instance,

the data of interest can be chosen among the electric or magnetic fields or

fluxes (i.e., ~E, ~H,~B or ~J), or some combination of them.

4. The upscaling formulation 3.11 is very flexible and provides a user-defined,

application-specific framework to upscale the electrical conductivity of our

Maxwell’s system. The upscaled conductivity can be a real or a complex-

valued scalar, or a real or complex-valued matrix, depending on the com-

plexity of the setting, the purpose of the coarse-scale simulation, and the re-

quired accuracy of the solution. Furthermore, the upscaling criterion (3.11)

need not be based on least-squares. The examples presented in Sections

3.3 and 3.5 are designed to demonstrate these features.

5. Having an application-specific framework is important because it accounts

for the fact that there is no unique upscaled conductivity suitable for all

simulation purposes. Indeed, constructing a different upscaling criterion

by changing the data simulated or sources used to excite the system typi-

cally leads to a different upscaled conductivity. We demonstrate this point

in the examples presented in Section 3.5.1. Additionally, the experiments
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presented in Sections 3.3 and 3.5.2 demonstrate that by changing the fre-

quency of the survey, it is possible to obtain different upscaled conductivity

quantities. This can be explained by the fact that different EM survey config-

urations have different sensitivity functions and sample the earth differently.

Thus, the effect of heterogeneous conductivities in the EM data we measure

often differs from experiment to experiment. For example, this effect can be

observed when considering Direct Current Resistivity surveys, where an

apparent conductivity computed from a pole-dipole survey may be different

than for a dipole-pole survey [144].

In the next sections we discuss the upscaling procedure for 1D and 3D EM

geophysical forward modeling and provide examples that demonstrate its perfor-

mance.

3.3 Numerical Results in 1D

We show the performance of the proposed global upscaling framework on a 1D

example. The purpose of this example is twofold. First, we show how to upscale

a well log electrical conductivity model for both a single frequency and a multi-

frequency airborne loop-loop survey using our framework. Second, we demon-

strate that when coarse-scale conductivity models consider the survey configura-

tion in their construction, they lead to more accurate simulation results.

3.3.1 Simulations Using a Single Frequency

Well logging is the process of recording various physical, chemical, electrical, or

other properties of the rock/fluid mixtures penetrated by drilling a borehole into

the Earth’s crust [144]. Well logs are recorded in nearly all oil and gas wells and

in many mineral and geothermal exploration and development wells. Well log

conductivity measurements2 have high resolution, with samples every few cen-

timeters. However, if these conductivity measurements are to be used for earth-

scale simulations or inversions, coarse-scale conductivity models, defined on the

order of meters, are needed. This context provides the perfect scenario to test

2In reality, well log data considers resistivity measurements. Since electrical conductivity is the
reciprocal value of resistivity, we can obtain conductivity measurements using this relationship.
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our upscaling framework and to offer a potential alternative to upscale well log

conductivity data in practice. Most of the times in practice, log measurements are

simply averaged to obtain effective petrophysical properties, but as we see next,

this may lead to large errors.

We use a fine-scale electrical conductivity model, Σ f , given by an induc-

tion resistivity log from the McMurray/Wabiskaw Oil Sands deposit well log public

database [176]. The McMurray formation is located in Northern Alberta, Canada,

and the log used is shown in Figure 3.2(a). Observe that the interval over which

conductivity samples were taken is 80 m, thus we take this as the simulation

domain, i.e., Ω = [0,80] m. In addition, observe that the electrical conductivity

ranges over four orders of magnitude. The log chosen has 320 measurements

total, with a measurement taken every 25 cm. Hence, we defined a uniform fine

mesh whose thickness is consistent with this scale.

We consider a standard airborne survey configuration ([144]), with a frequency

of 300 Hz and a horizontal coplanar arrangement for the source receiver-pair. The

source-receiver pair is located at a height of 40 m above the earth’s surface and

has a separation of 8.1 m. The source produces a magnetic field, which induces

currents in the earth, producing secondary magnetic fields, which we measure at

the receiver.

We aim to simulate the magnitude of the magnetic field (H-field) for the given

survey configuration using a coarse-scale conductivity model that can be dis-

cretized using a much coarser mesh. From now on, we refer to the coarse-scale

conductivity model as the coarse-mesh conductivity model.

To construct a coarse-mesh conductivity model that varies on the meter scale

using the proposed upscaling framework, we need to choose: (a) a suitable

coarse mesh, (b) the type of upscaled quantity to be constructed, and (c) an

upscaling criterion.

For the coarse mesh, we consider a uniform mesh nested in the fine mesh

with 10 m thickness for each coarse layer. Hence, inside the simulation domain we

have eight coarse layers, where each of them contains a large range of fine-scale

conductivity variation to be upscaled, see Figure 3.2(a). We base the estimate

for the proper cell sizes of the coarse mesh on the skin depth ([169]). Practi-

cal experience on mesh design for EM problems reported in [68] suggests that
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the smallest cell size in the mesh should be a quarter the minimum skin depth.

We consider the median conductivity value (2.3×10−2 S/m) and calculate a skin

depths of 191.5 m for the frequency of 300 Hz. Therefore, using cell sizes of 10

m is sufficient to capture the decaying behavior of the EM fields in this setup.

We assume the upscaled conductivity inside each coarse layer is given by

a real positive scalar. This is a common assumption in practice when the for-

ward modeling code only handles isotropic conductivity models. A more gen-

eral assumption is to consider the upscaled conductivity to be a matrix; how-

ever, this would require the forward modeling code to be capable of incorporating

anisotropy, which is not always the case. We will elaborate further on 3D cases

which incorporate anisotropy in Sections 3.4 and 3.5.

Since we aim to simulate the magnitude of the magnetic field at the receiver lo-

cation, we take this as the EM data to be matched in the upscaling criterion (3.11).

By doing so, we have specified the source term (including boundary conditions)

and the data of interest, which define the necessary elements of the upscaling

criterion for this example.

Once the necessary elements to setup the framework are selected, the con-

struction of the coarse-mesh conductivity model is completed by solving a pa-

rameter estimation problem for every coarse layer separately. The set of eight

upscaled conductivities will form the coarse-mesh conductivity model.

As mentioned in Section 3.2, we use the discretize-then-optimize approach

to solve each of the eight parameter estimation problem (3.11). To compute the

upscaled conductivity on a given coarse layer, we use the EM1DFMfwd code de-

veloped by members of the Geophysical Inversion Facility to forward model the

necessary fine and coarse H-field data. The EM1DFMfwd code implements the

matrix propagation approach proposed in [57]. Since we have a single H-field

datum and we are inverting for a single scalar, our parameter estimation problem

is well-defined for this example. To solve the discrete version of the optimization

problem (3.11), we use the MATLAB function fminbnd [162]. Such function imple-

ments a standard derivative-free minimization method for single-variable functions

on a fixed interval (for more details see [25]). We use a derivative-free optimiza-

tion method as an explicit calculation of the derivatives of the upscaling criterion

are not available in this case. The resulting coarse-mesh conductivity model is
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(a) (b)

Figure 3.2: Induction resistivity log: AA-05-01-096-11w4-0 from the McMur-
ray/Wabiskaw Oil Sands deposit well log database. (a) Discrete fine-
scale conductivity model. Each diamond represents a conductivity
value on a uniform fine mesh of thickness 25 cm. Each straight line rep-
resents a coarse layer of a uniform mesh of thickness 10 m. The setup
considers 320 fine layers and 8 coarse layers. (b) Resulting coarse-
mesh conductivity models after applying four upscaling procedures: 1D
numerical upscaling procedure (red solid line), and arithmetic (green
dot line), geometric (magenta dot dash line), and harmonic (blue dash
line) averages.

plotted with a red solid line in Figure 3.2(b).

Note that calculating an upscaled conductivity following the procedure outlined

above requires using the fine-mesh conductivity model, which corresponds in the

upscaling literature for flow applications to perform a global upscaling procedure

[49, 56]. This is a serious drawback to perform 3D simulations in practice. In
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Section 3.4 we show how to modify our upscaling framework for 3D settings to

avoid this complication.

To compare our method to other 1D average-based upscaling methods, we

construct coarse-mesh conductivity models using volume-arithmetic, -geometric

and -harmonic averaging of the fine-mesh conductivity inside each coarse layer.

The resulting coarse-mesh conductivity models are shown in Figure 3.2(b). From

this figure, we observe that the coarse-mesh conductivity model produced by our

proposed upscaling procedure resembles the coarse-mesh model produced by

volume-arithmetic averaging for most of the coarse cells.

To judge the quality of the various coarse-mesh conductivity models as com-

pared to the fine-mesh conductivity model, we use each of the models to forward

model a H-field datum at the receiver location using the EM1DFMfwd code on

the coarse and fine mesh, respectively. Table 3.1 shows the magnitude of the re-

sulting H-field datum for each of the conductivity models and their corresponding

relative errors. The relative error is computed as the ratio of the absolute value of

the difference in magnitude of the fine- and coarse-mesh datum to the absolute

value of the fine-mesh datum in magnitude.

The results in Table 3.1 demonstrate that the proposed upscaling formulation

constructed an optimal coarse-mesh conductivity model, in the sense of equation

(3.11), for the airborne survey configuration given and the surrounding conduc-

tivity structures, as it yields the smallest relative error in the approximation of the

H-field datum of interest. That is, our method gives and optimal on-site prediction

of the upscaled conductivity, as defined in equation (3.11), that is fundamentally

different from the one given by the other average-based homogenization methods

presented. Note that by upscaling the conductivity model we can reduce the mesh

size from using 320 cells to use only 8 cells without sacrificing much accuracy.

In the next section, we demonstrate the effect of considering multiple frequen-

cies in the construction of the coarse-mesh conductivity model.

3.3.2 Simulations Using Multiple Frequencies

In this case, we want to construct coarse-mesh conductivity models to simulate

H-field measurements at five frequencies logarithmically equispaced in the range
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Table 3.1: Magnitude of the magnetic field (H-field) datum and relative errors
resulting from forward modeling using the fine-mesh and four coarse-
mesh conductivity models. Note: %∗ denotes percentage of primary
field.

Conductivity
model

Magnitude of
H-field (%∗)

Relative error
(percent)

No. of layers
in mesh

Fine 0.0549 —– 320
Upscaled 0.0536 2.37 8
Arithmetic 0.0468 14.74 8
Geometric 0.0102 81.42 8
Harmonic 0.0043 92.22 8

from 10 to 30,000 Hz (i.e., we use the frequencies of 10, 74, 547, 4,053 and

30,000 Hz). To do so, we use the same setup for the fine and coarse meshes,

and the same airborne-style survey configuration as described in the previous

section.

Considering the median conductivity value (2.3×10−2 S/m), the skin depths

for the frequencies of 10, 74, 547, 4,053 and 30,000 Hz are roughly 1,049, 386,

142, 52 and 19 m, respectively. Thus, using cells sizes of 10 m continues to be

sufficient to capture the behavior of the magnetic fields in this setup for the first

four frequencies. We challenge the upscaling method with a larger cell size for

the last frequency.

We applied the proposed upscaling procedure by optimizing a discrete ver-

sion of (3.11) for each of the eight coarse layers separately, and each individ-

ual frequency, as described in the previous section. The resulting coarse-mesh

conductivity models are shown in Figure 3.3(a). Note that for each frequency,

we obtained a different coarse conductivity model. This follows from the fact

that the upscaled conductivity model is tailored to match the magnetic field de-

termined by the survey parameters. These parameters influence the sensitivity

of the magnetic field to the conductivity structure. Hence, varying any of these

parameters alters how the conductivity structure is sampled. As a result, the

upscaled conductivity model may take on different values depending on the ex-

perimental setting, demonstrating that the proposed upscaling approach provides

53



a user-defined, application-specific framework. These results also imply that the

upscaled conductivity changes as a function of frequency, demonstrating that fre-

quency dependence on the coarse-scale considered may arise as a result of local,

fine-scale heterogeneity.

To conclude this example, we construct coarse-mesh conductivity models us-

ing volume-arithmetic, -geometric and -harmonic averaging of the fine-mesh con-

ductivity inside each coarse layer. For each of these coarse conductivity models,

H-field data were then simulated on the coarse mesh using the given airborne

survey configuration using the EM1DFMfwd code. We compare the resulting H-

field data with those computed using the fine-mesh conductivity model for each

frequency in Figure 3.3(b). The H-field data shown are given in percentage of the

magnitude of the primary field. Table 3.2 shows the relative errors obtained for

each case. The relative error is computed as the ratio of the Euclidean norm of

the difference in magnitude of the fine- and coarse-mesh data to the Euclidean

norm of the fine-mesh data in magnitude. From this table, we observe that, once

again, the proposed upscaling approach leads to better approximations to the de-

sired H-field data than using the coarse models constructed by average-based

upscaling procedures for all the frequencies used.

Table 3.2: Relative errors for four coarse-mesh conductivity models and for
five frequencies.

Relative errors for coarse-mesh conductivity models

Frequency
(Hz)

Upscaled
(percent)

Arithmetic
(percent)

Geometric
(percent)

Harmonic
(percent)

10 0.64 9.93 83.46 93.34
74 2.78 12.76 83.36 93.23

547 8.21 15.55 80.85 92.05
4,053 11.76 15.80 66.83 85.09

30,000 0.84 9.59 32.55 55.30

Performing 1D upscaling of well log conductivity measurements, as shown in

this example, provides a practical technique to construct accurate coarse-scale

conductivity models to be used on large-scale 3D simulations or inversions. Our

upscaling procedure resulted in more accurate approximations to the EM responses
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(a) (b)

Figure 3.3: (a) Coarse-mesh electrical conductivity models obtained by us-
ing the proposed upscaling method for different frequencies. The setup
considers 320 fine layers and 8 coarse layers. (b) Magnitude of mag-
netic field for each frequency, in % of primary field (%∗), resulting from
forward modeling using the fine-mesh electrical conductivity model
(black solid line), the different coarse-mesh conductivity models dis-
played in (a) (blue dash line), and the coarse-mesh models produced
by using arithmetic (red plus dot line), geometric (gray circle dot line),
and harmonic averages (green square dot line).

of interest at the cost of more computational performance, as compared to tradi-

tional average-based upscaling procedures. However, for 1D problems, using our

(global) upscaling framework may be considered to be more appealing as 1D sim-

ulations present minimal computational bottlenecks.

The example presented illustrates the general principle behind our upscaling

framework by showing its performance in 1D well log data. However, applying
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the current upscaling formulation (3.11) to a general 3D setting is not practical. It

requires simulating the data to be matched (3.10) on the entire fine mesh, which

can be computationally demanding. In the next section, we address the challenge

of creating a practical upscaling approach for a 3D setting.

3.4 A Local Upscaling Framework for 3D Simulations

Applying the global upscaling framework introduced in Section 3.2 as shown in

Section 3.3 is impractical for 3D simulations. It requires simulations using the

entire fine-mesh conductivity model. In this section, we adapt the proposed up-

scaling framework for practical application to 3D settings.

To create a pragmatic upscaling method, we combine our least-squares for-

mulation with the methodology proposed by Durlofsky in [48, 49] for the field of

simulating flow in heterogeneous porous media to EM modeling. That is, using

some specialized boundary conditions, we apply the upscaling procedure locally

instead of globally. In our case, this means that for each coarse-mesh cell, we

locally solve a parameter estimation problem to construct an upscaled conductiv-

ity. Doing so cell by cell, potentially in parallel, yields the desired coarse-mesh

conductivity model. This approach enables us to solve several smaller problems

rather than a single large one, making this procedure suitable for tackling large-

scale EM problems.

We now discuss, in detail, how to locally apply the upscaling framework. We

assume that a given fine-scale conductivity model is discretized at the cell-centers

of a 3D fine staggered mesh, Mh. The fine mesh sufficiently captures the relevant

conductivity variations in the model. We denote the discrete fine-mesh conduc-

tivity model as ΣΣΣ
h. We aim to construct a coarse-mesh conductivity model, ΣΣΣ

H ,

that is also discretized at the cell-centers of a user-chosen 3D coarse staggered

mesh, MH . Typically, MH is much coarser than Mh. Throughout this section,

the superscripts h and H denote dependency on the fine and coarse meshes, re-

spectively. The fine and coarse meshes are a union of n fine cells and N coarse

cells, respectively. That is, Mh = ∪n
i=1Ωh

i and MH = ∪N
k=1ΩH

k , where N� n. For

simplicity, we also assume that the meshes are nested, that is MH ⊂Mh; how-

ever, the argument presented here can be extended to include more general mesh
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Figure 3.4: Local upscaling procedure for 3D settings. Left: fine-mesh elec-
trical conductivity model and example of nested meshes setup. Right:
extended domain (ΩH,ext

k ) for a given coarse-mesh cell (ΩH
k ) and re-

sulting anisotropic upscaled electrical conductivity (ΣΣΣH
k ).

setups. A sketch of the mesh setup described is shown in Figure 3.4.

Since the goal is to apply the upscaling procedure on each coarse-mesh cell

independently and locally, we need to identify: (a) the upscaling region, (b) the

type of upscaling quantity to be constructed, and (c) the data to be matched in

a local version of the parameter estimation problem (3.11). We discuss each of

these choices for a single coarse cell below.

Let us consider a single coarse-mesh cell, ΩH
k . The upscaling region cor-

responds to ΩH
k , which is composed of the fine cells and the fine conductivity

structure it encloses. To construct an upscaled conductivity in ΩH
k that takes into

account the surrounding conductivity structure (i.e., to preserve the on-site sam-

pling feature of the fine-scale conductivity), we embedded ΩH
k in an extended

domain, Ω
H,ext
k . This extended domain Ω

H,ext
k includes ΩH

k and a neighborhood

of fine cells (and their corresponding conductivity values) around ΩH
k . This is illus-

trated in Figure 3.4. The size of the extended domain is user-chosen. We explore

the effect of different extensions in the examples presented in Section 3.5.

To better represent most of the existing heterogeneity inside ΩH
k , we assume

the upscaled conductivity to be constructed for this cell to be a full SPD matrix

(i.e., fully anisotropic). Full-tensor effects generally arise at the coarse scale, even
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though the fine-scale conductivity is isotropic [35]. We denote the upscaled con-

ductivity in ΩH
k as ΣΣΣ

H
k . That is, ΣΣΣ

H
k is a real SPD matrix that can be parametrized

using six scalars, ~σk = (σ k
1 ,σ

k
2 ,σ

k
3 ,σ

k
4 ,σ

k
5 ,σ

k
6 ) ∈ R6, as follows:

ΣΣΣ
H
k (~σk) =

σ k
1 σ k

4 σ k
5

σ k
4 σ k

2 σ k
6

σ k
5 σ k

6 σ k
3

 . (3.12)

According to Definition 1 given in Section 3.2, in order to construct ΣΣΣ
H
k by

solving a parameter estimation problem, we require some fine- and coarse-scale

data to be matched in the upscaling criterion (3.11). To generate such data, the

Maxwell system should be excited by either a source or some boundary condi-

tions, see (3.10).

Since we apply the upscaling procedure locally, we assume that sources do

not reside inside Ω
H,ext
k . Therefore, rather than choosing some local source(s)

to induce EM responses, we assume that the system is excited by some non-

homogeneous boundary conditions. Such boundary conditions should reflect the

behavior of the EM responses of interest across the boundary of ΩH
k , which is

denoted as ∂ΩH
k .

In principle, the correct boundary conditions can be obtained numerically by

solving the fine-mesh problem; however, they are impractical to compute. One

remedy for this problem, suggested in [49] (for fluid flow problems), is to use a

set of linearly independent boundary conditions. Note that using linear boundary

conditions in the context of the EM problem can be appropriate to model the action

of distant sources on ∂ΩH
k as such action can be perceived as a ‘plane wave’.

Now, to generate the data, we first generate fine- and coarse-scale EM re-

sponses by locally exciting the Maxwell system using a set of twelve linearly in-

dependent, non-homogeneous Dirichlet boundary conditions (one per edge of

Ω
H,ext
k ). This yields the following set of twelve local problems:

∇× ~Ek
l + ıω~Bk

l = ~0, in Ω
H,ext
k ; (3.13)

∇× (µ−1
0

~Bk
l )−Σ

k~Ek
l = ~0, in Ω

H,ext
k ; (3.14)

~Ek
l (~x)×~n = ~Φl(~x)×~n, ∀~x ∈ ∂Ω

H,ext
k , (3.15)
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with l = 1, . . . ,12. Here, ~x = (x1,x2,x3) ∈ R3, ∂Ω
H,ext
k denotes the boundary of

Ω
H,ext
k , and ~Φl is a vector function that denotes the lth Dirichlet boundary condition

as defined in Table 3.3. From Figure 3.5, we observe that each ~Φl takes the value

1 along the tangential direction to the lth edge of ΩH
k and decays linearly to 0 in

the normal directions to the same edge.

Table 3.3: Analytical expressions for the set of linearly independent bound-
ary conditions used to locally generate data in the cuboid cell Ω

H,ext
k

(one per edge). Note that~x = (x1,x2,x3) ∈ R3.

~Φ1(~x) = [x2x3,0,0]
> ~Φ5(~x) = [0,x1x3,0]

> ~Φ9(~x) = [0,0,x1x2]
>

~Φ2(~x) = [x3(1− x2),0,0]
> ~Φ6(~x) = [0,x3(1− x1),0]

> ~Φ10(~x) = [0,0,x2(1− x1)]
>

~Φ3(~x) = [x2(1− x3),0,0]
> ~Φ7(~x) = [0,x1(1− x3),0]

> ~Φ11(~x) = [0,0,x1(1− x2)]
>

~Φ4(~x) = [(1− x2)(1− x3),0,0]
> ~Φ8(~x) = [0,(1− x3)(1− x1),0]

> ~Φ12(~x) = [0,0,(1− x2)(1− x1)]
>

The set of boundary conditions used ({~Φl}12
l=1) form the natural basis func-

tions for linear edge degrees of freedom of a hexahedral finite element [104, 131];

they can be used to model general linearly varying EM responses. That is, this

set of boundary conditions allows us to generate a set of linearly independent (lo-

cal) data, which can be used to formulate a full-rank, overdetermined parameter

estimation problem. Similar choices were proposed in [49, 51] for the problem of

simulating fluid flow in porous media, where the PDE model is the Poisson equa-

tion. Different studies for flow in porous media have shown that different choices

of boundary conditions lead to different upscaled quantities [48, 49, 56, 175].

To compute the fine-scale EM responses for the kth local problem, we use

the fine-mesh conductivity contained in Ω
H,ext
k , denoted as ΣΣΣ

h
k . To compute the

coarse-scale EM responses for the kth local problem, we assign ΣΣΣ
H
k as the con-

ductivity value of every fine-mesh cell inside Ω
H,ext
k . Using the corresponding

conductivity values of every fine cell inside Ω
H,ext
k , we can now forward model

each of the twelve problems (3.13)-(3.15) to obtain a set of fine and coarse EM

responses, respectively. To obtain each set, we discretize each of these problems

using the MFV method as outlined in Section 2.4. Other traditional edge-based

discretization methods, such as an edge-based FE method [104, 131], can be

used for this part as well as long as they provide a consistent, conservative and

stable discretization for our Maxwell system. After the discretization, we obtain a
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set of twelve discrete electric fields, Ek = {ek
1 , . . . ,e

k
12}, and a set of twelve dis-

crete magnetic fluxes, Bk = {bk
1 , . . . ,b

k
12}. Note that each ek

l is a vector whose

length equals the number of fine-mesh edges in Ω
H,ext
k , and that each bk

l is a

vector whose length equals the number of fine-mesh faces in Ω
H,ext
k .

Figure 3.5: Non-zero component of each vectorial basis function ~Φl (defined
in Table 3.3) plotted on a unitary cube.

Next, we need to choose which fine and coarse data are to be matched and

how the local version of the upscaling criterion (3.11) will be formulated. We

note that the heterogeneous fine-scale conductivity structure inside ΩH
k generates

non-smooth responses on ∂ΩH
k . Since the role of the upscaled conductivity is to

emulate the effect of the fine-scale conductivity inside ΩH
k on the EM responses

at ∂ΩH
k , for us it makes sense to consider the data to be either the integral of the

electric field over the twelve edges of ∂ΩH
k , or the integral of the magnetic flux
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over the six faces of ∂ΩH
k . We refer to these data as the total electric fields or

total magnetic fluxes, respectively.

To be more specific, we define the total electric field data as

dlm =
∫
edgem

~Ek
l ·~τedgem

d`; l = 1, . . . ,12, m = 1, . . . ,12, (3.16a)

and the total magnetic flux data as

dl j =
∫
face j

~Bk
l ·~nface j dS; l = 1, . . . ,12, j = 1, . . . ,6, (3.16b)

where edgem represents the mth edge of ∂ΩH
k , ~τedgem

denotes the unit tangent

vector to edgem, face j represents the jth face of ∂ΩH
k , and ~nface j represents the

unit outward-pointing normal vector to face j. The data can be calculated by nu-

merically integrating (3.16a) and (3.16b) using the set of discrete fields Ek or

fluxes Bk, respectively. Remember that Ek and Bk are discretized on the fine-

mesh edges and fine-mesh faces inside Ω
H,ext
k , respectively.

As before, the choice of the data to be matched during the local upscaling pro-

cedure depends on the context of a given simulation and it significantly influences

the construction of the upscaled conductivity. We will demonstrate both of this

aspects in the examples presented in Section 3.5. These phenomena have been

also observed on upscaling procedures for fluid flow problems in porous media

[47, 49, 56, 60, 85, 136, 175].

Finally, we formulate the local version of the discrete parameter estimation

problem (3.11) to be solved in order to construct ΣΣΣH
k as follows:

~σopt
k = arg min

~σk∈R6
c(~σk) =

1
2

12

∑
l=1

∥∥∥dl
(
ΣΣΣ

H
k (~σk)

)
−dl

(
ΣΣΣ

h
k
)∥∥∥2

2

subject to ΣΣΣ
H
k (~σk) is SPD.

(3.17)

Here, dl
(
ΣΣΣ

h
k) denotes the 12×1 vector whose entries are the lth total electric field

data (3.16a) or the 6×1 vector whose entries are the lth total magnetic flux data

(3.16b) computed for the fine-mesh conductivity in Ω
H,ext
k (that is, ΣΣΣ

h
k), respec-

tively. Analogously, dl(ΣΣΣ
H
k (~σk)) denotes the vector whose entries are the lth total
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electric field data (3.16a) or total magnetic flux data (3.16b) computed for the up-

scaled conductivity ΣΣΣ
H
k (~σk), given by (3.12), extended to Ω

H,ext
k , respectively. That

is, the anisotropic upscaled conductivity for the cell ΩH
k is given by ΣΣΣH

k =ΣΣΣH
k (~σ

opt
k ),

as parametrized in (3.12). We refer to c(~σk) as the local upscaling criterion. In

this case, our formulation is a type of extended upscaling procedure within the

classification of upscaling techniques proposed in [49, 56].

Once again, the parameter estimation problem (3.17) satisfies that the number

of parameters is less than (or equal) to the number of data and it is a well-posed

least-squares problem, hence no additional regularization is required.

In order to solve the discrete optimization problem (3.17) using a gradient

based optimization method (see [107, 117, 137] for details), we first compute the

gradient and an approximation to the Hessian of the local upscaling criterion c as

discussed in [68]. The gradient of the local upscaling criterion (3.17) is given by

∇c(~σk) =
12

∑
l=1

Real
(

J∗l (~σk)
[
dl
(
ΣΣΣ

H
k (~σk)

)
−dl

(
ΣΣΣ

h
k
)])

, (3.18)

where Jl represents the lth sensitivity matrix defined as the Jacobian resulting

after deriving the lth residual, dl
(
ΣΣΣ

H
k (~σk)

)
− dl

(
ΣΣΣ

h
k
)
, with respect to ~σk, and ∗

denotes the conjugate transpose operator. Since each sensitivity matrix has di-

mensions 12 × number of data (e.g. 12 × 6 or 12 × 12), we can compute them

explicitly.

The Gauss-Newton approximation to the Hessian of the local upscaling crite-

rion (3.17) is given by

Hc(~σk)≈
12

∑
l=1

Real
(
J∗l (~σk)Jl(~σk)

)
. (3.19)

where Jl is the lth sensitivity matrix defined as before.

The pseudo-code in Algorithm 1 summarizes the steps to compute an up-

scaled conductivity ΣΣΣ
H
k in the coarse cell ΩH

k when a discrete fine-mesh conduc-

tivity model ΣΣΣh is given. Observe that all the calculations are done in Ω
H,ext
k , where

each optimization problem is small and can be solved quickly. Furthermore, since

the problem defined for each coarse cell is independent, the upscaling procedure
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Algorithm 1 Computation of the upscaled conductivity ΣΣΣ
H
k in the coarse cell ΩH

k :

1: Choose the size of the extended local domain Ω
H,ext
k (Figure 3.4) where the

coarse cell, ΩH
k , is embedded.

2: Compute sets of discrete fine and coarse EM responses using the fine-mesh
conductivity in Ω

H,ext
k . To do so, forward model the twelve local Maxwell’s

problems (3.13)-(3.15) defined on Ω
H,ext
k using the MFV method as outlined in

Section 2.4. This yields the sets of discrete electric fields (Ek = {ek
1 , . . . ,e

k
12})

and magnetic fluxes (Bk = {bk
1 , . . . ,b

k
12}).

3: Choose the type of data to be matched in the local upscaling criterion (3.17)
according to the context of the given simulation. That is, chose either the set
of total electric fields as defined in (3.16a), or the set of total magnetic fluxes
as defined in (3.16b). Compute the fine and coarse data to be matched using
the discrete fields and fluxes obtained in the previous step.

4: Optimize the constrained parameter estimation problem (3.17) to obtain the
desired anisotropic upscaled conductivity ΣΣΣ

H
k . Depending on the choice of the

optimization method to solve this problem, this step may require the computa-
tion of the gradient (3.18), and/or the Hessian approximation (3.19). Note that
solving such an optimization problem involves performing steps 2 and 3 (for
the upscaled conductivity model ΣΣΣ

H
k ) to compute dl

(
ΣΣΣ

H
k
)

at each iteration.

can be done in parallel.

Once all the upscaled conductivities are computed, we assemble the coarse-

mesh conductivity model. Using this coarse conductivity model, the original prob-

lem can then be discretized and solved on the coarse mesh using a traditional

discretization approach, such as the MFV method (Section 2.4).

Remarks

1. Observe that the upscaled conductivity constructed using formulation (3.17)

can result in a SPD diagonal matrix or a full matrix depending on the prob-

lem. That is, the formulation leads to the appropriate form of the best up-

scaled conductivity (in the sense of equation (3.17)) for the problem at hand.

This feature of the proposed upscaling formulation can be advantageous as

for some averaged-based upscaling methods proposed for flow in porous

media problems this is not the case. For example, two-point flux approxi-

mation upscaling methods assume that the upscaled quantity is a diagonal

63



matrix. This assumption may not be sufficient to obtain an accurate so-

lution in the situations where a full-tensor is more appropriate. For those

cases, full-tensor effect or full anisotropy of the upscaled permeability can

be achieved by post-processing the diagonal tensor using fine-mesh infor-

mation where care must be taken to preserve the symmetry of the matrix

[35, 36, 49, 56].

2. The proposed upscaling formulation (3.17) can be extended to construct

complex anisotropic conductivities as well. One way to do so is by adapting

the parametrization of the upscaled conductivity given by (3.12) accordingly

and solving the resulting optimization formulation in a similar manner as

described before. That is, rather than using six scalars to parametrize ΣΣΣ
H
k ,

we use twelve scalars where six of them are used to define the real part

of ΣΣΣ
H
k and the other six scalars define the imaginary part of ΣΣΣ

H
k . Using

such parametrization leads to a real optimization problem with a similar op-

timization formulation as before where ~σk ∈ R12 and Real(ΣΣΣH
k (~σk)) should

be SPD. The computation of the discrete data to be matched in the upscal-

ing criterion can be done in a similar manner as described before; however,

the interested reader can find more detailed information on how to compute

EM fields when the electrical conductivity is a complex quantity in [68].

3. The data to be matched by the local upscaling criterion (3.17) can also be

chosen among the total magnetic fields, or the total electric fluxes on ∂ΩH
k .

The total magnetic field can be computed as the integral of the magnetic

field, ~H, over the twelve edges of ∂ΩH
k (i.e., replace ~E with ~H in (3.16a)).

The total electric flux can be computed as the integral of the electrical cur-

rent density, ~J, over the six faces of ∂ΩH
k (i.e., replace ~B with ~J in (3.16b)).

The discretization of the magnetic field and the electrical current density can

be done using the ~H-~J formulation of the quasi-static Maxwell’s equations

and the MFV in a similar way as described in Section 2.4 for the ~E-~B for-

mulation. In Section 3.5.1, we show two examples that use total magnetic

and electric fluxes to compute upscaled electrical conductivities on a single

coarse cell.
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3.5 Numerical Results in 3D

In this section, we demonstrate the performance of the local upscaling framework

proposed in Section 3.4 by simulating EM responses for two 3D settings. The

first setting illustrates the use of the framework to upscale fine-scale conductiv-

ity structures on a single coarse-mesh cell, and the impact that the choice of the

upscaling criterion has on the resulting upscaled quantity. The second setting

demonstrates how the framework can be combined with an adaptive mesh refine-

ment technique to construct anisotropic, coarse-mesh conductivity models for a

large-loop EM survey of a mineral deposit on a geologically-rich background.

3.5.1 Simulations on a Single Coarse-mesh Cell

We demonstrate the upscaling procedure and the impact of the choice in upscal-

ing criterion on a single coarse-mesh cell. To do so, we use two electrical conduc-

tivity models: one of an isolated conductive block on a resistive background, and

one of a conductive sheet on a resistive background. These conductivity models

are visualized in Figure 3.6 (a) and (b), respectively.

In both examples, the local upscaling domain is given by a cuboid coarse-

mesh cell with dimensions (100 m)3. We denote the local upscaling domain as

ΩH
k . We extend the local domain a further 50 m along each direction such that ΩH

k

is positioned in the center (Figure 3.6). This conforms the local extended domain,

which we denote as Ω
H,ext
k . Note that the local extended domain has dimensions

(200 m)3.

We discretize the local extended domain using uniform fine-mesh cells, which

are (12.5 m)3. Hence, the total number of fine cells in Ω
H,ext
k is 163, and in ΩH

k

is 83. As discussed in Section 3.4, we assume the fine-scale conductivity model

to be isotropic and the upscaled conductivity to be anisotropic in the coarse cell

we aim to upscale. The magnetic permeability takes its free space value, namely

µ = 4π×10−7 Vs/Am.

To construct an anisotropic upscaled conductivity using the upscaling criterion

(3.17), we must first select the data to be matched on it. For the following two

examples, we consider two types of data: the total magnetic flux on each of the

six faces of ΩH
k , and the total current density flux on each of the six faces of ΩH

k .
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Figure 3.6: Cross sections of the fine scale conductivity model for (a) the
isolated block and (b) the sheet. Conductive bodies are displayed in
red. The resistive background is displayed in blue. The coarse-mesh
cell, ΩH

k , which we aim to upscale is outlined in white.

The total flux (either current density or magnetic field) over each face is defined

as the surface integral of the flux through that face (see (3.16b)). Throughout this

section, we say that we use the b−criterion when the data to be matched in the

upscaling criterion (3.17) are total magnetic flux. Similarly, we say that we use the

j−criterion when the data to be matched in the upscaling criterion (3.17) are total

current density flux.

Once we selected the necessary elements to setup the local upscaling frame-

work proposed in Section 3.4, let us see how the framework performs for the two

conductivity models we are interested in.

Conductive Block in a Resistive Background

First, we study the case of an isolated conductive block in a resistive background.

To setup this example, we assume that at the center of ΩH
k there is a (50 m)3

conductive block, as shown in Figure 3.6(a). The surrounding material is resistive

(10−4 S/m). We use a frequency of 1 Hz and consider three different electrical

conductivities of the block: 10−2, 10−1 and 1 S/m.

Following Algorithm 1, next we need to solve the optimization problem (3.17)
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to construct anisotropic upscaled conductivities, as defined in equation (3.12), for

the b−criterion and j−criterion, and each of the three conductivity values of the

block, respectively. The initial conductivity model, ~σ0, is given by a 3×3 diagonal

matrix with all its main diagonal entries being equal to the geometric mean of the

fine-mesh conductivity in ΩH
k . We choose the geometric mean as it is often used

to approximate the homogenized permeability for fluid flow problems with random

heterogeneous media with reasonable accuracy [163].

In order to solve the constrained optimization problem (3.17), we tested both

a projected steepest descent and a projected Gauss-Newton method (see [68,

137]). Both methods were implemented with a backtracking line search. The

projection in this case consisted of computing the eigenvalues of the 3×3 matrix

defined by (3.12) after ~σk was computed at each iteration to ensure the positive

definiteness of such matrix. When necessary, the nonpositive eigenvalues of such

matrix were modified to be positive. For both optimization methods, the iteration

was halted when

‖~σk−~σk+1‖2 < 10−8 or ‖∇c(~σk)‖2 < 10−8‖∇c(~σ0)‖2. (3.20)

Although the use of the projected Gauss-Newton method lacks theory for conver-

gence in this case, in practice we observe that this method reaches results similar

to those obtained with the projected steepest descent method but in a much faster

way. For this reason, we decided to use the projected Gauss-Newton method to

carry out the simulations.

For each of the three conductivity values considered, the resulting upscaled

conductivities are diagonal matrices with all diagonal entries being equal. This

result is expected due to the symmetry of the fine-mesh conductivity model. When

using the b−criterion, the stopping criterion (3.20) was fulfilled for each of the

three conductivity values of the block considered after 18, 4 and 26 iterations,

respectively. When using the j−criterion, the stopping criterion (3.20) was fulfilled

for each of the three conductivity values of the block considered after 17, 14 and

20 iterations, respectively. The values of the main diagonal entries of each of

upscaled conductivity are shown in Figure 3.7.

Clearly, there is a large discrepancy between the upscaled conductivities con-
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Figure 3.7: Upscaled conductivity results found using the b and j criteria for
the conductive block model. Note that the upscaled conductivity in this
case can be defined by a scalar, as the matrix recovered was diagonal,
with all diagonal elements being equal.

structed using the b− and j− upscaling criteria for each of the three block con-

ductivities. Physically, this discrepancy can be reconciled by recognizing that the

current density and magnetic flux density reflect different physical processes. Cur-

rent is the flow of electrical charges through a material. In the case of a conductive

block in a resistive background, the current must be driven through the resistive

background irrespective of the conductivity of the block. Thus, the resistive back-

ground dominates the upscaled conductivity constructed using the j-criterion. On

the other hand, magnetic flux is produced as a result of induced currents. Cur-

rents can be induced in the conductive block regardless of the conductivity of the

background. Therefore, we see that the conductivity of the block dominates the

upscaled conductivity recovered using the b-criterion.

Conductive Sheet in a Resistive Background

Next, we examine the case of a conductive sheet in a resistive background posi-

tioned at the center of ΩH
k , as shown in Figure 3.6(b). The sheet has dimensions

150 m × 150 m × 50 m. It is stopped short of the boundary of the coarse cell
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in order to avoid applying the boundary conditions directly on the sheet. For this

simulation, we also use a frequency of 1 Hz.

Now that the model is no longer identical in each direction, we expect to con-

struct an anisotropic upscaled conductivity, as defined in (3.12), where σ1 = σ2

which is distinct from σ3.

Typically, one would draw the analogy between layered conductors and a sim-

ple circuit model. In this case, we would expect that the components of the up-

scaled conductivity matrix, σ1 and σ2 would conform closely the approximation

of conductors in parallel, while σ3 would be similar to the approximation of con-

ductors in series. Note however, that this approximation accounts for only one

physical behavior: galvanic current flow, to which the j-criterion is sensitive. It

does not account for any inductive currents, to which the b-criterion is sensitive.

To investigate, we again assign the electrical conductivity of the background

to be 10−4 S/m and examine three conductivities for the sheet: 10−2, 10−1 and

1 S/m. Using both the b− and j− criteria, we perform the upscaling process as

indicated in Algorithm 1, and recover the upscaled conductivities shown in Figure

3.8.

To obtain the results described above we use the stopping criterion (3.20) and

the same initial conductivity model (~σ0) as before. We also run the simulations us-

ing both projected steepest descent and projected Gauss-Newton methods. Once

again, we notice that the results obtained with projected Gauss-Newton are simi-

lar to those obtained with projected steepest descent, but the convergence when

using projected Gauss-Newton is faster. When using the b−criterion, the stop-

ping criterion (3.20) was fulfilled for each of the three conductivity values of the

sheet considered after 24, 54 and 142 iterations, respectively. When using the

j−criterion, the stopping criterion (3.20) was fulfilled for each of the three conduc-

tivity values of the sheet considered after 29, 67 and 181 iterations, respectively.

As expected, the resulting upscaled conductivity is a diagonal SPD matrix

with two unique entries: σ1 = σ2 and σ3 (see (3.12)). Figure 3.8(a) shows the

σ1 = σ2 entries of the matrix, and Figure 3.8(b) shows the σ3 entry. The values

constructed using the j-criterion conform well to the parallel and series circuit

approximations for σ1 = σ2 and σ3, respectively. For each scenario the value for

σ3 constructed using the j-criterion is nearly identical to the resistive background,
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(a)

(b)

Figure 3.8: Upscaled conductivity results found using the j and b criteria for
the conductive sheet. Since the upscaled conductivity is a diagonal
3×3 SPD matrix, it can be described by two positive scalars: σ1 = σ2
and σ3. σ1 = σ2 is shown in plot (a), and σ3 is shown in plot (b).

as is to be expected using a series circuit approximation. Similar to the block

model results, this is as a consequence of having to drive the current through the

resistive background in the z direction, regardless of the conductivity of the sheet.

On the other hand, for the entries σ1 and σ2, the conductivity of the sheet has a
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large impact on the value we construct. In this case, the conductive sheet forms a

connected pathway from one side of the cell we aim to upscale to the other along

both horizontal directions. As a result, current is channeled along this pathway,

causing the conductivity of the sheet to have a large impact on the σ1 and σ2

entries of the upscaled conductivity, as shown in Figure 3.8.

Using the b-criterion, we see that the conductivity of the sheet has a significant

impact on both the σ1 =σ2 (Figure 3.8(a)) entries and the σ3 entry (Figure 3.8(b)),

contrary to the parallel-series circuit approximations. This is again because the

magnetic flux density is sensitive to inductive currents. Since the sheet has a finite

thickness, these currents can be induced in any direction, and therefore contribute

to the upscaled values σ1, σ2 and σ3 we construct using the b-criterion.

Lessons Learned

As discussed in the block and sheet examples, the current density and magnetic

flux density each sample the conductivity structure differently, and are therefore

sensitive to different features of the fine-mesh conductivity model. As a result, the

constructed upscaled conductivities using either upscaling criteria may vary over

orders of magnitude. Therefore, for a given fine-scale conductivity structure, there

is not a unique upscaled conductivity which completely describes it.

3.5.2 Simulations Using the Synthetic Lalor Model

In this section, we demonstrate how to use the upscaling framework introduced

in Section 3.4 in combination with an adaptive mesh refinement technique to con-

struct anisotropic, coarse-mesh electrical conductivity models from a given fine-

scale conductivity model of a mineral deposit. We use these coarse-mesh con-

ductivity models to predict magnetic field data for a large-loop EM survey. Since

no analytical solutions are available for this example, we compare our results with

those obtained on a fine mesh. We also compare our results with those obtained

from applying simple average-based upscaling approaches.

We construct a synthetic electrical conductivity model based on the inversion

results of EM field measurements over the Canadian Lalor mine obtained by [177].

The Lalor mine targets a large zinc-gold-copper deposit that has been the subject
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Figure 3.9: Subsurface part of the synthetic electrical conductivity Lalor
model and large-loop EM survey setup. The model is discretized on
a fine OcTree mesh with 546,295 cells. The conductivity varies over
five orders of magnitude throughout the whole model.

of several EM surveys. The synthetic conductivity model, shown in Figure 3.9,

has an area with non-flat topography and extends from 0 to 6.5 km along the x, y

and z directions, respectively. The model comprises air and the subsurface that

is composed of 35 geologic units. The unit with the largest conductivity value

represents the mineral deposit, which is composed of three bodies. We assume

a conductivity of 10−8 S/m in the air. The subsurface conductivity values range

from 1.96× 10−5 to 0.28 S/m. We assume that the magnetic permeability takes

its free space value, namely µ = 4π×10−7 Vs/Am.

We consider a frequency-domain, large-loop EM survey, where we use a rect-

angular transmitter loop with dimensions 2 km × 3 km, operating at the frequen-

cies of 1 and 20 Hz. The transmitter is placed on the earth’s surface and it is
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centered above the largest body of the mineral deposit, as shown in Figure 3.9.

Inside the loop, we place a uniform grid of receivers that measure the three com-

ponents of the magnetic flux (~B = [Bx,By,Bz]>). The receivers are separated by

50 m along the x and y directions, respectively. To reduce the effect of the im-

posed natural boundary conditions (2.5), we embed the survey area into a much

larger computational domain, which replaces the true decay of the fields towards

infinity (Figure 3.9).

We discretize the synthetic Lalor electrical conductivity model using a stag-

gered fine OcTree mesh, which allows for an adaptive local refinement of the mesh

where the electrical conductivity and the EM responses vary drastically. We base

the estimate for the proper cell sizes of the mesh on the skin depth [169]. Practi-

cal experience on mesh design for EM problems reported in [68] suggests that the

smallest cell size in the mesh should be a quarter the minimum skin depth. We

consider the largest background conductivity value (4.5×10−3 S/m) and calculate

skin depths of 7,498 and 1,677 m for the frequencies of 1 and 20 Hz, respectively.

Hence, we use cells of size (50 m)3 within the survey area and at the interfaces

of the model where the conductivity varies, the rest of the domain is padded with

gradually increasing OcTree cells. The fine OcTree mesh is illustrated in Figure

3.9. This mesh has 546,295 cells.

We aim to estimate the secondary magnetic flux induced by the ground in the

survey area. For this purpose, we simulate two sets of the magnetic flux data

for each frequency. The first data set considers the conductivity model including

all geologic units, and the second data set considers the conductivity model of a

halfspace with an earth conductivity of 10−2 S/m. Each of these two data sets

consists of the measurements of ~B taken at the receiver locations. The secondary

magnetic flux induced by the ground at the survey area, denoted as ∆~B, is then

computed by subtracting the two data sets.

In order to construct a single anisotropic, coarse-mesh conductivity model

using the upscaling methodology introduced in Section 3.4, we need to choose

the following parameters: (a) a suitable coarse mesh, (b) the size of the extended

local domain, and (c) the data to be matched in the upscaling criterion (3.17).

As a coarse mesh, we consider an OcTree mesh that is nested within the

fine OcTree mesh previously described. Since we are interested in accurately
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Figure 3.10: Subsurface part of the synthetic electrical conductivity Lalor
model and large-loop EM survey setup. The model is discretized on a
coarse OcTree mesh with 60,656 cells. The conductivity varies over
eight orders of magnitude throughout the whole model.

simulating magnetic flux data in the survey area, the OcTree mesh is designed to

maintain the fine mesh resolution of (50 m)3 inside the area of interest, whereas

the rest of the domain is filled with increasingly coarser cells. In total it contains

only 60,656 cells — this number of cells is roughly 10% of the number of cells

in the fine OcTree mesh. Figure 3.10 shows the coarse OcTree mesh. Note that

the coarse mesh is not refined outside the survey area where a large conductivity

contrast is present in the model. For example, at the interface between the highly

conductive gold units and the more resistive background, and at the air-earth

interface which contains a not flat area. These interfaces are not represented in

the coarse OcTree mesh. We challenge the upscaling procedure with the large

conductivity contrast across the subsurface interfaces.
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Next, we need to choose the size of the extended domain to solve the local

Maxwell problems, that is, the number of fine-mesh padding cells by which we ex-

tend every coarse cell to be upscaled as shown in Figure 3.4. To investigate the

effect of this size on the resulting upscaled conductivity, we performed the exten-

sion using the sizes of 4 and 8 padding cells. These local extended domain sizes

extend each (200 m)3-coarse cell by one and two coarse cells, respectively. The

(200 m)3 cells are the majority of the coarse cells where the largest conductivity

contrast happens in this setting (Figure 3.10).

Since the receivers measure magnetic flux data, we consider the total mag-

netic flux as defined in (3.16b) through each of the faces of the coarse cell to

be upscaled as the data to be matched by the upscaling criterion (3.17). By do-

ing so, we have connected the upscaling criterion to the large-loop EM survey

configuration.

Once the necessary elements to setup the upscaling framework are selected,

the construction of the desired coarse-mesh conductivity models is completed

by solving the constrained parameter estimation problem (3.17) for each of the

coarse cells separately, each individual size of the extended domain, and each

individual frequency. Each individual parameter estimation problem is solved as

indicated in Algorithm 1. To solve each local parameter estimation problem we

use the same stopping criterion and optimization parameters as described in the

previous section.

Next, we use the coarse conductivity models obtained previously to estimate

∆~B. To do so, we apply the MFV discretization method on the described coarse

OcTree mesh as outlined in [72, 86]. This discretization yields linear systems of

equations with 169,892 edge degrees of freedom (DOF), which we solve using

the parallel sparse direct solver MUMPS [3]. The total average run times per

single simulation for extended domain sizes of 4 and 8 padding cells are 5.3 h

and 3.7 days, respectively, on a two hexa-core Intel Xeon X5660 CPUs at 2.8 Hz

with 64 GB shared RAM using the parallel computing toolbox of MATLAB ([162]).

The right-hand panel of Figure 3.11 shows the magnitude of ∆~B obtained for the

frequencies of 1 and 20 Hz for the extended domain size of 8 padding cells.

To evaluate the accuracy of our results, we compute a reference (fine-mesh)

solution. To do so, we apply the MFV method on the described fine OcTree mesh
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(Figure 3.9) as discussed in [72, 86]. This yields linear systems of equations

with roughly 1.5 millions DOF, which we also solve using MUMPS. The average

computation time per single simulation is 704.5 s on the same machine. The left-

hand panel of Figure 3.11 shows the magnitude of ∆~B obtained for the frequencies

of 1 and 20 Hz.

We also carry out MFV forward modeling simulations using homogenized

electrical conductivity models that we construct using volume-arithmetic, -geometric

and -harmonic averaging of the fine-mesh conductivity inside each coarse cell of

the OcTree mesh shown in Figure 3.10. The total average run time per single

simulation is 125.5 s on the same machine.

Table 3.4 shows the relative errors in Euclidean norm for the magnitude of

∆~B obtained from comparing the reference (fine-mesh) solution with the different

homogenized solutions for each frequency and local extended domain size. The

relative error is computed as the ratio of the norm of the difference in magnitude

of the fine- and coarse-mesh data to the norm of the fine-mesh data in magnitude.

Table 3.4: Relative errors in Euclidean norm for the magnitude of the sec-
ondary magnetic fluxes induced by the ground in the survey area, ∆~B.
The relative errors are given in per cent.

Conductivity
model

1 Hz 20 Hz

Arithmetic 9.028 1.534
Geometric 8.990 0.594
Harmonic 8.987 0.403
Upscaling (4 padding cells) 8.989 0.532
Upscaling (8 padding cells) 8.991 0.383

From Table 3.4 we see that while upscaling has an effect when using 20 Hz

data, the effect is smaller when considering the 1 Hz data. This should not come

as a surprise, as the fields at 1 Hz are mainly in the real component, and are

less sensitive to fine-scale variations in conductivity than at 20 Hz. Indeed, for the

Magnetostatic case, the magnetic fields are conductivity independent [68]. As a

result, the error that we observe in this frequency is mostly due to discretization

error. However, when considering 20 Hz, the effect of using an appropriate aver-
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aging scheme is more evident and in fact, our averaging scheme does better than

other averaging schemes. Nonetheless, for this case, it is surprising to see how

well simple harmonic averaging did. We suspect that, unlike the 1D case where

harmonic averaging performs poorly, the 3D conductivity model requires averag-

ing over a much smaller, local area which leads to a much smaller difference in

the data.

77



Reference solution Upscaled solution (8 padding cells)
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Figure 3.11: Magnitude of the secondary magnetic flux induced by the ground in the survey area, ∆, for the large-loop
EM survey configuration. First and second rows show the results for 1 and 20 Hz, respectively. The left-hand
panel shows the reference solution computed using the MFV method on the fine OcTree mesh with 546,295
cells. The right-hand panel shows the upscaled solution computed using 8 padding cells on the coarse OcTree
mesh with 60,656 cells.
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3.6 Discussion

The global and local upscaling formulations proposed in this chapter are appro-

priate in different situations. For example, Section 3.3 shows the benefit of us-

ing the global upscaling formulation (in 1D) when upscaling well log conductivity

data. On the other hand, Section 3.5.1 shows the benefit of using the local up-

scaling formulation to construct 3D anisotropic coarse-mesh conductivity models

for a large-loop EM survey of a mineral deposit. This investigation supports the

remarks made in the field of fluid flow problems regarding the use of upscaling

methods (cf. [49]): the upscaling formulation to use on a particular problem de-

pends on the simulation question being addressed and the level of detail that can

be accommodated in the coarse conductivity model.

The 1D and 3D experiments presented show that the coarse-mesh models

constructed with the proposed upscaling framework yield accurate approximations

to the EM responses that are comparable to those obtained by using MFV on a

fine mesh in the forward modeling process, and that the size of the problem can be

reduced significantly, specially when upscaling is combined with an adaptive mesh

refinement technique, such as OcTree. For the examples presented, the size of

the coarse-mesh system solved was roughly 10% of the fine-mesh system size,

while the relative errors (in the secondary fields) were less than 5%. That is, the

coarse conductivity models are able to emulate the behavior of the heterogeneity

present in the prescribed fine-mesh electrical conductivity model.

The 3D local upscaling framework has two main issues. First, it constructs an

upscaled conductivity that depends significantly on the set of boundary conditions

imposed to compute the synthetic data used in the upscaling criterion. This issue

is consistent with what has been reported in the upscaling procedures developed

in the community that simulates flow in porous media [49, 56, 175]. I use the set of

standard bilinear decaying functions on a coarse cell as the set of boundary con-

ditions based on the arguments described in Section 3.4. I recognize that such a

set of boundary conditions may not be the most appropriate for constructing accu-

rate coarse models for all cases. However, for the experiments presented, these

boundary conditions give reasonable estimates. Second, the proposed upscaling

method is more computationally expensive than simple average-based upscaling
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methods, as one solves a local optimization problem in each coarse cell. How-

ever, since each local problem is formulated independently of the others, one can

reduce the cost by using a more efficient parallel implementation of the method

on a more powerful machine.

3.7 Summary

This chapter proposes a least-squares formulation for the upscaling problem and

develops a numerical framework to construct accurate coarse-mesh electrical

conductivity models based on prescribed fine-mesh ones for a broad range of

quasi-static EM geophysical problems in the frequency domain. In practice, sim-

ulating these types of problems is computationally expensive; they often consider

highly heterogeneous geologic media that require a very large and fine mesh to

be discretized accurately.

In the proposed framework, we pose upscaling as a parameter estimation

problem. Thus, a coarse-mesh electrical conductivity model is obtained by solv-

ing an optimization problem for each coarse-mesh cell. The optimization crite-

rion (i.e., upscaling criterion) can be customized to construct isotropic or fully

anisotropic real or even complex upscaled quantities to approximate any of the

EM fields and/or fluxes depending on the geophysical EM experiment of inter-

est. The computation of the upscaled conductivity can be done in a global or an

extended setting. Contrary to other least-squares upscaling formulations in the lit-

erature for fluid flow problems, the formulation proposed in this investigation does

not require regularization and it is practical to tackle 3D geophysical EM problems

with arbitrary electrical conductivity structures.

The upscaling framework demonstrates that the construction of upscaled quan-

tities should be specific to, and highly dependent on, the purpose of the simula-

tion and the EM experiment configuration. In fact, this investigation shows that

different EM experiments use different upscaling criteria that result in different up-

scaled quantities. The proposed upscaling formulation is a reflection of the fact

that an upscaled quantity is a property that one constructs, and it will take on dif-

ferent values, depending on how one formulates the problem. The choices of the

EM responses of interest, boundary conditions, and type of the upscaled quan-
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tity employed (i.e., isotropic or anisotropic) all influence the nature of the resulting

upscaled conductivity model. As a result, for a given fine-scale conductivity struc-

ture, there is no unique upscaled model which completely describes it. I believe

that the proposed framework can be used to tackle upscaling problems with a

different perspective when care is taken to properly define the upscaled quantity

needed.

This investigation demonstrates that upscaling methods can be used for solv-

ing frequency-dependent, quasi-static EM geophysical problems with highly dis-

continuous electrical conductivity, especially given the work done on improving

the computation performance and accuracy of the proposed framework. Simul-

taneously, Haber and Ruthotto ([73]) showed that multiscale techniques are also

a feasible method to tackle this problem with some additional advantages. Multi-

scale methods are further investigated in the next chapter.
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Chapter 4

A Multiscale Finite Volume

Method with Oversampling

Every pawn is a potential queen. — James Mason

4.1 Overview

This chapter1 proposes a multiscale FV method with oversampling for faster sim-

ulation of the quasi-static EM responses on a coarse mesh.

The main contribution of this chapter is to show how the core mathemati-

cal concepts used to develop oversampling techniques for flow in porous media

problems can be extended to geophysical EM problems, as well as to show how

multiscale techniques can be combined with OcTree in a parallel environment to

tackle more challenging geophysical EM simulations.

This chapter starts by providing a summary of the multiscale FV method pro-

posed by Haber and Ruthotto [73] for geophysical EM problems. Then, the pro-

posed oversampling technique for such method is developed. Finally, the perfor-

mance of the multiscale FV with oversampling method is demonstrated by using

two 3D synthetic electrical conductivity models: a) the Lalor model, and b) one

1This chapter contains extended and revised versions of the material published in [30], [31] and
[33]. I am the lead author in all of these publications.
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with a random isotropic heterogeneous medium. Both examples show the fea-

sibility of combining the proposed multiscale FV with oversampling method with

OcTree meshes in a parallel environment to boost its performance.

4.2 An Overview of the Multiscale Finite Volume Method

Haber and Ruthotto ([73]) adapted the general lines proposed by Hou and Wu

([89]), Jenny et al., ([101]), and MacLachlan and Moulton ([123]), where multiscale

FE and FV methods are developed for elliptic problems with strongly discontinu-

ous coefficients, to develop a multiscale finite volume method (MSFV) that fits the

staggered discretization of vector fields typically used in the MFV discretization

method introduced in Section 2.4. Since we use the MSFV method as a building

block for the oversampling technique we propose in this work, we provide next

an overview of this method, which can be summarized in the following four steps

(Figure 4.1).

Figure 4.1: Schematic representation of the procedure to implement the
MSFV method.
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First, let us assume a coarse mesh, MH , nested into a fine mesh, Mh, i.e.,

MH ⊂Mh (Step 1 in Figure 4.1). Mh accurately discretizes the features in the

model where the electrical conductivity varies, and MH is a user-chosen mesh

that is typically much coarser than the fine mesh and satisfies the guidelines for

mesh design in the areas where the EM responses are measured. In particular,

MH =∪N
k=1ΩH

k , where N is the number of coarse-mesh cells and ΩH
k denotes the

kth coarse-mesh cell; Mh =∪n
i=1Ωh

i , where n is the number of fine-mesh cells and

Ωh
i denotes the ith fine-mesh cell; and N� n. The MSFV method was originally

developed for nested tensor meshes, we will show an example in Section 4.4

where we use nested OcTree meshes as the mesh setup.

Second, for each coarse-mesh cell, ΩH
k ; k = 1, . . . ,N, we independently solve

a local version of the source-free Maxwell system subject to a set of twelve lin-

early independent, non-homogeneous Dirichlet boundary conditions (one for ev-

ery edge of ΩH
k ) given by

∇× ~Ek
l + ıω~Bk

l = ~0, in Ω
H
k , (4.1)

∇× (µ−1,k~Bk
l )−Σ

k~Ek
l = ~0, in Ω

H
k , (4.2)

~Ek
l (~x)×~n = ~Φl(~x)×~n, ∀~x ∈ ∂Ω

H
k , (4.3)

with l = 1, . . . ,12. Here, ~x = (x1,x2,x3), ∂ΩH
k denotes the boundary of ΩH

k ,
~Bk

l , ~Ek
l , µk, Σk, ω , ı and~n are defined as before in Section 2.3; and ~Φl is a vector

function that denotes the lth Dirichlet boundary condition as defined in Table 3.3.

This set of boundary conditions form the natural basis functions for linear edge

degrees of freedom of a hexahedral finite element [104, 131]; therefore, they can

be used to model general normal-linearly varying EM responses. From Figure

3.5, we observe that each ~Φl takes the value 1 along the tangential direction to

the lth edge of ΩH
k and decays linearly to 0 in the normal directions to the same

edge.

To numerically solve the twelve local Maxwell systems (4.1)-(4.3), we forward

model them using the fine mesh contained in ΩH
k and the MFV method as dis-

cussed in Section 2.4 (Step 2 in Figure 4.1). That is, the set of discrete solutions

for the electric field, {ek
1, . . . ,e

k
12}, can be obtained by solving twelve linear sys-
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tems of the form (2.27), where each ek
l ; l = 1, ...,12, is a vector whose length

equals the number of fine-mesh edges in ΩH
k . We use the MFV method be-

cause it provides a consistent and stable discretization of the Maxwell’s equations

with highly discontinuous coefficients. However, other traditional edge-based dis-

cretization methods, such as FE ([104, 131]), can be used for this part as well

as long as they provide a consistent, conservative and stable discretization for

our Maxwell system. In this chapter, we refer to the set of discrete solutions

{ek
1, . . . ,e

k
12} as the multiscale basis functions for the cell ΩH

k . The MSFV method

proposed by Haber and Ruthotto ([73]) only covers the necessary steps to com-

pute multiscale basis functions for the electric field. They do not compute basis

functions for the magnetic flux, and neither do we. To see full derivation details of

these multiscale basis functions, we refer the interested reader to the body of the

paper [73].

Note that using formulation (4.1)-(4.3) implies that ~Ek
l is oscillatory at the in-

terior of the coarse cell ΩH
k , and that it coincides with the natural basis functions

{~Φl}12
l=1 at the boundary of ΩH

k , that is

~Ek
l ·~τedgem

= δlm; l,m = 1, . . . ,12, (4.4)

where ~τedgem
is the unit tangent vector to the mth edge of ∂ΩH

k , and δlm is the

Kronecker delta that takes the value 1 when l = m and 0 otherwise. Naturally, the

multiscale basis functions also satisfy these properties. It follows that the tangen-

tial components of the multiscale basis functions are continuous at the boundaries

of the coarse-mesh cells.

As shown in [51, 69, 89], the multiscale basis functions can be arranged as

the columns of a local coarse-to-fine interpolation matrix Pk, that is

Pk =
[
ek

1, . . . ,e
k
12

]
, (4.5)

for the fine-mesh electric field in ΩH
k (Step 2 in Figure 4.1). This type of interpo-

lation is also known as operator-induced interpolation, which was originally devel-

oped in the Multigrid community for the diffusion equation with strongly discontin-

uous coefficients [2, 44].
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Once we have computed a local interpolation matrix for each coarse cell (4.5),

the third step is to assemble a global coarse-to-fine interpolation matrix, P (Step 3

in Figure 4.1). The continuity of the tangential components of the multiscale basis

functions at the boundaries of the coarse cells is a necessary requirement for the

proper assembly of P in this step [51].

We point out that the calculations involved to compute the local interpolation

matrices (Pk; k = 1, . . . ,N) as defined in (4.5), are done locally inside each coarse

cell independently of each other, hence they can perfectly be done in parallel. This

greatly reduces the overhead time in constructing each Pk in practice.

The fourth step is to use the global interpolation matrix P as a projection matrix

within a Galerkin approach ([51]) to construct a coarse-mesh version of the fine-

mesh system (2.25) that is much cheaper to solve as follows

AHeH =
(
P>Ah(ΣΣΣh)P

)
eH = P>qh. (4.6)

The superscripts H and h denote dependency to the coarse and fine meshes,

respectively, the vector qh and the system matrix Ah(ΣΣΣh) are defined as in (2.25),

and eH denotes the coarse-mesh electric field. To compute the coarse-mesh

magnetic flux, bH , we use eH in (2.23).

As shown in [69], the fine-mesh electric field, eh, can be obtained from the

solution to the coarse-mesh problem as follows

eh = PeH . (4.7)

To compute the fine-mesh magnetic flux, bh, we use eh in (2.23). This concludes

the overview of the MSFV method proposed by Haber and Ruthotto in [73].

Note that we use the exact same formulation for the local Maxwell’s problems

(4.1)-(4.3) for both the MSFV method and the local upscaling method in 3D in-

troduced in Section 3.4 (see equations (3.13)-(3.15)). Although the formulation

of these local problems is the same, they differ in the context in which they were

formulated. The difference is that in the local upscaling method the formulation

comes from using physical arguments that describe the behavior of our problem to

define the elements needed in the upscaling criterion (3.17); whereas in the MSFV

method the formulation comes from the Galerkin framework we use to compute a
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set of basis functions that are necessary to construct the projected system (4.6).

In the above process, we opt for the construction of the operator-induced in-

terpolation matrix P; however, it is possible to avoid its construction. As shown

in Chapter 2 of the book by Efendiev and Hou ([51]), it is possible to assemble

directly the matrix AH of the coarse-mesh system in (4.6) through locally pro-

jected stiffness matrices, which are generated using Pk. The former approach is

preferred when the solution is needed in the coarse mesh only as it reduces the

storage requirements. In Section 4.4, I show examples of an application of this

type. If the fine-mesh solution is needed, then the first approach is preferred.

The accuracy of the solutions obtained with multiscale FV/FE methods de-

pends on the choice of boundary conditions used to construct the multiscale ba-

sis functions (second step outlined before) for each coarse cell. If these boundary

conditions fail to reflect the effect of the underlying media heterogeneity contained

by the coarse cell on the physical responses, multiscale procedures can have

large errors [51, 89].

Researchers in the field of multiscale methods for elliptic problems have noted

that by choosing a set of linear boundary conditions for the construction of the mul-

tiscale basis functions, a mismatch between the exact solution and the discrete

solution across the coarse-cell boundary may be created, thus yielding to inac-

curate solutions. The error analyses presented in [89] and in [51] demonstrate

that the source of inaccuracy in the solution comes from resonance errors; that

is, errors that appear when the mesh size and the wavelength of the small-scale

oscillation of the media heterogeneity are similar. A solution in such cases is to

use oversampling techniques for the construction of the multiscale basis functions

[51, 79, 88, 89, 101].

In the next section, we discuss the case where the choice of linear boundary

conditions to construct the multiscale basis functions may yield inaccurate solu-

tions using the MSFV method, and we develop an oversampling technique to fix

this accuracy issue.
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4.3 The Oversampling Method

As discussed in the previous section, the MSFV method imposes linear bound-

ary conditions to the local Maxwell’s formulation (4.1)-(4.3) used to compute the

multiscale basis functions inside each coarse-mesh cell. Note that by choosing

linear boundary conditions for the multiscale basis functions, the MSFV method

assumes that the tangential components of the electric field behave linearly at

the interfaces between coarse-mesh cells. However, this assumption fails for the

cases where the media contained by the coarse cells is highly heterogeneous,

as it is well known that heterogeneous conductive media induce a non-linear and

non-smooth behavior of the electric field across media interfaces ([169]). In par-

ticular, when the heterogeneity is located close to the boundary of the coarse cell,

the non-linear behavior of the electric field significantly violates the assumption

of linear fields at the boundaries. Hence, by imposing linear boundary conditions

in such cases for the construction of the multiscale basis functions, the MSFV

method creates a mismatch between the true and the multiscale solution across

the coarse cell boundary. This mismatch yields to produce inaccurate solutions.

In this section, we propose an oversampling technique to overcome this difficulty.

Oversampling methods are used to reduce boundary effects in the construc-

tion of the multiscale basis functions per single coarse-mesh cell [51, 89]. The

main idea is to compute the multiscale basis functions using a local extended

domain, and to use only the fine-mesh information at the interior of the cell to

construct the multiscale basis functions.

We now proceed to develop our oversampling technique. To do so, we adapt

the oversampling technique originally proposed by [89] for linear elliptic problems

with strongly discontinuous coefficients and for a nodal FE discretization, to ap-

ply to the MSFV method for EM modeling with edge variables discussed in the

previous section, which uses a staggered FV discretization (i.e., the MFV method

discussed in Section 2.4).

For a given coarse cell ΩH
k , the core idea behind our oversampling method

consists of the following two steps, which are illustrated in Figure 4.2.

First, we compute multiscale basis functions using a local extended domain,

denoted as Ω
H,ext
k , which includes the coarse cell ΩH

k and a neighborhood of fine
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Figure 4.2: Schematic representation of the two main steps to implement
the oversampling method.

cells around it. If the coarse cell ΩH
k is at the boundary of the computational

domain, then we only extend the local domain to where it is possible. To compute

the multiscale basis functions in Ω
H,ext
k , we formulate the twelve local Maxwell

systems as in (4.1)-(4.3), but rather than using ΩH
k as the local domain we use

Ω
H,ext
k , then we apply the MFV method as discussed in Section 2.4. We refer

to the set of discrete solutions {ek,ext
1 , . . . ,ek,ext

12 } as extended multiscale basis

functions for the cell ΩH
k .

Second, we use the set of extended multiscale basis functions obtained in the

previous step to compute the actual set of multiscale basis functions {ek
1, . . . ,e

k
12}

in ΩH
k . Since the construction of the multiscale basis is done cell by cell, there

is no guaranty that the tangential components of the multiscale basis functions

are continuous at the boundary of the coarse cell ΩH
k . In order to mitigate this

issue, we impose the following weak-continuity condition in the construction of the
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multiscale basis functions to guarantee they will be weakly continuous along each

shared boundary among immediate neighboring coarse cells,

Aedgem

(
~Ek

l

)
:=

1
Ledgem

∫
edgem

~Ek
l ·~τedgem

ds = δml; m, l = 1, . . . ,12, (4.8)

where ~Ek
l denotes the continuous form of the lth multiscale basis function ek

l ,

Ledgem
denotes the length of the mth edge of ΩH

k , ~τedgem
denotes the unit tan-

gent vector to the mth edge of ΩH
k , and δml is the Kronecker delta. That is, we

take a ‘normalized average’ of the multiscale basis functions at the boundary of

the coarse cell. This condition is equivalent to the definition of edge degrees of

freedom of a staggered cell in the context of Nédélec finite elements [130, 131].

Note the difference with the continuity condition (4.4) imposed in the construction

of the multiscale functions of the MSFV method without oversampling. Integrating

numerically the continuity condition (4.8), we can express it as

ˆAedgem

(
ek

l

)
≈ v>edgem

ek
l = δml; m, l = 1, . . . ,12, (4.9)

where vedgem
is the vector that computes the normalized line integral along the

mth edge of ΩH
k .

Using (4.9) and following the main lines given in the oversampling technique

proposed by [89], we continue the development of our oversampling technique by

showing how to compute {ek
1, . . . ,e

k
12} from {ek,ext

1 , . . . ,ek,ext
12 } in detail.

We begin by expressing the jth multiscale basis function, ek
j, as a linear com-

bination of the set of extended basis functions as follows

ek
j =

12

∑
l=1

cl, j ek,ext
l = [ek,ext

1 , . . . ,ek,ext
12 ]c j; j = 1, . . . ,12, (4.10)

where c j = [c1, j, . . . ,c12, j]
> are coefficients to be determined. Now, to determine

uniquely such coefficients, we apply condition (4.9) to (4.10), which results in the
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following system of equations
ˆAedge1(e

k,ext
1 ) . . . ˆAedge1(e

k,ext
12 )

ˆAedge2(e
k,ext
1 ) . . . ˆAedge2(e

k,ext
12 )

...
. . .

...
ˆAedge12(e

k,ext
1 ) . . . ˆAedge12(e

k,ext
12 )




c1,1 . . . c1,12

c2,1 . . . c2,12
...

. . .
...

c12,1 . . . c12,12

= I12×12,

(4.11)

where I12×12 denotes the 12×12 identity matrix. Combining equations (4.9),

(4.10) and (4.11), we obtain the expression for the desired coefficients, that is

C =


v>edge1

ek,ext
1 . . . v>edge1

ek,ext
12

v>edge2
ek,ext

1 . . . v>edge2
ek,ext

12
...

. . .
...

v>edge12
ek,ext

1 . . . v>edge12
ek,ext

12


−1

. (4.12)

Now, C is invertible because its columns are linearly independent. To see this,

we consider the matrix (4.12) before it is inverted. To show that the columns of

this matrix form a linearly independent set, we need to show that for any linear

combination of such vectors:

α1


v>edge1

ek,ext
1

v>edge2
ek,ext

1
...

v>edge12
ek,ext

1

+ · · ·+α12


v>edge1

ek,ext
12

v>edge2
ek,ext

12
...

v>edge12
ek,ext

12

=


0

0
...

0

 (4.13)

the scalars α1, . . . ,α12 are zero. As described before (4.9), v>edgem
; m = 1, . . . ,12

denotes the vector that computes the normalized line integral along the mth edge

of the coarse cell ΩH
k . Now, we can write expression (4.13) as

α1


v>edge1

v>edge2
...

v>edge12

ek,ext
1 + · · ·+α12


v>edge1

v>edge2
...

v>edge12

ek,ext
12 =


v>edge1

v>edge2
...

v>edge12


12

∑
l=1

αlek,ext
l =~0.

(4.14)
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Since {ek,ext
l }12

l=1 form a basis, then αl = 0, ∀l = 1, . . . ,12.

After we construct the multiscale basis functions {ek
1, . . . ,e

k
12} using our over-

sampling technique, we continue to follow the procedure for the MSFV method

(Figure 4.1) to compute the solution. That is, this set of twelve multiscale basis

functions enable the use of the local interpolation matrix Pk, given by (4.5), within

the assembly of the global coarse-to-fine interpolation matrix P. The interpola-

tion matrix P is then used within a Galerkin formulation to obtain the coarse-mesh

system (4.6), which we ultimately solve.

4.4 Numerical Results in 3D

In this section, we demonstrate the accuracy and computational performance of

our multiscale finite volume method with oversampling (MSFV+O) by simulating

EM responses for two 3D synthetic electrical conductivity models: one with a

mineral deposit in a geologically-rich medium and one with a random isotropic

heterogeneous medium. As analytical solutions are not available for these two

examples, the results of these simulations are compared to the simulation results

from the fine-mesh reference models, respectively. Since we need to use a fine

mesh to compute the multiscale basis functions numerically, it makes sense to

compare our MSFV+O method with a traditional FV method at the fine mesh. This

example also demonstrates the power of combining adaptive mesh refinement

techniques with a multiscale approach to produce faster and accurate simulations.

4.4.1 Simulations for the Synthetic Lalor Model

For the first example, we use the synthetic Lalor electrical conductivity model

introduced in Section 3.5.2, which is based on the inversion results of field mea-

surements over the Canadian Lalor mine obtained by [177].

As discussed in Section 3.5.2, the Lalor model, shown in Figure 4.3, has

an area with non-flat topography and extends from 0 to 6.5 km along the x, y

and z directions, respectively. The model comprises air and the subsurface that

is composed of 35 geologic units. The unit with the largest conductivity value

represents the mineral deposit, which is composed of three bodies. We assume

a conductivity of 10−8 S/m in the air. The subsurface conductivity values range
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Figure 4.3: Subsurface part of the synthetic electrical conductivity Lalor
model and large-loop EM survey setup. The model is discretized on
a fine OcTree mesh with 546,295 cells. The conductivity varies over
five orders of magnitude throughout the whole model.

from 1.96× 10−5 to 0.28 S/m. The magnetic permeability takes its free space

value (i.e., µ = 4π×10−7 Vs/Am).

We consider a large-loop EM survey for this example, where we use a rectan-

gular transmitter loop with dimensions 2 km × 3 km, operating at the frequencies

of 1, 10, 20, 40, 100, 200 and 400 Hz. The transmitter is placed on the earth’s

surface and it is centered above the largest body of the mineral deposit, as shown

in Figure 4.3. Inside the loop, we place a uniform grid of receivers that measure

the three components of the magnetic flux (~B = [Bx,By,Bz]>). The receivers are

separated by 50 m along the x and y directions, respectively.

Our aim is to estimate the secondary magnetic flux induced by the mineral

deposit in the survey area. For this purpose, we simulate two sets of the magnetic
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flux data for each frequency. The first data set considers the conductivity model

including all geologic units, and the second data set excludes the mineral deposit

from the original conductivity model. Each of these two data sets consists of the

measurements of ~B taken at the receiver locations. The secondary magnetic flux

induced by the mineral deposit at the survey area, denoted as ∆~Bdeposit, is then

computed by subtracting the two data sets. The estimation of ∆~Bdeposit requires

carrying out two forward model simulations per frequency.

To compute a reference solution, we discretize the conductivity model using

the MFV method as discussed in [72, 86] at the same fine OcTree mesh described

in Section 3.5.2, which is shown in Figure 4.3. The fine mesh has 546,295 cells.

Considering the averaged background conductivity value (4.5 ×10−3 S/m), the

skin depths for the frequencies of 1, 10, 20, 40, 100, 200 and 400 Hz are roughly

7,498, 2,371, 1,677, 1,186, 750, 530 and 375 m, respectively. Thus, using cells

sizes of (50 m)3 within the survey area continues to be sufficient to capture the

behavior of the EM fields in this setup. Using the MFV method on the fine OcTree

mesh yields systems with roughly 1.5 millions edge DOF which we solve using

the parallel sparse direct solver MUMPS [3]. The average computation time per

single simulation is roughly 721 s on a two hexa-core Intel Xeon X5660 CPUs at

2.8 Hz with 64 GB shared RAM using the parallel computing toolbox of MATLAB

([162]). Figure 4.4 shows the Euclidean norm of the total, real and imaginary

parts of ∆~Bdeposit for each frequency considered. The real and imaginary parts of

the results obtained for the z-component of ∆~Bdeposit, denoted as ∆Bz
deposit, at 100 Hz

are shown in Figure 4.6(a) and Figure 4.7(a), respectively.

In order to use the MSFV+O method introduced in Section 4.3, we need to

choose a suitable coarse mesh to discretize the conductivity model and the size

of the local extended domain to compute its corresponding projection matrix.

As a coarse mesh, we consider the same coarse OcTree mesh nested in the

fine OcTree mesh previously described in Section 3.5.2, which is shown in Figure

4.5. The coarse OcTree mesh is designed to maintain the fine-mesh resolution

of (50 m)3 inside the survey area, whereas the rest of the domain is filled with

gradually increasing coarser cells. In total, this coarse mesh has 60,656 cells. To

analyze the performance of our MSFV+O method for coarse OcTree meshes, we

do not refine the mesh outside the survey area where a large conductivity contrast
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Figure 4.4: Euclidean norm of total, real and imaginary parts of the ref-
erence (fine-mesh) solution for the Lalor conductivity model per fre-
quency.

is present in the model. For example, this mesh discretizes the mineral deposit

with cells of size (200 m)3 and (400 m)3, and the non-flat topography with cells

of size (400 m)3 and (800 m)3. We expect the simulations for the frequencies

of 200 and 400 Hz to be particularly challenging for our MSFV+O method as the

coarsening in those areas can be considered extreme due to the cell size is in the

order of the skin depth.

Next, to investigate the effect of the size of the local extended domain, i.e., the

number of fine-mesh padding cells by which we extend every coarse cell, on the

resulting magnetic flux data, we pad the coarse cell using 2, 4 and 8 fine cells.

Each fine padding cell is of size (50 m)3. The chosen local extended domain sizes

correspond to extending each (200 m)3-coarse cell by half, one and two coarse

cells, respectively. The (200 m)3-coarse cells are the majority of the coarse cells

where the largest conductivity contrast happen in this setting (Figure 4.5).

Applying MSFV and MSFV+O on the coarse mesh shown in Figure 4.5, we
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Figure 4.5: Subsurface part of the synthetic electrical conductivity Lalor
model and large-loop EM survey setup. The model is discretized on
a coarse OcTree mesh with 60,656 cells. The conductivity varies over
eight orders of magnitude throughout the whole model.

obtain reduced linear systems with 169,892 DOF, which are also solved using

MUMPS. When using MSFV+O the total average run times per single simulation

for extended domain sizes of 2, 4 and 8 padding cells are roughly 185 s, 442

s and 1 h, respectively, on the same machine. The real and imaginary parts

of ∆Bz
deposit at 100 Hz for extended domain sizes of 2, 4 and 8 padding cells are

shown in Figures 4.6(b), 4.6(c) and 4.6(d), respectively; and Figures 4.7(b), 4.7(c)

and 4.7(d), respectively. In order to use MSFV (without oversampling), we first

adapt this method for OcTree meshes, as the original version is derived for tensor

meshes only (cf. [73]). In this case, the total average run time per single simulation

is roughly 73 s on the same machine. The real and imaginary parts of ∆Bz
deposit at

100 Hz are shown in Figure 4.6(e) and Figure 4.7(e), respectively.
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We also carry out MFV simulations using homogenized electrical conductivity

models that we construct using volume-arithmetic, -geometric and -harmonic av-

eraging of the fine-mesh conductivity inside each coarse cell of the OcTree mesh

shown in Figure 4.5. Doing so allows us to compare the accuracy that MFV so-

lutions achieve on the coarse mesh with the one achieved by MSFV with and

without oversampling. The total average run time per single simulation is roughly

128 s on the same machine. The real and imaginary parts of ∆Bz
deposit at 100 Hz for

each of the three homogenized solutions are shown in Figures 4.6(f), 4.6(g) and

4.6(h), respectively; and Figures 4.7(f), 4.7(g) and 4.7(h), respectively.

Figures 4.6 and 4.7 show the results obtained for the real and imaginary parts

of ∆Bz
deposit with MFV on the fine-mesh, MSFV, MSFV+O with three different over-

sampling sizes, and MFV with three different homogenized conductivity models for

the frequency of 100 Hz, respectively. All results are plotted using the same color

scale and range. From these figures we see that our oversampling technique pro-

duces the most accurate results in comparison with the rest of the methods used.

Observe that using only an oversampling size of 2 padding cells significantly im-

proves the quality of the approximations, whereas MSFV tends to overestimate

the approximation for both real and imaginary parts of ∆Bz
deposit.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Real part of the z component of the secondary magnetic flux induced by the mineral deposit in the survey
area, ∆Bz

deposit, for our large-loop EM survey at 100 Hz. (a) reference solution computed using the MFV method
on the fine OcTree mesh with 546,295 cells. (b), (c) and (d): results using the MSFV+O method with 2, 4 and
8 padding cells on the coarse OcTree mesh, respectively. (e): results using the MSFV (without oversampling)
method on the coarse OcTree mesh with 60,656 cells. (f), (g) and (h): results using MFV with the conduc-
tivity model homogenized using arithmetic, geometric and harmonic averaging on the coarse OcTree mesh,
respectively. All results are shown in picoteslas (pT) and plotted using the same color scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Imaginary part of the z component of the secondary magnetic flux induced by the mineral deposit in
the survey area, ∆Bz

deposit, for our large-loop EM survey at 100 Hz. (a) reference solution computed using the
MFV method on the fine OcTree mesh with 546,295 cells. (b), (c) and (d): results using the MSFV+O method
with 2, 4 and 8 padding cells on the coarse OcTree mesh, respectively. (e): results using the MSFV (without
oversampling) method on the coarse OcTree mesh with 60,656 cells. (f), (g) and (h): results using MFV with
the conductivity model homogenized using arithmetic, geometric and harmonic averaging on the coarse OcTree
mesh, respectively. All results are shown in picoteslas (pT) and plotted using the same color scale.
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Table 4.1 shows the relative errors in Euclidean norm for the total, real and

imaginary parts of ∆~Bdeposit obtained from comparing the reference (fine-mesh)

solution with the MSFV, MSFV+O and MFV with three different homogenized so-

lutions for each frequency and local extended domain size. Table 4.2 shows the

relative errors in Euclidean norm for the magnitude of the three components of

∆~Bdeposit (∆~Bdeposit = [∆Bx
deposit,∆By

deposit,∆Bz
deposit]

>) obtained from comparing the refer-

ence (fine-mesh) solution with the MSFV, MSFV+O and MFV with three different

homogenized solutions for each frequency and local extended domain size. The

relative error is computed as the ratio of the Euclidean norm of the difference of

the fine and coarse-mesh data to the Euclidean norm of the fine-mesh data. The

coarse-mesh solutions are not interpolated to the fine mesh to compute the error.

Table 4.3 summarizes the average run time per single simulation required to com-

pute ∆~Bdeposit for each of the methods discussed. From these tables we observe

the following:

First, we see that our oversampling technique significantly improves the ac-

curacy for the total, real and imaginary response as well as for each of the three

components of the solution in comparison to the MSFV and MFV with three differ-

ent homogenized conductivity models as the errors decrease with oversampling.

In particular, it is surprising to see how well MFV with simple geometric averaging

did when compared with MSFV.

Second, as the size of the local extended domain increases the error de-

creases at the expense of more computational run time, which, however, is still

considerably lower compared to the time of the reference solution for the cases of

2 and 4 padding cells (see Table 4.3). These results suggest that by using a local

extended domain size of at least a half the number of fine cells contained in the

coarse cell(s) where the major contrast of conductivity happens, we may increase

significantly the accuracy obtained with MSFV+O.

Third, the magnitude of the errors come from comparing secondary magnetic

field data obtained on the fine and coarse mesh, respectively. The data is the

response of the deep and buried conductive mineral deposit, which constitutes a

rather weak secondary field compared to the primary field induced by the air and

background conductivity. The level of accuracy of this simulation is relative to the

total signal, which values are quite small (see Figure 4.4). We can improve the
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accuracy of MSFV and MSFV+O by refining the coarse mesh and interpolating the

coarse-mesh solution to the fine mesh as shown in [73]. Yet, MSFV+O provides

a reasonable approximation to the fine-mesh solution using a coarse mesh that is

only 10% the size of the fine mesh.

Fourth, the errors for the imaginary part of ∆~Bdeposit for the frequencies of 1, 10,

20 and 40 Hz resemble the errors for total ∆~Bdeposit due to the real part of ∆~Bdeposit

is up to two orders of magnitude smaller than their corresponding imaginary parts

(Figure 4.4). For the frequencies of 100 and 400 Hz, where the real and imaginary

parts of ∆~Bdeposit are roughly in the same order of magnitude, we see the relative

error for total ∆~Bdeposit represents the error contributions of these two components

of the data.

Fifth, for the simulation at 200 Hz the errors for the real part of ∆~Bdeposit resem-

ble the errors for total ∆~Bdeposit due to the imaginary part of ∆~Bdeposit is one order of

magnitude smaller (Figure 4.4). The large errors in the imaginary part of the data

as well as the increase and decrease in the error going from padding cell 2 to 4

and 4 to 8, respectively, can be attributed to the combined discretization error in

simulating secondary field data and the extreme coarsening in the mesh shown in

Figure 4.5. For this frequency, the cell sizes used to discretize the mineral deposit

are in the order of the skin depth.

Sixth, for a simulation at 400 Hz with an extended domain size of 8 padding

cells the slight increment in the error of the real part may be attributed to the ex-

cessive coarsening in the mesh for such high frequency. In this case, the coarse

cells used to discretize the mineral deposit are larger than the skin depth. Despite

the excessive coarsening, our oversampled approximation yields comparable re-

sults to the reference (fine-mesh) solution for the largest two frequencies.

Seventh, the increment of the MSFV+O setup time as the size of the local

extended domain increases (Table 4.3) comes from constructing the local inter-

polation matrices. Since the computation of these matrices is done locally inside

each coarse cell independently of each other, this process can be done in par-

allel (see discussion in Section 4.2). A robust implementation using a parallel

communication protocol (e.g. Message Passage Interface (MPI)) for program-

ming parallel computers should greatly reduce the overhead time in constructing

these interpolation matrices. The research work in [46], which focuses in prob-
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lems in porous media, shows progress along this lines. However, we note that

using oversampling with 2 padding cells is already increasing the accuracy of the

solution and the computational time is significantly lower that that of computing

the reference solution.

Table 4.1: Relative errors in Euclidean norm for the total, real and imaginary
parts of the secondary magnetic fluxes induced by the mineral deposit
in the survey area, ∆~Bdeposit. Note that pc stands for padding cells.

Table of relative errors in Euclidean norm for ∆~Bdeposit

Frequency
Method 1Hz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz

Relative errors for total ∆~Bdeposit (per cent)
MFV+Arithmetic 192.05 191.60 190.43 187.70 183.25 171.94 149.34
MFV+Geometric 68.57 68.51 68.34 67.72 64.96 60.61 55.62
MFV+Harmonic 97.20 97.20 97.18 97.11 96.81 96.30 95.57
MSFV 69.70 69.72 69.79 70.32 73.09 72.65 63.93
MSFV+O (2 pc) 15.84 15.83 15.79 15.75 16.17 15.98 13.46
MSFV+O (4 pc) 13.31 13.33 13.38 13.60 14.48 14.63 11.36
MSFV+O (8 pc) 10.63 10.65 10.72 10.98 12.20 12.67 10.08

Relative errors for real part of ∆~Bdeposit (per cent)
MFV+Arithmetic 216.47 214.97 211.12 202.06 188.63 170.99 159.57
MFV+Geometric 81.01 80.95 80.75 79.72 73.05 60.33 34.18
MFV+Harmonic 98.46 98.45 98.43 98.33 97.74 96.52 93.45
MSFV 73.09 72.92 72.56 72.29 74.22 70.82 59.47
MSFV+O (2 pc) 21.41 21.34 21.16 20.57 18.11 14.21 8.25
MSFV+O (4 pc) 18.36 18.38 18.39 18.19 15.92 12.49 8.14
MSFV+O (8 pc) 16.12 16.10 16.02 15.49 12.74 10.40 8.51

Relative errors for imaginary part of ∆~Bdeposit (per cent)
MFV+Arithmetic 192.05 191.26 189.26 184.63 174.80 197.75 133.27
MFV+Geometric 68.57 68.32 67.61 64.99 50.30 68.40 76.55
MFV+Harmonic 97.20 97.18 97.11 96.86 95.38 89.47 98.52
MSFV 69.70 69.67 69.64 69.91 71.34 114.01 69.83
MSFV+O (2 pc) 15.84 15.74 15.45 14.57 12.68 42.77 18.53
MSFV+O (4 pc) 13.31 13.24 13.06 12.46 11.99 43.84 14.81
MSFV+O (8 pc) 10.63 10.55 10.36 9.81 11.35 41.16 11.98
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Table 4.2: Relative errors (per cent) in Euclidean norm for the magnitude of
the x, y and z components of the secondary magnetic fluxes induced by
the mineral deposit in the survey area, ∆~Bdeposit. Note that pc stands for
padding cells.

Method ∆Bx
deposit ∆By

deposit ∆Bz
deposit ∆Bx

deposit ∆By
deposit ∆Bz

deposit

Frequency of 1 Hz
MFV+Arithmetic 176.44 202.20 195.12
MFV+Geometric 66.26 71.52 68.65
MFV+Harmonic 97.03 97.38 97.22
MSFV 65.91 70.44 70.95
MSFV+O (2 pc) 13.37 19.83 15.53
MSFV+O (4 pc) 12.04 16.24 12.90
MSFV+O (8 pc) 10.45 12.13 10.25

Frequency of 10 Hz Frequency of 100 Hz
MFV+Arithmetic 176.20 201.86 194.59 170.48 198.30 184.62
MFV+Geometric 66.17 71.50 68.60 62.34 68.63 65.11
MFV+Harmonic 97.03 97.37 97.21 96.63 97.05 96.82
MSFV 66.06 70.39 70.94 70.39 73.56 74.16
MSFV+O (2 pc) 13.39 19.78 15.51 14.00 19.41 16.13
MSFV+O (4 pc) 12.05 16.25 12.93 12.56 17.12 14.52
MSFV+O (8 pc) 10.45 12.14 10.29 11.26 13.31 12.30

Frequency of 20 Hz Frequency of 200 Hz
MFV+Arithmetic 175.59 201.03 193.21 159.79 189.57 172.55
MFV+Geometric 65.91 71.44 68.44 58.65 63.69 60.68
MFV+Harmonic 97.00 97.37 97.20 96.20 96.47 96.30
MSFV 66.48 70.30 70.95 68.82 75.18 73.73
MSFV+O (2 pc) 13.45 19.65 15.48 13.41 19.21 16.15
MSFV+O (4 pc) 12.07 16.28 13.01 12.76 16.76 14.85
MSFV+O (8 pc) 10.47 12.18 10.39 10.48 15.03 12.92

Frequency of 40 Hz Frequency of 400 Hz
MFV+Arithmetic 174.12 199.32 189.94 141.64 163.62 148.96
MFV+Geometric 65.09 71.10 67.86 54.59 57.49 55.60
MFV+Harmonic 96.92 97.33 97.13 95.57 95.60 95.55
MSFV 67.73 70.43 71.36 60.31 67.47 64.68
MSFV+O (2 pc) 13.63 19.38 15.48 11.04 16.43 13.64
MSFV+O (4 pc) 12.15 16.42 13.33 9.52 13.52 11.56
MSFV+O (8 pc) 10.56 12.36 10.76 7.83 12.82 10.23
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Table 4.3: Average run time in seconds per simulation required to compute
∆~Bdeposit on a two hexa-core Intel Xeon X5660 CPUs at 2.8 Hz with 64
GB shared RAM using MATLAB. Setup time: time required to compute
the local interpolation matrices and to assemble the reduced system of
equations to be solved. Solve time: time to solve the reduced system of
equations. Total time: the sum of the setup and solve times.

Method Setup time (s) Solve time (s) Total time (s)

MFV on fine OcTree mesh - 721 s 721 s
MFV + Arithmetic - 127 s 127 s
MFV + Geometric - 128 s 128 s
MFV + Harmonic - 128 s 128 s
MSFV 42 s 31 s 73 s
MSFV+O (2 padding cells) 147 s 38 s 185 s
MSFV+O (4 padding cells) 410 s 32 s 442 s
MSFV+O (8 padding cells) 3,566 s 32 s 3,598 s

The next example demonstrates the effect of considering a different heteroge-

neous conductivity model for the same survey and meshes setup on the results

produced by our proposed MSFV+O method.

4.4.2 Simulations for Random Heterogeneous Isotropic Media

In this section, we construct an electrical conductivity model of a random isotropic

heterogeneous medium to provide a second magnetic flux data set to validate the

proposed oversampling technique. For this example, we use the same large-loop

EM survey configuration, computational domain and fine and coarse-mesh setup

as described in Section 4.4.1.

The new synthetic conductivity model, shown in Figure 4.8, also comprises air

and the subsurface that is composed of random heterogeneous isotropic media.

We assume that the subsurface conductivity is log(10)-normally distributed with

mean of 2.5× 10−3 and standard variation of 0.4. To reuse the fine-mesh setup

described in Section 4.4.1, we mapped the values of the subsurface conductivity

to the interval [10−5,10−1] S/m. Considering the averaged background conduc-

tivity value (1.6 ×10−3 S/m), the skin depths for the frequencies of 1, 10, 20, 40,

100, 200 and 400 Hz are roughly 12,575, 3,977, 2,812, 1,988, 1,258, 889 and
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629 m, respectively. Thus, using cells sizes of (50 m)3 within the survey area

continues to be sufficient to capture the behavior of the EM fields in this setup.

As in the previous example, we assume that the conductivity of the air is of 10−8

S/m and that the magnetic permeability takes its free space value. Note that this

conductivity model does not contain clearly defined conductive features (as in the

Lalor example); instead the contrast of conductivity is distributed throughout the

entire subsurface part of the model. This allows us to challenge the oversampling

technique with large conductivity contrast across the material interfaces.

The goal of the simulation in this case is to compute the secondary magnetic

flux induced by the random heterogeneous conductive medium in the survey area.

To do so, we simulate two sets of the magnetic flux data for each frequency. The

first data set considers the conductivity model including air and the subsurface;

the second data set considers a conductivity model where the subsurface is re-

placed by air. Each of these two data sets consists of the measurements of the

three components of ~B taken at the receiver locations ([~B = Bx,By,Bz]>). The

secondary magnetic flux induced by the random conductive medium at the survey

area, denoted as ∆~Brandom, is then computed by subtracting the two data sets. The

estimation of ∆~Brandom requires two forward model simulations per frequency.

Now, to complete the validation for our oversampling technique we need to

compute a reference solution, a multiscaled solution with and without oversam-

pling and averaged-based homogenized solutions. We use the same machine

described in Section 4.4.1, MUMPS and MATLAB to run all the simulations pre-

sented in this section.

To compute a reference solution, we apply the MFV method on the staggered

fine OcTree mesh shown in Figure 4.8 (see [72, 86] for details). The average

computation time per single simulation is roughly 712 s. Figure 4.9 shows the

Euclidean norm of the total, real and imaginary parts of ∆~Brandom for each fre-

quency considered. The real and imaginary parts of the results obtained for the z-

component of ∆~Brandom, denoted as ∆Bz
random, at 100 Hz are shown in Figures 4.11(a)

and 4.12(a), respectively.

Next, we apply the MSFV method with and without oversampling on the coarse

OcTree mesh shown in Figure 4.10 to simulate ∆~Brandom. For this example, we use

extended domain sizes of 1, 2 and 4 fine-mesh padding cells. Each fine padding
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Figure 4.8: Subsurface part of the random heterogeneous isotropic electri-
cal conductivity model and large-loop EM survey setup. The model is
discretized on a fine OcTree mesh with 546,295 cells. The conductivity
varies over eight orders of magnitude throughout the whole model.

cell is of size (50 m)3. When using MSFV+O the total average run times per single

simulation for extended domain sizes of 1, 2 and 4 padding cells are roughly 106,

156 and 439 s, respectively. The real and imaginary parts of ∆Bz
random at 100 Hz for

extended domain sizes of 1, 2 and 4 padding cells are shown in Figures 4.11(b),

4.11(c) and 4.11(d), respectively; and Figures 4.12(b), 4.12(c) and 4.12(d), re-

spectively. On the other hand, when using MSFV (without oversampling), the total

average run time per single simulation is roughly 74 s. The real and imaginary
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Figure 4.9: Euclidean norm of total, real and imaginary parts of the refer-
ence (fine-mesh) solution for the random conductivity model per fre-
quency.

parts of ∆Bz
random at 100 Hz are shown in Figures 4.11(e) and 4.12(e), respectively.

Finally, we carry out MFV simulations using homogenized electrical conductiv-

ity models that we construct using volume-arithmetic, -geometric and -harmonic

averaging of the fine-mesh conductivity inside each coarse cell of the OcTree

mesh shown in Figure 4.10. The average run time per single simulation is roughly

115 s. The real and imaginary parts of ∆Bz
random at 100 Hz for each of the three

homogenized solutions are shown in Figures 4.11(f), 4.11(g) and 4.11(h), respec-

tively; and Figures 4.12(f), 4.12(g) and 4.12(h), respectively.

Table 4.4 shows the relative errors in Euclidean norm for the total, real and

imaginary parts of ∆~Brandom obtained from comparing the reference (fine-mesh)

solution with the MSFV, MSFV+O and MFV with three different homogenized so-

lutions for each frequency and local extended domain size. Table 4.5 shows the

relative errors in Euclidean norm for the magnitude of the three components of

∆~Brandom (∆~Brandom = [∆Bx
random,∆By

random,∆Bz
random]

>) obtained from comparing the ref-
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Figure 4.10: Subsurface part of the random heterogeneous isotropic electri-
cal conductivity model and large-loop EM survey setup. The model
is discretized on a coarse OcTree mesh with 60,656 cells. The con-
ductivity varies over eight orders of magnitude throughout the whole
model.

erence (fine-mesh) solution with the MSFV, MSFV+O and MFV with three different

homogenized solutions for each frequency and local extended domain size. Once

again, the relative error is computed as the ratio of the Euclidean norm of the dif-

ference of the fine and coarse-mesh data to the Euclidean norm of the fine-mesh

data. The coarse-mesh solutions are not interpolated to the fine mesh to com-

pute the error. Table 4.6 summarizes the average run time per single simulation

required to compute ∆~Brandom for each of the methods discussed. Figures 4.11 and
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4.12 show the results obtained for the real and imaginary parts of ∆Bz
random with

MFV on the fine-mesh, MSFV, MSFV+O with three different oversampling sizes,

and MFV with three different homogenized conductivity models for the frequency

of 100 Hz, respectively. All results are plotted using the same color scale and

range. From these tables and these figures we observe the following:

First, once again, we see that our oversampling technique improves the ac-

curacy for the total, real and imaginary response as well as for each of the three

components of the solution in comparison to the MSFV and MFV with three dif-

ferent homogenized conductivity models as the errors decrease with oversam-

pling. As expected, the homogenized conductivity model obtained from using

the volume-geometric mean produces the most accurate results as compared to

those obtained using volume-arithmetic and volume-harmonic means. The geo-

metric mean provides a reliable approximation of the effective conductivity if the

fine-scale variation satisfies certain conditions [163]. We also see that the multi-

scaled solutions are more accurate than the homogenized solutions.

Second, using a local extended domain size of 1 fine padding cell suffices to

improve the accuracy of the solution when compared with the rest of the methods

discussed and it is slightly more expensive than the solution obtained with MSFV.

We see that as the size of the local extended domain increases the error also

was slightly increased. This small increment in the error is still lower compared

to the error of the MSFV solution for most of the cases, except for the imaginary

part of ∆~Brandom at 100 Hz and the real part of ∆~Brandom at 400 Hz. We attribute the

increment in the error to the random and uncorrelated structure of the conductivity

model. On the one hand, increasing the oversampling size reduces the effect of

the imposed linear boundary conditions. This explains the improved accuracy of

the MSFV+O over MSFV. On the other hand, increasing the oversampling size

takes into account structures outside the core coarse cell that are not necessarily

correlated to the structures inside the core coarse cell. This biases the multiscale

basis towards structures outside the core cell and decreases the local approxima-

tion quality.

Third, comparing the relative accuracy for the two examples presented we

note the two data types differ significantly. In the Lalor example (Section 4.4.1),

the data is the response of the deep and buried conductive mineral deposit, which
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constitutes a rather weak secondary field compared to the primary field induced by

the air and background conductivity (Figure 4.4). In the random medium example,

the data is the response of the entire subsurface; the primary field here is only

for the air (Figure 4.9). Therefore, the ratio of the secondary to primary field is

much higher in the random example than for the Lalor example. Since the level

of accuracy of a simulation is relative to the total signal, the accuracy of a weaker

secondary signal is lower than for a stronger secondary signal.

Fourth, as in the previous example, the errors for the imaginary part of ∆~Brandom

for the frequencies of 1, 10, 20 and 40 Hz resemble the errors for total ∆~Brandom due

to the real part of ∆~Brandom is considerably smaller than their corresponding imag-

inary parts (Figure 4.9). For the frequencies of 100, 200 and 400 Hz, where the

real and imaginary parts of ∆~Brandom are roughly in the same order of magnitude

(Figure 4.9), we see the relative error for total ∆~Brandom represents the error contri-

butions of these two parts of the data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: Real part of the z component of the secondary magnetic flux induced by the random heterogeneous
conductive medium in the survey area, ∆Bz

random, for our large-loop EM survey at 100 Hz. (a) reference solution
computed using the MFV method on the fine OcTree mesh with 546,295 cells. (b), (c) and (d): results using
the MSFV+O method with 1, 2 and 4 padding cells on the coarse OcTree mesh, respectively. (e): results using
the MSFV (without oversampling) method on the coarse OcTree mesh with 60,656 cells. (f), (g) and (h): results
using MFV with the conductivity model homogenized using arithmetic, geometric and harmonic averaging on
the coarse OcTree mesh, respectively. All results are shown in picoteslas (pT) and plotted using the same color
scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Imaginary part of the z component of the secondary magnetic flux induced by the random heterogeneous
conductive medium in the survey area, ∆Bz

random, for our large-loop EM survey at 100 Hz. (a) reference solution
computed using the MFV method on the fine OcTree mesh with 546,295 cells. (b), (c) and (d): results using
the MSFV+O method with 1, 2 and 4 padding cells on the coarse OcTree mesh, respectively. (e): results using
the MSFV (without oversampling) method on the coarse OcTree mesh with 60,656 cells. (f), (g) and (h): results
using MFV with the conductivity model homogenized using arithmetic, geometric and harmonic averaging on
the coarse OcTree mesh, respectively. All results are shown in picoteslas (pT) and plotted using the same color
scale.
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Table 4.4: Relative errors in Euclidean norm for the total, real and imaginary
parts of the secondary magnetic fluxes induced by the random hetero-
geneous conductive medium in the survey area, ∆~Brandom. Note that pc
stands for padding cells.

Table of relative errors in Euclidean norm for ∆~Brandom

Frequency
Method 1 Hz 10 Hz 20 Hz 40 Hz 100 Hz 200 Hz 400 Hz

Relative errors for total ∆~Brandom (per cent)
MFV + Arithmetic 10.50 9.95 8.67 6.27 3.90 2.69 1.81
MFV + Geometric 9.77 9.51 8.83 7.24 4.96 3.35 1.96
MFV + Harmonic 21.38 20.94 19.76 16.53 10.64 7.09 3.84
MSFV 4.41 4.22 3.74 2.77 1.75 1.20 0.76
MSFV+O (1 pc) 0.43 0.53 0.66 0.80 0.66 0.54 0.44
MSFV+O (2 pc) 0.72 0.80 0.94 1.05 0.83 0.64 0.49
MSFV+O (4 pc) 0.93 0.99 1.10 1.17 0.87 0.66 0.49

Relative errors for real part of ∆~Brandom (per cent)
MFV + Arithmetic 38.36 35.03 27.89 16.56 7.68 3.52 0.75
MFV + Geometric 25.39 24.38 21.88 16.32 9.33 5.32 2.53
MFV + Harmonic 53.99 52.57 48.75 38.45 20.64 11.03 4.02
MSFV 14.96 13.89 11.46 7.14 3.44 1.67 0.44
MSFV+O (1 pc) 1.60 1.32 0.71 0.72 1.00 0.78 0.59
MSFV+O (2 pc) 0.71 0.50 0.50 1.37 1.38 0.97 0.65
MSFV+O (4 pc) 0.44 0.57 1.02 1.79 1.51 1.02 0.67

Relative errors for imaginary part of ∆~Brandom (per cent)
MFV + Arithmetic 10.49 9.11 6.32 2.59 0.44 1.99 2.51
MFV + Geometric 9.77 9.12 7.62 4.79 1.78 0.78 1.00
MFV + Harmonic 21.37 20.14 17.06 10.31 2.35 2.39 3.63
MSFV 4.41 3.91 2.85 1.29 0.24 0.79 0.99
MSFV+O (1 pc) 0.43 0.51 0.67 0.81 0.49 0.31 0.19
MSFV+O (2 pc) 0.73 0.81 0.95 1.00 0.52 0.28 0.19
MSFV+O (4 pc) 0.93 1.00 1.10 1.04 0.48 0.25 0.20
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Table 4.5: Relative errors (per cent) in Euclidean norm for the magnitude of
the x, y and z components of the secondary magnetic fluxes induced by
the mineral deposit in the survey area, ∆~Brandom. Note that pc stands for
padding cells.

Method ∆Bx
random ∆By

random ∆Bz
random ∆Bx

random ∆By
random ∆Bz

random

Frequency of 1 Hz
MFV+Arithmetic 8.24 8.56 10.90
MFV+Geometric 6.80 6.15 10.34
MFV+Harmonic 16.48 16.06 22.33
MSFV 3.30 3.34 4.61
MSFV+O (2 pc) 0.90 0.86 0.26
MSFV+O (4 pc) 1.13 1.04 0.62
MSFV+O (8 pc) 1.26 1.18 0.86

Frequency of 10 Hz Frequency of 100 Hz
MFV+Arithmetic 7.78 8.08 10.33 2.90 3.09 4.12
MFV+Geometric 6.58 5.95 10.07 2.82 2.45 5.43
MFV+Harmonic 16.08 15.66 21.88 7.38 7.00 11.40
MSFV 3.14 3.18 4.41 1.22 1.25 1.87
MSFV+O (2 pc) 0.95 0.91 0.38 0.94 0.89 0.57
MSFV+O (4 pc) 1.17 1.09 0.71 1.06 0.99 0.76
MSFV+O (8 pc) 1.30 1.22 0.92 1.06 0.98 0.82

Frequency of 20 Hz Frequency of 200 Hz
MFV+Arithmetic 6.71 6.97 9.02 2.23 2.44 2.79
MFV+Geometric 6.02 5.43 9.38 1.76 1.57 3.73
MFV+Harmonic 15.03 14.62 20.69 4.81 4.60 7.69
MSFV 2.76 2.78 3.92 0.97 1.04 1.26
MSFV+O (2 pc) 1.04 1.00 0.56 0.78 0.75 0.45
MSFV+O (4 pc) 1.26 1.18 0.86 0.84 0.79 0.58
MSFV+O (8 pc) 1.36 1.28 1.04 0.83 0.77 0.61

Frequency of 40 Hz Frequency of 400 Hz
MFV+Arithmetic 4.72 4.91 6.56 1.83 2.04 1.76
MFV+Geometric 4.70 4.21 7.76 0.92 0.95 2.21
MFV+Harmonic 12.23 11.83 17.42 2.68 2.68 4.18
MSFV 1.98 1.99 2.92 0.83 0.92 0.71
MSFV+O (2 pc) 1.12 1.07 0.71 0.62 0.63 0.35
MSFV+O (4 pc) 1.31 1.24 0.99 0.64 0.63 0.43
MSFV+O (8 pc) 1.37 1.30 1.12 0.62 0.60 0.44
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Table 4.6: Average run time in seconds per simulation required to compute
∆~Brandom on a two hexa-core Intel Xeon X5660 CPUs at 2.8 Hz with 64
GB shared RAM using MATLAB. Setup time: time required to compute
the local interpolation matrices and to assemble the reduced system of
equations to be solved. Solve time: time to solve the reduced system of
equations. Total time: the sum of the setup and solve times.

Method Setup time (s) Solve time (s) Total time (s)

MFV on fine OcTree mesh - 721 s 721 s
MFV + Arithmetic - 114 s 114 s
MFV + Geometric - 115 s 115 s
MFV + Harmonic - 115 s 115 s
MSFV 42 s 32 s 74 s
MSFV+O (1 padding cells) 74 s 32 s 106 s
MSFV+O (2 padding cells) 124 s 32 s 156 s
MSFV+O (3 padding cells) 406 s 33 s 439 s
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4.5 Summary

In this chapter, we developed an oversampling technique for the multiscale FV

method proposed in [73] to simulate quasi-static EM responses in the frequency

domain for geophysical settings that include highly heterogeneous conductive me-

dia and features varying at different spatial scales. Simulating these types of geo-

physical settings requires both large CPU time and memory usage; they often

need a very large and fine mesh to be discretized accurately. To the best of my

knowledge, this is the first investigation focused on developing an oversampling

technique for geophysical EM problems in the multiscale literature.

The method begins by assuming a coarse mesh nested into a fine mesh,

which accurately discretizes the geophysical setting. For each coarse cell, we

independently solve a local version of the original Maxwell system subject to linear

boundary conditions on an extended domain. To solve the local Maxwell system,

we use the fine mesh contained in the extended domain and the MFV method

(although a FE approach can be used for this part as well). Afterwards, these local

solutions, called basis functions, together with a weak-continuity condition are

used within a Galerkin approach to construct a coarse-mesh (projected) version

of the global problem that is much cheaper to solve.

For the examples presented, the proposed oversampling method significantly

improves the accuracy relative to the MSFV method (without oversampling) pro-

posed in [73] at the cost of more computing power, which is still lower than the

cost of the fine-mesh solution. Our method produces results comparable to those

obtained by simulating EM responses using MFV on a fine mesh, while drastically

reducing the size of the linear system of equations and the computational time.

Using the oversampling technique in the presented examples in combination with

an OcTree mesh (i.e., an adaptive mesh refinement technique), the size of the

coarse-mesh system is only about 10% of the fine-mesh system size, while the

relative error is significantly reduced for all the cases considered.

Although the examples presented demonstrate a significant advantage of us-

ing the MSFV with oversampling (as opposed to using MSFV without oversam-

pling) to forward modeling geophysical EM responses in highly heterogeneous

conductive media, there may be some cases where the proposed oversampling
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technique may fail. For example, when the underlying conductivity structure con-

tains features with large connectivities (e.g. a steel-cased well). For such cases,

one alternative is to use large oversampling domains, which may increase signifi-

cantly the cost of the forward simulation.

117



Chapter 5

Concluding Remarks

A smooth sea never made a skillful sailor. — Franklin D. Roosevelt

5.1 Summary of Work and Research Highlights

The aim of this dissertation is to investigate the applicability and feasibility of up-

scaling and multiscale methods for efficiently modeling geophysical quasi-static

EM frequency-dependent problems. Modeling EM responses in complex geo-

physical settings is crucial to the exploration, imaging and characterization of

buried natural resources, such as mineral and ground water deposits, and hy-

drocarbon reserves. However, in practice, accurately simulating these types of

geophysical settings can be computationally very expensive.

Realistic EM geophysical settings typically consider large computational do-

mains, features that vary at multiple spatial scales, and a wide variation over sev-

eral orders of magnitude of the physical properties of the heterogeneous media

(e.g. electrical conductivity). Since all of these factors can have a significant im-

pact on the behavior of the EM responses of interest, if we need to obtain an

accurate approximation to the EM responses, the simulation mesh used in tra-

ditional discretization techniques (e.g. FE or FV) should be able to capture the

structure of the heterogeneity present in the setting with sufficient detail. This

need leads to the use of a very large mesh to discretize the model, which results

into solving a very large, and often very ill-conditioned, system of equations —
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in some cases, in the order of millions, or even larger than billions of unknowns.

Such a large system of equations require specialized computing resources (e.g.

clusters) to be solved. When an EM simulation is conducted in practice (e.g. for

different frequencies or survey configurations) or within an EM inversion proce-

dure (where there is the need to deal with adjoint operators per frequency and/or

source), several forward EM simulations must be conducted [68]. This can lead to

a very computational expensive process overall, and therefore it is of interest to

reduce effectively the computational cost of individual EM simulations.

In satisfying the aim of this investigation, I initially focused on identifying the

core mathematical ideas of some of the successful upscaling and multiscale meth-

ods for the problem of modeling single-phase fluid flow in highly heterogeneous

porous media, whose leading mathematical model is given by a linear elliptic PDE

(i.e., Poisson’s equation), which is a real and scalar PDE. Such a problem shares

several key challenges similar to the problem of simulating geophysical EM re-

sponses in highly heterogeneous settings, namely, the governing PDE model in

both problems is linear, the simulation considers large-scale computational do-

mains, features varying at multiple spatial scales, and a wide variation over several

orders of magnitude of the physical properties (e.g. permeability) of the media.

According to the literature review conducted (see Chapter 2), there is extensive

evidence demonstrating that for linear flow in porous media problems, upscaling

and multiscale FE/FV methods are able to drastically reduce the cost of the sim-

ulation, while yielding results whose accuracy is similar to that of those obtained

with FE or FV on a fine mesh. Surprisingly, when I began this investigation, little

research was done along these lines for the problem of simulating geophysical

EM responses in highly heterogeneous settings.

Once the core mathematical ideas of some of the successful upscaling and

multiscale FE/FV methods developed for flow in porous media problems were

identified (see Section2.6), I extended these ideas to develop two new simulation

methods for the quasi-static Maxwell’s equations in the frequency domain:

1. An upscaling framework for the electrical conductivity, which is thoroughly

discussed in Chapter 3. The investigation for this topic resulted in an ex-

panded abstract [29] and a peer-reviewed publication [32].
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2. A multiscale FV with oversampling method, which is thoroughly discussed

in Chapter 4. The investigation for this topic resulted in two expanded ab-

stracts [30] and [31], and a peer-reviewed publication [33].

Both methods were implemented using the parallel computing toolbox of MAT-

LAB, and they can use both tensor and OcTree meshes. In order to test the

performance of each method, field-inspired and synthetic examples that include

highly heterogeneous conductive media were considered.

The examples presented demonstrate that both proposed upscaling and mul-

tiscale with oversampling methods can be feasible and applicable to geophysical

quasi-static EM problems in the frequency domain. In addition, this investigation

shows that the combination of both methods with locally refined OcTree meshes

is particularly advantageous to tackle complex geophysical EM modeling prob-

lems. This combination enables both proposed methods to drastically reduce the

size of the problem when using a large domain and a mesh that must capture the

spatial distribution of the media heterogeneity outside the region where the EM

responses are measured. In practice, these two modeling aspects are part of the

principle reasons why the cost of geophysical EM simulations is computationally

expensive.

The examples presented indicate that the accuracy of a coarse-mesh solu-

tion obtained with the two methods proposed in this dissertation depends on two

factors. First, the given fine-mesh (conductivity) model should be accurately dis-

cretized. The accuracy of the coarse-mesh solution is as good as the accuracy of

the conventional discretization method used (in this case MFV) to solve the fine-

mesh problem. Second, as it was shown in Sections 3.5 and 4.4, the coarse-mesh

needs to be carefully designed because it can significantly impact the quality of the

solution. For the examples presented, the mesh is designed to maintain the same

resolution as the fine mesh where the EM responses are expected to vary rapidly

inside the survey area where they are measured (i.e., at the source(s) and re-

ceivers locations). The estimate of the proper cell sizes of the coarse mesh inside

the survey area is based on the skin depth, which is a typical mesh-design crite-

rion used in practice for geophysical EM forward modeling simulations [68, 138].

Furthermore, for the conductivity models used to test the two proposed methods,
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it is possible to aggressively coarsen the mesh outside the survey area without

losing much accuracy. However, aggressively coarsening the mesh outside the

survey area may not be possible for all cases. For example, when the underlying

electrical conductivity structure have large connectivities.

The set of local Dirichlet boundary conditions (shown in Table 3.3) used to

solve the local problems inside every coarse-mesh cell for both proposed upscal-

ing and multiscale with oversampling approaches provided reasonable estimates

for the examples presented in this dissertation. However, this set of boundary

conditions may not be appropriate to compute accurate coarse-mesh approxima-

tions using the proposed two methods for all cases. In this investigation, the use

of an extended local domain to solve the local problems mitigated the effect of im-

posing the chosen local boundary conditions, which may cause a reduction on the

accuracy of the coarse-mesh solution for highly heterogeneous conductive media.

For example, such effect can be particularly observed when high contrast of con-

ductivity is present at the boundary of a coarse-mesh cell. Although using a local

extended domain significantly improved the accuracy of the coarse-mesh solution

for the cases considered, there may be other cases where this approach may not

be sufficient. For example, when the underlying conductivity structure contains

features with rather long connectivities (e.g. a steel-cased well). For such cases,

one alternative is to use larger local extended domains, which may come at the

cost of more computing time. Similar observations regarding the effect of local

boundary conditions and the use of local extended domains are consistent with

what has been reported in the upscaling and multiscale literature for flow in porous

media problems.

The proposed upscaling method requires a more cautious setup to perform

efficiently. It involves a number of parameters to be decided upon depending on

the purpose and requirements of the simulation. If the involved parameters are

well chosen, the proposed upscaling method retrieves accurate results. Other-

wise, the proposed upscaling method can also be quite inaccurate. In general,

upscaling methods lack the build-in feature to transition from the coarse mesh to

the fine mesh that multiscale approaches have and, often, they lack generality (cf.

[23, 51]). The proposed upscaling method is not an exception to this observation.

However, if there is the need to generate a coarse-scale electrical conductivity
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model from a fine-scale conductivity model, as in the well log conductivity exam-

ple presented in Section 3.3, the proposed upscaling method offers quite reliable

results to do so.

The 3D examples presented in this dissertation, demonstrate that multiscale

with oversampling can retrieve accurate solutions at a fraction of the cost of the

fine-mesh solution, even when the coarsening is extreme according to the empir-

ical skin depth mesh-design criteria. In contrast, computing an upscaled solution

using the proposed upscaling framework is significantly more expensive than com-

puting a fine-mesh or a multiscaled solution. As it was shown in Chapter 3, the

computational cost comes from solving a local parameter estimation problem for

every coarse cell. In addition, multiscale methods have the built-in feature to inter-

polate the solution from the coarse mesh to the fine mesh, which opens the door

for a natural extension of this methodology to a multilevel method. I will elaborate

more about such potential multilevel extension in Section 5.3.

The next two sections summarize the work done and highlight the specific

contributions for each of the two methods proposed in this dissertation.

5.1.1 Upscaling: Summary and Highlights

Chapter 3 proposes an upscaling framework for the electrical conductivity that

poses upscaling as a least-squares parameter estimation problem. This upscal-

ing framework constructs a coarse-mesh conductivity model by solving a non-

linear optimization problem for each coarse-mesh cell. Such optimization prob-

lem minimizes the difference between the user-chosen EM responses, which are

computed using the fine- and coarse-scale quasi-static Maxwell’s equations. The

constructed coarse-mesh conductivity models can be scalar or full SPD tensor

models, depending on the purpose and context of the simulation. Contrary to

other least-squares upscaling formulations in the literature for flow in porous me-

dia problems (Section 2.6.1), the formulation proposed in this investigation does

not require regularization and it is practical to tackle 3D geophysical EM problems

with arbitrary electrical conductivity structures (for details in the discussion see

Section 3.4). For the 1D and 3D examples presented, the size of the coarse-

mesh system solved was roughly 10% of the fine-mesh system size, while the
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relative errors (in the secondary fields) were less than 5%. To the best of my

knowledge, this investigation constitutes the first upscaling approach proposed

for geophysical EM problems in the literature.

The proposed upscaling method is more expensive than MFV in a fine mesh

as (local) optimization problems need to be solved per coarse-mesh cell; however,

since each local problem is formulated independently of the others, the cost can

be reduced by using a more efficient parallel implementation of the method on a

more powerful machine.

The most important lesson learned from this investigation is that different ex-

periments require different upscaling criteria that result in different upscaled quan-

tities. That is, for a given fine-scale conductivity structure, there is no unique

upscaled model which completely describes it. The examples presented demon-

strate that using the proposed upscaling method for different frequencies in the

survey configuration leads to different upscaled models. Similarly changing the

type of EM responses to be matched in the upscaling criterion leads to different

upscaled conductivities.

5.1.2 Multiscale with Oversampling: Summary and Highlights

Chapter 4 proposes a MSFV with an oversampling method. Contrary to the case

of upscaling methods, where no previous research work along that line was done

for geophysical EM problems, the MSFV method for the quasi-static Maxwell’s

equations was first proposed in [73]. In this investigation, I found that MSFV

could produce quite inaccurate solutions due to the effect of the local boundary

conditions used to construct the multiscale basis functions in each coarse-mesh

cell. In order to solve this issue, I extended the oversampling technique origi-

nally proposed by [89], which has been quite effective to tackle a related issue

for single-phase flow in porous media problems, for application to geophysical EM

problems. In the proposed oversampling technique, the multiscale basis functions

are computing using an extended local domain. Doing so, the multiscale basis

functions take into account structures outside the core coarse cell and the effect

of the local boundary conditions is reduced. Then, the oversampled basis together

with a weak-continuity condition are used to construct a coarse-mesh version of
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the global problem. To the best of my knowledge, this is the first investigation

focused on developing an oversampling technique for geophysical EM problems

in the literature.

For the 3D examples presented, the proposed oversampling technique signif-

icantly increases the accuracy of the MSFV method at the expense of more com-

putational run time, which however, depending on the size of the extended domain

chosen, can still be considerably lower compared to the time of the fine-mesh so-

lution. Although the examples presented demonstrate a significant advantage of

using the MSFV with oversampling (as opposed to using MSFV without oversam-

pling) to forward modeling geophysical EM responses in highly heterogeneous

conductive media, there may be some cases where the proposed oversampling

technique may fail. For example, when the underlying conductivity structure con-

tains features with large connectivities (e.g. a steel-cased well). For such cases,

one alternative is to use large oversampling domains, which may increase signifi-

cantly the cost of the forward simulation.

5.2 Impact to the Field of Computational Methods in
Geophysical Electromagnetics

The impact of this investigation to the current field of computational methods in

geophysical EM can be summarized in the following three outcomes.

On a theoretical level, one outcome of this study is the advancement of knowl-

edge by contributing two new methods to efficiently solve the quasi-static Max-

well’s equations in the frequency domain with highly discontinuous coefficients

and features at multiple length scales: (1) an upscaling method and (2) a multi-

scale FV with oversampling method. Both methods have the potential to be useful

for other applications that have the same underlying mathematical model, for ex-

ample, in the fields of medical imaging and the various engineering branches,

such as electrical, mechanical or materials engineering.

On a practical level, a second outcome of this study is that it lays the foun-

dation to develop more efficient and usable parallel computing environments for

both multiscale and upscaling methods to simulate EM responses in complex geo-

physical settings. In particular, these simulation environments combine upscaling
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and multiscale methods with adaptive mesh refinement techniques. Doing so in-

creases our current predictive and analytic capabilities by making the simulation

of EM responses in larger and more complex geophysical settings more feasible

than currently is possible.

A third outcome of this study is that it demonstrates a novel use of upscaling

and multiscale methods for geophysical EM applications. Developments in up-

scaling and multiscale methods have been primarily within the field of modeling

flow in porous media. This investigation extends the ideas developed for such

methods for application to Maxwell’s equations, which is more involved due to the

complex, vectorial nature of the Maxwell system.

5.3 Remaining Challenges and Future Research

This study demonstrates the feasibility and applicability of both upscaling and

multiscale approaches to simulate EM responses in complex geophysical settings.

Nonetheless, there remain some challenges to overcome and there are some

interesting paths to extend both research directions.

A natural first extension for both upscaling and multiscale methods proposed

here is to adapt them for solving quasi-static EM problems in the time domain.

In addition, both proposed methods can be adapted to use a different base dis-

cretization method to solve the local Maxwell problems, such as a mimetic FD

([121]) or FE ([104, 131], instead of the MFV method (Section 2.4).

For both proposed upscaling and multiscale methods, the open question re-

mains: ‘what is the best set of boundary conditions to solve the local problems

on each coarse-mesh cell?’ An idea for selecting better local boundary conditions

would be to incorporate global information in the solution of the problem, as it is

done in the upscaling community for local-global approaches (e.g. [49, 61, 112]

for flow in porous media upscaling methods.)

This study assumes that only the electrical conductivity (Σ) captures the het-

erogeneity of the geophysical setting. This is a reasonable assumption as in most

geological environments, variations in the Earth’s magnetic permeability are in-

significant and EM surveys are only sensitive to contrasts in the Earth’s electrical

conductivity [138]. However, there are geophysical applications where the mag-
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netic susceptibility (µ) can be heterogeneous as well. For example, when mod-

eling settings that consider steel-well casing or some ore-bearing rocks, which

have very high magnetic permeabilities. An extension of the upscaling frame-

work for µ is possible using the least-squares formulations proposed in Chapter

3. However, it will require a rigorous investigation to make appropriate choices

for the number of parameters involved (e.g. data to be matched in the upscaling

criterion, boundary conditions for local problems, etc.). Contrary to the upscaling

approach, handling both heterogeneous µ and Σ simultaneously in the multiscale

FV with oversampling method proposed in Chapter 4 is relatively straight forward.

The discretization of the local Maxwell systems required to compute the local pro-

jection matrices in this case can be done as described in Section 2.4. The rest of

the multiscale-related processes remain the same.

Other possible extensions for the upscaling framework proposed in this study

include the construction of complex anisotropic upscaled conductivities, which is

of relevance for geophysical EM applications where induced polarization effects

appear (e.g. [125]). In addition, the formulation can be adapted to choose the data

to be matched in the upscaling criterion among the different electric or magnetic

fields or fluxes (i.e., ~E, ~H,~B or ~J), or some combination of them. I elaborated more

about these ideas in Sections 3.2 and 3.4.

Another interesting research path is to extend the two-level multiscale FV

method for the quasi-static Maxwell’s equations into a multilevel method. One of

the major challenges along this line is on how to construct a hierarchy of coarse

spaces and their corresponding inter-level transfer operators, as well as the cor-

responding approximation properties that guarantee proper bounds for the dis-

cretization error. Once this first (major) challenge has been figure it out, the next

major step has to do with designing an efficient parallelization for such a mul-

tilevel method. As discussed in Section 2.6.3, the multilevel multiscale mimetic

method (M3) ([119]) and the element-based AMG (AMGe) method ([113, 140])

have shown promising results along these lines for flow in porous media prob-

lems. I have conducted some preliminary work along these two directions, which

I describe below.

• This study lays the foundation for the construction of oversampled multi-
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scale basis functions for the electric field, ~E (for every coarse-mesh cell)

in a two-level setting. However, in order to construct a hierarchy of coarse

spaces required for a robust mimetic multilevel extension, it is also of in-

terest to generate the basis functions for ~B. In collaboration with some

colleagues at UBC, we are currently investigating the extension of the (two-

level) M3 method to the Maxwell’s equations. This investigation focuses on

constructing mimetic multiscale basis functions for both ~E and ~B, while as-

suming that both µ and Σ are highly discontinuous (heterogeneous). The

extension also considers both frequency- and time-domain EM problems.

We have obtained some preliminary positive results. Such results are not

documented in this dissertation, since they are out of the scope of this study

and they require a significant amount of effort to constitute a full further

study.

• While being a summer research intern at Lawrence Livermore National Lab-

oratory, I conducted some preliminary studies on using their (C++) AMGe

library to upscale the quasi-static Maxwell’s equations in the time domain.

Such study focused on investigating the multilevel capability of the AMGe li-

brary and its computational performance. In this case, I also obtained some

preliminary positive results. Such preliminary results are not documented

in this dissertation, since they are off-topic and they require a significant

amount of effort to constitute a full further study. However, research along

this direction seems promising to speed up the computational performance

for further geophysical EM problems.

There are several other research directions to be explored that can lead to

interesting extensions for the two methods presented in this dissertation. Only

the immediate extensions that I envision where discussed above; however, one

can continue to gain inspiration from the current successful developments and

applications of both upscaling and multiscale methods in the field of petroleum

engineering.

This investigation proposed two innovative mathematical alternatives to im-

prove the computational performance of solving realistic geophysical EM forward

problems in a more sustainable way than currently is possible. It also opened the
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door to use such alternatives to create more powerful computational environments

capable of simulating EM responses in larger and more complex geophysical set-

tings than currently is possible. Working on advancing this type of computational

tools is important because they have a tangible impact in the overall processes of

imaging and monitoring buried natural resources using geophysical EM methods.
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