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Abstract. The elasticity of materials is important for
our understanding of processes ranging from brittle fail-
ure, to flexure, to the propagation of elastic waves.
Seismologically revealed structure of the Earth’s mantle,
including the radial (one-dimensional) profile, lateral
heterogeneity, and anisotropy are determined largely by
the elasticity of the materials that make up this region.
Despite its importance to geophysics, our knowledge of
the elasticity of potentially relevant mineral phases at
conditions typical of the Earth’s mantle is still limited:
Measuring the elastic constants at elevated pressure-
temperature conditions in the laboratory remains a ma-
jor challenge. Over the past several years, another ap-
proach has been developed based on first-principles
quantum mechanical theory. First-principles calcula-
tions provide the ideal complement to the laboratory
approach because they require no input from experi-
ment; that is, there are no free parameters in the theory.
Such calculations have true predictive power and can
supply critical information including that which is diffi-
cult to measure experimentally. A review of high-pres-
sure theoretical studies of major mantle phases shows a
wide diversity of elastic behavior among important tet-
rahedrally and octahedrally coordinated Mg and Ca
silicates and Mg, Ca, Al, and Si oxides. This is particu-
larly apparent in the acoustic anisotropy, which is essen-
tial for understanding the relationship between seismi-
cally observed anisotropy and mantle flow. The acoustic
anisotropy of the phases studied varies from zero to

more than 50% and is found to depend on pressure
strongly, and in some cases nonmonotonically. For ex-
ample, the anisotropy in MgO decreases with pressure
up to 15 GPa before increasing upon further compres-
sion, reaching 50% at a pressure of 130 GPa. Compres-
sion also has a strong effect on the elasticity through
pressure-induced phase transitions in several systems.
For example, the transition from stishovite to CaCl2
structure in silica is accompanied by a discontinuous
change in the shear (S) wave velocity that is so large
(60%) that it may be observable seismologically. Unify-
ing patterns emerge as well: Eulerian finite strain theory
is found to provide a good description of the pressure
dependence of the elastic constants for most phases.
This is in contrast to an evaluation of Birch’s law, which
shows that this systematic accounts only roughly for the
effect of pressure, composition, and structure on the
longitudinal (P) wave velocity. The growing body of
theoretical work now allows a detailed comparison with
seismological observations. The athermal elastic wave
velocities of most important mantle phases are found to
be higher than the seismic wave velocities of the mantle
by amounts that are consistent with the anticipated ef-
fects of temperature and iron content on the P and S
wave velocities of the phases studied. An examination of
future directions focuses on strategies for extending
first-principles studies to more challenging but geophysi-
cally relevant situations such as solid solutions, high-
temperature conditions, and mineral composites.

1. INTRODUCTION

The behavior of Earth materials at high pressure is
central to our understanding of the structure, dynamics,
and origin of the Earth. Over the range of conditions
that exist within the Earth’s mantle, the physical prop-

erties of condensed matter depend more strongly on
pressure than on other factors such as temperature. The
dominant role of pressure, which originates in gravita-
tional self-compression, is reflected in the sublithos-
pheric structure of the Earth, which is spherically sym-
metric to within a few percent. The response of materials
to pressure is governed by an elastic modulus, a rela-
tionship embodied, for example, in the Adams-William-
son equation.

In geophysics, we are concerned with the response of
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materials to deviatoric as well as hydrostatic sources of
stress. Although deviatoric stresses in the Earth’s inte-
rior are small compared with the pressure, they are
important because of their connection to dynamical pro-
cesses [Ruff, 2001]. Elastic properties govern processes
with a characteristic timescale less than the Maxwell
relaxation time [e.g., Jeanloz and Morris, 1986]

�M � �/G, (1)

where � is the viscosity, which depends strongly on
temperature, and G is the shear modulus. In the litho-
sphere the viscosity is large and the relaxation time may
be longer than the age of the Earth. In this region,
knowledge of the elastic constants is important for un-
derstanding lithospheric flexure, the onset of brittle fail-
ure, and the earthquake source [Turcotte and Schubert,
1982; Aki and Richards, 1980]. In the mantle the relax-
ation time is much shorter and is of the order of 1000
years. Here knowledge of the elastic constants is primar-
ily important for understanding the propagation of elas-
tic waves, and normal mode oscillations.

The elastic constants of Earth materials vary sub-
stantially over the range of conditions present in the
Earth’s mantle. With increasing depth, pressure in-
creases rapidly, reaching 136 GPa at the base of the
mantle [Dziewonski and Anderson, 1981] (Figure 1). The
pressure at the base of the mantle is comparable to the
bulk modulus of many common minerals and to the
pressure scale required to induce significant changes in
the electronic structure of materials [Bukowinski, 1984;
Stixrude et al., 1998]. It is natural for us to expect that
elastic properties under such extreme conditions are

very different from those at ambient conditions. Pres-
sure-induced changes in the elastic constants will reflect
changes in the structure and in the nature of bonding
due to compression and to phase transformations.

The study of the elastic constants of Earth materials
at high pressure provides fruitful ground for an explo-
ration of the foundations of material behavior in the
relationship between structure and bonding. The fourth-
ranked elastic constant tensor is unusually rich in this
regard and reflects the symmetry of the underlying struc-
ture. For example, the contrast between periodic and
nonperiodic condensed matter is immediately apparent
in the elastic anisotropy, a distinction that is not as clear
in tensorial properties of lower rank such as the index of
refraction, which is isotropic for cubic and nonperiodic
materials alike [Nye, 1985]. Several studies have used
measurements of the elastic constants of particular
Earth materials to deepen our understanding of the
relationship between elasticity, structure, composition,
and bonding [e.g., Weidner and Vaughan, 1982].

The study of the elasticity of Earth materials has
become increasingly important over the last decade, as
contributions from global seismic tomography, seismo-
logical investigations of geographically and radially lo-
calized regions, mantle discontinuities, analysis of nor-
mal modes of oscillations, and other types of studies
have revealed the Earth’s mantle in unprecedented de-
tail [Romanowicz, 1991; Masters et al., 1996; Gaherty et
al., 1996; Garnero and Helmberger, 1996; Shearer, 2000;
Ishii and Tromp, 1999]. The spherically averaged (one-
dimensional) structure of the interior is affected by
solid-solid phase transitions, by variations in tempera-
ture with depth (the geotherm), and by any depth-
dependent variations in bulk composition that may be
present [Birch, 1952; Jeanloz and Thompson, 1983].
More recent studies have revealed deviations from radi-
ally symmetric structure which, though small, are partic-
ularly significant because they may be intimately linked
to geodynamical processes. For example, anisotropy may
be produced by shear deformation associated with man-
tle flow [Montagner, 1998]. Lateral heterogeneity pre-
sumably reflects lateral variations in temperature, which
are expected in a convecting system, as well as lateral
variations in phase assemblage and bulk composition
[Anderson, 1987; Robertson and Woodhouse, 1996; van
der Hilst et al., 1997; van der Hilst and Karason, 1999].

To the extent that the interior behaves elastically, the
propagation of seismic waves is determined by the elastic
constants of the component materials. Comparison of
the elastic properties of potentially relevant minerals
with seismic observations permits us to relate those
observations to geological process and to the thermal
and chemical state of the interior [Birch, 1952]. The
robustness of this approach is hindered by a number of
factors, including anelasticity, the observed attenuation
and dispersion of seismic waves within the seismic band
[Anderson and Given, 1982]. A more serious limitation
has been a lack of knowledge of the relevant material

Figure 1. Schematic structure of the Earth’s interior.
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properties at the extreme conditions of the Earth’s inte-
rior. Major advances in experimental techniques have
now made it possible to measure the elasticity of min-
erals over a considerable pressure and temperature
range [Liebermann and Li, 1998]. Nevertheless, there are
still tremendous challenges in measuring properties such
as single-crystal elastic constants in situ.

More recently, an approach complementary to exper-
iment has been developed based on theoretical methods.
Recent advances in theory, computational schemes, and
hardware have made it possible to solve the fundamental
equations of quantum mechanics for large and complex
systems. For fundamental, rather than practical, reasons,
the equations still cannot be solved exactly, but assump-
tions can be reduced to a bare minimum. Methods
that make only the essential approximations are
known as first-principles methods. Here we focus on
first-principles methods based on density functional
theory [Hohenberg and Kohn, 1964; Kohn and Sham,
1965], in principle an exact description of ground state
electronic and structural properties. These are self-con-
sistent calculations that are completely independent of
experiment and make no assumptions regarding the
nature of bonding or the electronic structure.

Here we focus on the contributions of first-principles
theory to our understanding of mantle elasticity. The
subject has not been reviewed before, as the theoretical
and computational advances that have made these cal-
culations possible have occurred rapidly over the last
decade. The theory can be only briefly described here;
the interested reader is referred to more extensive ac-
counts of density functional theory [Lundqvist and
March, 1987; Jones and Gunnarsson, 1989], its applica-
tion to the solid state [Heine, 1970; Cohen and Heine,
1970; Payne et al., 1992], and theoretical studies in the
context of Earth materials [Wentzcovitch and Price, 1996;
Stixrude et al., 1998]. A theme of this review will be that
while the calculations are state of the art, they are not
exact, and contact with experiment is essential in order
to assess the approximations that must be made. A
number of good reviews exist on the experimental study
of Earth materials at high pressure and high tempera-
ture and on the measurement of elastic properties in
particular [Anderson et al., 1992; Liebermann and Li,
1998].

We first describe the basic theory of elasticity in the
context of single crystals and polycrystalline aggregates.
Then we briefly sketch first-principles methods based on
density functional theory and place these in the context
of other theoretical methods. Our review of results re-
volves around the following themes: (1) the effect of
pressure on the elastic constants, (2) an understanding
of the role of composition and structure in determining
the elastic constants of a particular phase, and (3) com-
parison with the seismic observations of the Earth’s
mantle. The latter theme highlights issues that have not
yet been addressed with first-principles calculations in-
cluding anelasticity, the deformation of aggregates, and

the effect of temperature. A discussion of future pros-
pects focuses on some of these issues and anticipates
further progress in our understanding of the mantle.

2. BASIC THEORY OF ELASTICITY

2.1. Strain and Stress Tensors
The elastic constants relate applied external forces,

described by the stress tensor, to the resulting deforma-
tion, described by the strain tensor. We view a crystal as
a homogeneous, anisotropic medium and assume that
stress and strain are homogeneous. In the context of
geophysics it is sensible to divide the stress into two
parts: a prestress, which is nearly hydrostatic throughout
most of the Earth’s interior, and a further infinitesimal
stress of general symmetry. Following Davies [1974], we
will specialize our development to the case of hydrostatic
prestress, noting that this simplification is strictly valid
only for those parts of the Earth that cannot support
significant deviatoric stresses over geologic time (e.g.,
the sublithospheric mantle). The strain will also be sep-
arated into a large finite deformation associated with the
prestress and an infinitesimal strain associated with the
incremental stress.

Consider a material point that can be located with
respect to Cartesian axes. In the natural or unstressed
state, its location is described by the vector a. Its position
after the application of prestress is denoted by X and
after the application of the further infinitesimal stress by
x. The relationship between the prestressed and final
positions is given by the displacement

ui � xi � Xi. (2)

We assume that there exists a unique, linear, one-to-one
mapping between natural, prestressed, and final coordi-
nates that may be described by the displacement gradi-
ents, u, v, and w,

xi � Xi � uijXj (3)

xi � ai � v ijaj � wijxj, (4)

where the definition of v implies a Lagrangian frame of
reference and the definition of w implies a Eulerian
frame.

The displacement gradients contain contributions
from deformation and from rotation. For the infinitesi-
mal displacement gradients u, these are identified with
the symmetric and antisymmetric parts

εij �
1
2 �uij � uji� (5)

� ij �
1
2 �uij � uji�, (6)

respectively, where εij is the infinitesimal or Cauchy
strain tensor and �ij is the rotation tensor. The strain
tensor is defined positive for expansion.

The strain associated with prestress will be finite, in
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general. In contrast to the infinitesimal case, a unique
definition of the finite strain tensor is not possible. The
reason is that the displacement gradients v and w are not
frame-indifferent. Consider the change in length of a
line element due to the application of prestress,

�dx�2 � �da�2 � 2eijdxidxj � 2� ijdaidaj, (7)

where the Einstein summation convention has been as-
sumed. These relations define the Eulerian (e) and
Lagrangian (�) finite strain tensors. Evaluation of the
change in length leads to the following expressions:

eij �
1
2 �wij � wji � wijwjk� (8)

� ij �
1
2 �v ij � v ji � v ijv jk�. (9)

In the limit of small strains, the nonlinear terms vanish,
and these two measures of strain are equivalent, both
reducing to the Cauchy strain tensor (equation (5)).
However, for finite strains, they differ so that constitu-
tive relations will not be frame-indifferent. This has
important implications for the representation and de-
scription of physical properties at high pressure includ-
ing the equation of state [Knittle and Jeanloz, 1985].

The stress tensor at a point in a body can be defined
through the expression relating the components of the
traction t acting on the surface elements dS,

ti � � ijdSj. (10)

Some care must be taken in the definition [Wallace,
1972]. We take the tractions to be those acting on the
initial state and the surface elements to be those of the
initial, undeformed configuration. In this case, the stress
tensor �ij is the second Pirola-Kirchoff stress [Dahlen
and Tromp, 1998]. This stress tensor is symmetric, cor-
responding to vanishing torques acting on the crystal.
The components with i � j are the normal components
of stress (positive for tensile stresses), and the compo-
nents with i 	 j are the shear components.

2.2. Definitions of Elastic Constants
The stress tensor can also be defined in terms of the

change upon deformation of an appropriate thermody-
namic potential. This definition, which will also lead to
the expression for the elastic constants, places elasticity
within the same framework of other thermodynamic
properties of the crystal, such as the equation of state
and the entropy. These may all be expressed in terms of
the derivatives of the potential with respect to its natural
variables [Wallace, 1972]. For example, the stress pro-
duced by a deformation under isothermal conditions is

� ij � 
� �A
�� ij

�
T

, (11)

while that produced under isentropic conditions is

� ij � 
� �E
�� ij

�
S

, (12)

where A is the Helmholtz free energy, E is the internal
energy, 
 is the density, and the subscripts on the deriv-
atives indicate that temperature or entropy is to be held
constant.

The elastic constants are defined in terms of the
Hooke’s law relation between stress and strain. The
isothermal and adiabatic elastic constants are given by

cijkl
T � � �� ij

��kl
�

T

(13)

cijkl
S � � �� ij

��kl
�

S

, (14)

respectively. The adiabatic elastic constants are most
relevant to seismology, where the timescale of deforma-
tion is much shorter than that of thermal diffusion over
relevant length scales. Isothermal elastic constants are
relevant, for example, in static compression experiments.
In the limit of zero temperature and in the absence of
zero point motion, the conditions corresponding to most
first-principles theoretical calculations, the adiabatic and
isothermal elastic constants are identical to each other
and are referred to as athermal elastic constants.

It is worth pointing out that other definitions of the
elastic constants are possible [Barron and Klein, 1965]. In
order to distinguish them, the cijkl may be referred to as the
stress-strain coefficients. We may alternatively define

Cijkl
T � 
� �2A

�� ij��kl
�

T

, (15)

which is identical to cijkl only in the absence of prestress.
In the case of isotropic prestress (pressure P), the two
sets of elastic constants are related by

Cijkl � cijkl � P�� jl� ik � � il� jk � � ij�kl�. (16)

The Cijkl do not relate stress to strain, in general, and
are not directly related to the propagation of elastic
waves.

There are 81 independent elastic constants, in gen-
eral; however, this number is reduced to 21 by the
requirement of the Voigt symmetry that cijkl are sym-
metric with respect to the interchanges (i, j), (k, l ), and
(ij, kl ). This allows replacement of a pair of Cartesian
indices ij by single index , according to the scheme

ij 

11 1
22 2
33 3
32 or 23 4
31 or 13 5
21 or 12 6
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In Voigt notation the elastic constants thus form a
symmetric matrix:

cij � �
c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

� . (17)

The diagonal constants cii with i � 3 may be referred to
as the longitudinal elastic constants; cii with i � 4 may
be called the shear elastic constants. Those cij with i 	
j � 3 are referred to as the off-diagonal constants, and
finally, cij with i � 3 and j � 3, which measure the shear
strain produced by a longitudinal stress, may be called
the mixed elastic constants.

The presence of crystallographic symmetry further
reduces the number of independent elastic constants
[Nye, 1985]. The highest possible symmetry is that of an
isotropic material such as a glass or a randomly oriented
polycrystalline aggregate, which is fully characterized by
two elastic constants. These can be defined as the bulk
and shear modulus, K and G, respectively, or in terms of
alternative moduli such as the Young’s modulus or
Lamé parameter, or ratios of moduli, such as the Pois-
son’s ratio. Relationships among these measures are
given in a number of sources [Birch, 1961]. A cubic
crystal is characterized by three constants, c11, c12, and
c44. Crystals with lower symmetry will possess a larger
number of independent constants, for example, nine for
orthorhombic crystals (c11, c22, c33, c12, c13, c23, c44,
c55, and c66) and 21 for triclinic crystals (the largest
number possible).

Because multiple definitions of the elastic constants
exist, some care is required. Examples include the for-
mulation of the Cauchy relations and Born stability
criteria. The energy-strain coefficients (Cij) are useful in
defining the Cauchy conditions that are valid for a crys-
tal structure in which each atom is located at a center of
symmetry and interatomic interaction follows a central-
force law. They are

C12 � C66, C13 � C55, C23 � C44
(18)

C14 � C56, C25 � C46, C36 � C45.

When defined in terms of the stress-strain coefficients
(cij), however, the first three relations involve a pressure
term, e.g., c12 � c66 � 2P � 0. The extent to which
these conditions are violated measures the importance
of noncentral forces in a crystal.

The Born conditions that determine the mechanical
stability of a lattice are typically formulated in terms of
the Cij. In this case, they are valid only in the limit of
vanishing prestress. Several studies [e.g., Wang et al.,
1995; Karki et al., 1997e] have demonstrated that the
appropriate stability criteria for a stressed lattice are
those that are formulated in terms of the stress-strain
coefficients and hence are based on enthalpy consider-

ations. Under hydrostatic pressure the three stability
criteria for a cubic crystal are

c11 � 2c12 � 0, c44 � 0, c11 � c12 � 0, (19)

which are referred to as spinodal, shear, and Born cri-
teria, respectively.

2.3. Finite Strain Theory
Over the pressure regime of the Earth’s mantle, elas-

tic moduli may vary by a factor of 5. It has been recog-
nized that in order to describe these large variations,
simple Taylor series expansions in pressure generally fail
because of their limited radius of convergence. An al-
ternative approach that has found wide application is
Eulerian finite strain theory [Birch, 1938, 1952; Davies,
1974]. The theory is based on a Taylor expansion of the
free energy in terms of Eulerian finite strain (equation
(8)). For a cubic or isotropic material, the response to
pressure is isotropic and the Eulerian finite strain re-
duces to a scalar. Defining

f � �e � �1/ 2���V0/V�2/3 � 1�, (20)

A � af 2 � bf 3 � cf 4 � . . . , (21)

usually truncated at third or fourth order. The volume
derivative of A yields the equation of state

P � 3K0 f�1 � 2f �5/ 2�1 � a1 f � a2 f 2� (22)

a1 � �3/ 2��K�0 � 4� (23)

a2 � �3/ 2��K0K �0 � K�0�K�0 � 7� � �143/9��, (24)

where subscript 0 denotes values at zero pressure and
prime denotes pressure derivatives.

Differentiation of A with respect to strain leads to the
expressions for elastic constants [Davies, 1974]:

cijkl� f � � �1 � 2f �7/ 2�cijkl0 � b1 f � �1/ 2�b2f 2 � . . . �

� P� ijkl (25)

b1 � 3K0�c�ijkl0 � � ijkl� � 7cijkl0 (26)

b2 � 9K0
2c�ijkl0 � 3K�0�b1 � 7cijkl0� � 16b1 � 49cijkl0, (27)

where

� ijkl � �� ij�kl � � ik� jl � � il� jk (28)

takes on a value of �3 for longitudinal and off-diagonal
elastic constants, �1 for the shear constants, and 0
otherwise.

The expression for the elastic constants can be rear-
ranged in a form that is useful for evaluating the con-
vergence properties of the series

Dijkl� f � � cijkl0 � b1 f �
1
2 b2 f 2 � . . . , (29)

where, by analogy with Birch’s definition of the normal-
ized pressure, we have defined
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Dijkl� f � �
cijkl� f � � P� ijkl

�1 � 2f �7/ 2 (30)

as the normalized elastic constants.

2.4. Elastic Wave Velocities
For small vibrations to first order in the displace-

ments ui about the prestressed state, we can write the
equation of motion as



�2ui

�t2 � cijkl

�2uk

� xj� xl
. (31)

The phase velocity (V) and polarization of the three
waves along a given propagation direction defined by the
unit vector ni are determined by the condition

�cijklnjnl � 
V2� ik� � 0, (32)

which is known as the Christoffel equation [Musgrave,
1970]. The solutions are of two types: a quasi-longitudi-
nal wave with polarization nearly parallel to the direc-
tion of propagation, and two quasi-shear waves with
polarization nearly perpendicular to ni. In seismology
the quasi-longitudinal wave is usually referred to as the
primary (P) or compressional wave and the quasi-trans-
verse wave is referred to as the secondary (S) or shear
wave, the former propagating faster than the latter. Pure
longitudinal and shear polarizations are found only in
isotropic materials or along special high-symmetry prop-
agation directions in anisotropic materials. For an iso-
tropic, homogeneous material, the P and S wave veloc-
ities are related to the elastic moduli by

VP � �K �
4
3 G



; VS � �G



, (33)

from which the bulk sound velocity

VB � �K



� �VP
2 �

4
3 VS

2 (34)

can also be defined.
Because the elastic constant tensor is fourth-ranked,

all crystals are elastically anisotropic regardless of sym-
metry. One consequence is that the elastic wave veloci-
ties depend on the direction of propagation. The single-
crystal azimuthal anisotropy for P and S waves may be
defined by the following relations:

AP �
VPmax � VPmin

VP

AS �
VSmax � VSmin

VS
, (35)

where VP and VS are the isotropic velocities (that is,
averaged over all propagation directions). For the shear
waves the polarization anisotropy can be calculated from
the difference in velocities of two shear waves (S1 and
S2) propagating in a given direction using

AS
po �

VS1 � VS2

VS
. (36)

The maximum polarization anisotropy occurs for the
direction in which two shear wave velocities show the
largest difference. For cubic crystals, azimuthal and max-
imum polarization anisotropy are determined by a single
anisotropy factor,

A �
2�c44 � cs�

c11
, (37)

where cs � (c11 � c12)/ 2 [Karki et al., 1997a].
In an anisotropic material the elastic wave fronts

generated by a point source will be nonspherical. As a
result, the group velocity defined by VGi � ��/�ki may
differ from the phase velocity defined by Vi � �/ki,
where � is the frequency and k is the phase propagation
vector. Seismological measurements are sensitive to the
group velocity. With Vi � Vni, where ni is the unit
vector of the phase velocity, we can relate two velocities
[Helbig, 1984]:

VGi � Vni � k��V/�k�ni � �V/�ni. (38)

Here the second term, which is collinear with the wave
normal, vanishes for a nondispersive medium. In this
case, the last term gives the difference between Vi and
VGi and is nonzero for an anisotropic medium. Equation
(38) shows that the group velocity surface is simply the
tangent surface of the phase velocity surface; and one
can be readily calculated from the other [see Musgrave,
1970; Helbig, 1984]. If the anisotropy is small, group
velocity and phase velocity are similar. However, if the
anisotropy is large, they may be substantially different.
For large anisotropy the group velocity displays triplica-
tions that are associated with multiple arrivals for each
eigenvector (Figure 2). For example, three distinct P
wave arrivals are possible in a given propagation direc-
tion.

2.5. Elastic Behavior of Polycrystalline Aggregates
The Earth’s mantle and crust are composed of mul-

tiphase assemblages in which the elastic constants of
adjacent grains may differ widely. For the case of geo-
physical interest, where the seismic wavelength is much
larger than the size of the constituent crystals, the elastic
properties of an aggregate can be uniquely calculated
from the single-crystal elastic constants if the texture can
be specified, that is, the positions, shapes, and orienta-
tions of the grains. The texture is typically unknown and,
in the absence of direct samples from most of the man-
tle, is difficult to determine uniquely.

A special case of central geophysical interest is an
isotropic monophase aggregate in which the grains are
assumed to be randomly oriented but the texture is left
otherwise unspecified. Because the texture is only par-
tially known, determination of the elastic moduli is in-
herently nonunique. Nevertheless, it is possible to con-
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struct rigorous bounds. The most commonly used are the
Voigt and Reuss bounds, which correspond to condi-
tions of strain and stress continuity, respectively, across
grain boundaries [Hill, 1952; Watt et al., 1976]. The
Hashin and Shtrikman [1962] bounds are tighter and are
widely used for high-symmetry crystals. In the case of
cubic crystals the bulk modulus is uniquely defined by

K �
1
3 �c11 � 2c12�. (39)

The isotropic shear modulus in the Hashin and Shtrik-
man [1962] averaging scheme is given by

GHSA �
1
2 �GHS� � GHS��, (40)

where the upper and lower bounds (interchangeable)
are

GHS� � c44 � 2� 5
cs � c44

�
18�K � 2c44�

5c44�3K � 4c44�
� (41)

GHS� � cs � 3� 5
c44 � cs

�
12�K � 2cs�

5cs�3K � 4cs�
� , (42)

respectively, where cs � (c11 � c12)/ 2. Formulas for
lower-symmetry crystals have been derived; see Watt
[1987] for a review.

Bulk anisotropy of monophase aggregates may be
caused by lattice-preferred orientation (LPO) of the
grains. LPO may develop when the aggregate is sub-
jected to a shear deformation, such as that associated
with mantle flow. For example, LPO produced in olivine
aggregates in the laboratory has been used to interpret
observations of seismic anisotropy in the uppermost
mantle [Christensen and Salisbury, 1979]. The anisotropy
of the aggregate can be no larger than that of the
constituent single crystals; often it is a factor of 2–3
smaller depending on the degree of alignment and the

details of the texture. Polyphase aggregates may exhibit
LPO or a different type of anisotropy due to shape-
preferred orientation (SPO). In SPO the anisotropy is
due to spatial inhomogeneity in the distribution of
phases. For example, an aggregate may consist of layers
that are alternately rich in one of two primary phases. If
there is no LPO, and if the two phases have different
elastic properties, the aggregate will be transversely
anisotropic for elastic waves with wavelength much
larger than the layer thickness. The solution for this case
is well known [Backus, 1962] and shows, for example,
that P waves travel fastest parallel to the layers.

For monophase aggregates the elastic constants of
the aggregate, c�ijkl, can be related to those of the single
crystal, cijkl, by [Mainprice et al., 2000]

c�ijkl � � aimajnakoalpcmnopf�a�da, (43)

where the elements of the coordinate transformation
matrix aij are the direction cosines that relate crystallo-
graphic to sample coordinate systems, and f is the ori-
entation distribution function (ODF), which specifies
the volume fraction of crystals oriented according to a
[Bunge, 1982; Wenk, 1985]. For the special case of a
transversely isotropic medium, the aggregate is charac-
terized by five independent elastic constants. For exam-
ple, if the single crystals have orthorhombic or higher
symmetry and the c crystallographic direction of all
grains is aligned with a vertical symmetry axis, we have

c�11 �
3
8 �c11 � c22� �

1
4 c12 �

1
2 c66 (44)

c�33 � c33 (45)

c�13 �
1
2 �c13 � c23� (46)

Figure 2. Group velocity (solid curves) and phase velocity (dashed curves) surfaces of S waves in MgO in
the (001) plane at two pressures. Two velocities are close to each other at zero pressure due to relatively weak
anisotropy, but they differ substantially at 100 GPa due to relatively strong anisotropy. For the pressure
variation of the anisotropy of MgO, see Figure 12.
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c�66 �
1
8 �c11 � c22� �

1
4 c12 �

1
2 c66 (47)

c�44 �
1
2 �c44 � c55�. (48)

2.6. Anelasticity
The response of materials to stress or strain is, in

general, not perfectly elastic. In an anelastic material,
strain and stress are not in phase. The associated strain-
energy losses are expressed in terms of the quality factor
Q:

2�
Q � �

�E
E . (49)

A number of physical mechanisms may be responsible
for dissipation, including motion of dislocations and
other defects [Jackson and Anderson, 1970; Karato and
Spetzler, 1990]. In part because different mechanisms are
operative at different timescales, the value of Q may
depend on frequency. Over the range of frequencies
probed in the laboratory (approximately gigahertz for
Brillouin scattering and megahertz for ultrasonic tech-
niques), attenuation appears to be sufficiently small that
it does not significantly affect measurements of the elas-
tic constants of crystalline solids (dissipation, however, is
important in silicate liquids) [Rivers and Carmichael,
1987]. At the much lower frequencies probed by seis-
mology, the solid Earth is measurably anelastic; quality
factors for shear waves appear to be nearly independent
of frequency over most of the seismic band and range
from 600 in the lithosphere to 80 in the low-velocity zone
to 300 at the base of the mantle [Masters and Shearer,
1995]. The quality of volume compression is substan-
tially higher, although it may not be infinite for a discus-
sion of possible bulk attenuation mechanisms. The
higher quality of volume compression agrees with labo-
ratory measurements of the equation of state of crystal-
line solids by static compression (essentially zero fre-
quency), which are consistent with values of the bulk
modulus measured by high-frequency techniques [Bass
et al., 1981; Duffy et al., 1995].

Anelasticity entails dispersion (frequency depen-
dence) of elastic wave velocities. For the standard linear
solid, the relative magnitude of the dispersion is �1/Q
in the modulus, or �1/ 2Q in the velocity [Kanamori and
Anderson, 1977]. For a quality factor of 100, typical of
the upper mantle, the difference between infinite and
zero-frequency elastic wave velocities is 0.5%. Though
the effect is small, it is comparable to the magnitude of
lateral variations in velocity that are observed in the
Earth’s mantle. This has important implications for the
interpretation of seismic tomography (especially S wave
tomography) in terms of lateral variations in tempera-
ture, composition, or phase [Karato, 1993].

3. THEORETICAL METHODS

It is only recently that first-principles theoretical
methods have become widely applicable to the relatively
large and complex structures that are characteristic of
most Earth materials. Within the theoretical framework
a mineral is viewed as an interacting many-particle sys-
tem of nuclei and electrons. A central goal is the calcu-
lation of the ground state electronic and crystallographic
structure of the material. This is accomplished by calcu-
lating the quantum mechanical total energy of the sys-
tem and subsequently minimizing that energy with re-
spect to the lattice constants, positions of the nuclei, and
the electronic degrees of freedom. One can then derive
various physical properties starting from knowledge of
the most stable structure of the system; for example, the
elastic moduli can be determined from computation of
the strain-induced energies or stresses generated by
small deformations of the equilibrium lattice [Ihm,
1988].

To solve the many-particle problem exactly is impos-
sible; a wide diversity in methodology (ranging from
empirical to first-principles) results from the number
and types of simplifications and approximations that are
needed to obtain solutions with reasonable computa-
tional efficiency. First-principles approaches are those
that seek to solve the fundamental equations of quantum
mechanics with a bare minimum of approximations.

Two types of first-principles methods have appeared
in the Earth sciences literature. The extension of Har-
tree-Fock theory to periodic systems has been used to
study a variety of mantle materials, as well as surfaces
and defect structures [Dovesi et al., 2000]. This method
includes one type of many-body interactions between the
electrons exactly (exchange) and neglects another com-
pletely (correlation). Here we focus on a different
method, based on density functional theory, which has
found wider application in the study of the Earth’s
interior. The essence of the theory and some details of
its implementation are briefly sketched in the following
sections.

3.1. Density Functional Theory
Density functional theory (DFT), originally devel-

oped by Hohenberg and Kohn [1964] and Kohn and Sham
[1965], is, in principle, an exact theory of the ground
state and allows us to reduce the interacting many-
electron problem to a single-electron problem (the nu-
clei being treated as an adiabatic background). An ap-
pealing aspect of the theory is that the central quantity,
the charge density, is routinely measured experimen-
tally, for example, by X-ray diffraction. The essence of
the theory is that the ground state total energy (and
hence the ground state physical properties) of a system
is a unique functional of the charge density n(r):

E�n�r�� � F�n�r�� � � Vion(r)n�r� dr. (50)

514 ● Karki et al.: HIGH-PRESSURE ELASTICITY 39, 4 / REVIEWS OF GEOPHYSICS



Here functional F[n] contains the electronic kinetic
energy and all the electron-electron interactions and is
independent of the external potential, which is usually
the Coulomb potential Vion due to ions (or nuclei) plus
possibly other external fields. The minimum value of the
total energy functional is the ground state energy of the
system at the ground state density.

A key to the application of DFT in handling the
interacting electron gas was given by Kohn and Sham
[1965] by splitting up the kinetic energy of a system of
interacting electrons into the kinetic energy of noninter-
acting electrons plus some remainder which can be con-
veniently incorporated into the exchange-correlation en-
ergy. The functional F[n] can be written as

F�n�r�� � T�n�r�� � EH�n�r�� � EXC�n�r��. (51)

For noninteracting electrons the explicit forms for the
kinetic energy and charge density are

T�n�r�� � �
�2

2m �
i�1

N � �*i�r��2� i�r� dr (52)

n�r� � �
i�1

N

�*i�r�� i�r�, (53)

respectively, where the �i are the single-electronic wave
functions. The Hartree energy (Coulomb interaction
among electrons) is given by

EH�n�r�� �
1
2 �� n�r�n�r��

�r � r�� dr dr�. (54)

The last term, EXC, whose explicit form is not known, is
the exchange-correlation energy and contains all the
many-body effects in an interacting system.

Using the variational principle implied by properties
of the energy functional, one can derive the effective
single-electron Schrödinger equation, well known as the
Kohn-Sham (KS) equation:

	� �2

2m �2 � Vion�n�r�� � VH�n�r�� � VXC�n�r��

� � i�r� � εi� i�r�, (55)

where the Hartree potential is

VH�n�r�� � � n�r��

�r � r�� dr� (56)

and the exchange-correlation potential which contains
all the many-body effects is

VXC�n�r�� �
�EXC�n�r��

�n�r� . (57)

The KS equation constitutes a self-consistent field prob-
lem; that is, the self-consistent solutions (electronic wave

functions �i and eigenvalues εi) can be obtained by
iteratively solving the KS equation (equation (55)). Then
the total electron density is determined from (53), and
hence the total energy E can be computed.

To solve the Kohn-Sham equations exactly requires
knowledge of the exact exchange-correlation functional.
For the simple case of the uniform electron gas, the
explicit expression for the exchange component is known
from the Hartree-Fock theory, but the correlation com-
ponent is known only numerically from quantum Monte
Carlo calculations [Ceperley and Alder, 1980; Perdew and
Zunger, 1981]. The charge density in real materials is not
uniform, so the exchange-correlation functional cannot
be calculated precisely. The local density approximation
(LDA) [Kohn and Sham, 1965; Jones and Gunnarsson,
1989] replaces the exchange-correlation potential at
each point r by that of a homogeneous electron gas with
a density equal to the local density at point r.

The LDA works remarkably well for a wide variety of
materials; the equation of state, elastic constants, and
other properties often agree with experiment to within a
few percent. Agreement with laboratory measurements
is not perfect, however, and some systematic discrepan-
cies are apparent. In silicates and oxides, LDA tends to
overbind; that is, the predicted volume is too small and
the elastic moduli is too large compared with experi-
ment. Attempts to improve LDA through consideration
of nonlocal corrections have met with some success. The
generalized gradient approximation (GGA) [Perdew et
al., 1996] is a marked improvement over LDA in the case
of transition metals [Bagno et al., 1989; Stixrude et al.,
1994]. There is some evidence that GGA improves en-
ergetics for silicates and oxides but structures tend to be
underbound: The volume calculated with GGA tends to
be larger than that measured experimentally [Hamann,
1996; Demuth et al., 1999; Oganov et al., 2001].

3.2. Self-Consistent Methods
Self-consistent methods are those that determine the

ground state total energy and the ground state charge
density with which it is uniquely associated. These meth-
ods will be described in more detail here. They are
contrasted with non-self-consistent methods, which do
not determine the ground state charge density but typi-
cally approximate its form, according to a physical
model. These are discussed more fully in other reviews
[Stixrude et al., 1998]. Examples include Gordon-Kim
type approaches (modified electron gas, or MEG, and
potential induced breathing, or PIB) in which the charge
density consists of overlapping, spherically symmetric,
formally charged ions, and Slater-Koster type tight bind-
ing methods. Such methods are often referred to as ab
initio methods. A distinct class of methods which entails
another level of approximation are those based on in-
teratomic potentials. Here the solid is viewed as consist-
ing of atoms or ions, rather than at the fundamental
level of nuclei and electrons. The additional approxima-
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tions inherent in this approach generally render inter-
atomic potential calculations semiempirical.

There are a number of self-consistent methods for
solving the Kohn-Sham equations, and these methods
differ from each other mainly in two aspects: (1) inclu-
sion of all electrons or use of pseudopotential approxi-
mation, and (2) details of the basis functions (�j) used to
expand the electronic wave functions:

� i�r, k� � �
j

bi, j� j�r, k�, (58)

where bi, j are the coefficients and k is the wave vector.
All electron approaches include the linearized aug-

mented plane wave (LAPW) method [Jansen and Free-
man, 1984; Wei and Krakauer, 1985; Singh, 1994]. In
LAPW, no approximations are made to the shape of the
charge density or the potential. As such, the LAPW is
generally accepted to be highly accurate and suitable to
all types of crystals irrespective of their bonding nature.
The accuracy of the method derives from its basis, which
explicitly treats the first-order partitioning of space into
near-nucleus regions, where the charge density and its
spatial variability are large, and interstitial regions,
where the charge density is smaller and varies more
gradually. These two regions are delimited by the con-
struction of so-called muffin-tin spheres of radius RMT



centered on each nucleus . A dual basis set is con-
structed, consisting of plane waves in the interstitial
regions that are matched smoothly to more rapidly vary-
ing functions inside the spheres. Other all-electron ap-
proaches that have been applied in the Earth sciences
include the augmented plane wave (APW) method
[Moruzzi et al., 1978; Bukowinski, 1985] and the full-
potential linearized muffin-tin orbital (FP-LMTO)
method [Anderson, 1975; Soderlind et al., 1996].

Representation of the rapidly varying core states
makes all-electron calculations relatively intensive com-
putationally. The central idea of the plane wave pseu-
dopotential method (PWPP) is that the precise repre-
sentation of these states is not essential because they
participate little in bonding [Heine, 1970; Pickett, 1989].
The strong potential due to the nucleus and core elec-
trons is replaced by a weaker, more slowly varying po-
tential with the same scattering properties (the pseudo-
potential). This approach speeds up calculations
substantially because (1) only valence electrons are
treated explicitly and (2) the pseudocharge density and
potential vary much more slowly in space. The latter
feature is particularly important, as it allows one to use
plane waves as the basis functions to represent the
electronic wave function at each wave vector k:

� i�r, k� � �
G

ci,k�G exp �i�k � G� � r�, (59)

where G is a reciprocal lattice vector. Evaluation of total
energies, forces, and stresses with the plane wave basis
set is particularly efficient [Nielsen and Martin, 1985].
Construction of the pseudopotential is a nonunique pro-

cess, but differences between different pseudopotentials
[Hamann et al., 1979; Vanderbilt, 1990; Troullier and
Martins, 1991; Lee, 1995], and between PWPP and all
electron calculations, are often smaller than the uncer-
tainties due to approximations to the exchange-correla-
tion potential.

An important technical issue is the convergence of
the calculations. In either all-electron or PWPP calcula-
tions, the two convergence parameters are the number
of points in the Brillouin zone (k points) at which the
Kohn-Sham equations are solved and the size of the
basis set. Convergence with respect to the number of k
points is optimized by using special k point meshes [e.g.,
Monkhorst and Pack, 1976]. The size of the basis set is
conventionally described either by the maximum kinetic
energy of the plane waves included (PWPP) or by the
product, RMTKmax, of the smallest muffin-tin radius and
the largest wave vector (LAPW). An important feature
of self-consistent methods is that convergence with re-
spect to the size of the basis is generally smooth, so that
convergence tests can be applied with some confidence
[Singh, 1994].

3.3. Ab Initio Molecular Dynamics
The plane wave pseudopotential approach, which

combines accuracy, computational efficiency, and formal
simplicity, has developed to the point of being used in
the context of molecular dynamics (MD) simulations.
Although the original technique was not self-consistent
[Car and Parrinello, 1985], the methodology evolved
rapidly [Payne et al., 1992], and self-consistent MD be-
came available in the early 1990s [Wentzcovitch and
Martins, 1991]. This facilitated the implementation of a
variable-cell-shape-MD (VCSMD) formalism [Wentzco-
vitch, 1991] in the context of ab initio calculations [Wentz-
covitch et al., 1993]. This type of simulation is particularly
useful in high-pressure studies. Its flexible periodic bound-
ary conditions can capture dynamically even structural
phase transitions under pressure [Wentzcovitch et al.,
1998a] and is useful in investigation of complex low-sym-
metry structures typical of the Earth’s mantle.

In VCSMD the components of the strain tensor are
promoted to dynamical variables together with the
rescaled ionic coordinates qi, where ri � (1 � ε)qi. The
dynamics is then governed by the Lagrangian

L � � mi

2 q̇ igq̇ i �
w
2 Tr �ε̇ε̇T� � EKS�q i, ε� � PV�ε�,

(60)

where mi is the ionic mass, w is the fictitious mass
assigned to the simulation cell, and g � (1 � ε)T(1 �
ε) is the metric tensor. In the Lagrangian the first and
second terms represent the kinetic energies associated
with internal and strain variables, respectively, and
Kohn-Sham energy and the applied pressure term PV
together correspond to the enthalpy which plays the role
of the generalized potential energy. The trajectories
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produced by the resulting equations of motion are in-
variant with respect to the choice of simulation cell
vectors, preserve the relation between strain and stress,
and hence conserve the space group symmetry. It was
this latter technique that prompted the wide application
of the PWPP method to the structurally complex prob-
lems involved in mineralogical high-pressure studies
[Wentzcovitch et al., 1993, 1995a, 1995b].

3.4. Determination of Elastic Constants
In essence, the determination of the elastic constants

proceeds as follows (see Figure 3): At a given pressure
(or volume) the crystal structure is first fully optimized,
and then the lattice is slightly deformed by applying a
small strain. The stress in the strained configuration is
calculated, and the values of the elastic constants follow
from the linear stress-strain relation

� ij � cijklekl. (61)

For cubic crystals a single strain of monoclinic symmetry
is sufficient to determine all the independent elastic
constants [Karki et al., 1997a]. For lower-symmetry struc-
tures, such as orthorhombic forsterite or perovskite, four
strains of different symmetry are applied [Karki et al.,
1997c]. The elastic constants may also be computed from
the strain-energy density. If the strains are chosen to be
volume conserving,

�E
V �

1
2 cijkl eij ekl. (62)

This is useful in LAPW calculations where computation
of the stress tensor is difficult [Cohen, 1991; Steinle-
Neumann et al., 1999].

There are two important factors to be taken into
account in determining elastic constants. First, the ionic

positions need to be reoptimized in the strained lattice in
order to incorporate any couplings between strains and
vibrational modes in the crystal [Nastar and Willaime,
1995]. The effects of the coupling are particularly large
in the presence of soft vibrational modes, as in the case
of silica in the vicinity of the stishovite to CaCl2 structure
transition, which is discussed further later [Cohen, 1992;
Karki et al., 1997b, 1997d]. Second, the elastic constants
need to be calculated in the appropriate limit of zero
strain. At finite strain, higher-order terms in the stress-
strain relationship become important, which are gov-
erned by higher-order elastic constants corresponding to
third and higher strain derivatives of the energy [e.g.,
Wallace, 1972]. To calculate the elastic constants in the
linear regime, strains of different magnitude or sign are
applied (Figure 4), and the zero-strain limit is deter-
mined by extrapolation or interpolation. It is this linear
regime that is most relevant in geophysics.

4. ELASTICITY OF MINERALS

First-principles methods are a powerful way of inves-
tigating the elasticity of Earth materials at very high
pressures. Recent work has included studies of many of
the major Mg-silicate polymorphs including those of
Mg2SiO4 [da Silva et al., 1997; Kiefer et al., 1997; Kiefer et
al., 2001], of MgSiO3 stoichiometries [Wentzcovitch et al.,
1995a; Karki et al., 1997c; Wentzcovitch et al., 1998b; da
Silva et al., 1999], and of CaSiO3 perovskite [Sherman,

Figure 3. Diagram illustrating the determination of elastic
constants by calculating the stress (�) generated by small
deformation of unit cell with strain (ε).

Figure 4. Stress versus strain relations involved in the calcu-
lation of three elastic moduli of MgO (taken from Karki
[1997]). Symbols are the actual calculated points, and lines
represent the initial linear slopes (i.e., slopes at origin). Non-
linearity is significant for strains larger than 1% in the case of
longitudinal elastic constant (c11), while the effect is weak for
other constants.
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1993; Karki and Crain, 1998a]. Also investigated have
been the oxides MgO [Karki et al., 1997a, 1999]; CaO
[Karki and Crain, 1998b]; SiO2 [Cohen, 1991; Karki et al.,
1997d]; and Al2O3 [Duan et al., 1999]. Of the minerals
thought to be major constituents of the mantle, only the
elastic constants of the pyroxene and garnet phases have
not yet been examined theoretically, although the struc-
ture and compression mechanisms of enstatite have
been investigated [Wentzcovitch et al., 1995b]. The elas-
ticity calculations to date have primarily been performed
by using ab initio MD as a technique for efficient mini-
mization of stresses and forces in the strained configu-
rations.

While approximations in the first-principles calcula-
tions have been reduced to a minimum, the calculations
are not exact. This makes comparison with available
experimental data essential. The comparison allows us
to evaluate the quality of the assumptions that we are
forced to make (primarily the form of the exchange-
correlation potential) and points the way toward future
improvements to the theory. The complementary nature
of first-principles theory and experiment is worth em-
phasizing: The theory has no free parameters and there
is no input from experimental data. Because the first-
principles calculations are independent of experiment,
favorable comparisons between the two approaches can
lend confidence to each. We review all extant first-
principles calculations of the elastic constants of mantle
materials and compare these with available experimental
data. Following is a discussion of the patterns which
emerge from the theoretical results, focusing on the
effect of pressure on the elastic moduli including the
elastic anisotropy and the appearance of elastic instabil-
ities and the influence of changes in crystallographic
structure and chemical composition on the elastic prop-
erties. We further compare the first-principles results
with seismological investigations of the Earth’s mantle.

4.1. Comparison With Experiment
A summary of calculated athermal elastic constants

and their pressure derivatives are compared with exper-
imental results in Table 1. The athermal theoretical
elastic constants are expected to be somewhat larger
than those measured experimentally at ambient condi-
tions because the effects of temperature and zero-point
motion are ignored. Recent theoretical calculations that
include the effects of lattice vibrations [Karki et al., 1999]
show that these amount to a few percent at room tem-
perature. The local density approximation (LDA) to the
exchange-correlation potential is also expected to have a
systematic effect: It tends to overbind structures; that is,
the elastic moduli tend to be overestimated although
there are few exceptions, for example, c44 of MgO [Karki
et al., 1997a]. Overall, first-principles theory represents a
substantial improvement over the predictions of more
approximate theories, such as those based on simplified
semiempirical and ab initio models (Table 1).

The results produced by different pseudopotential

calculations differ from each other and from those of all
electron LAPW calculations. This arises from the non-
uniqueness of the pseudopotential and the additional
approximations that its construction entails. In the case
of MgO the calculations of Karki et al. [1997a] underes-
timate the elastic moduli of MgO as they overestimate
the volume. Later results by Karki et al. [1999] using
different pseudopotentials are more consistent with all-
electron calculations [Mehl et al., 1988] and with exper-
imental data. In the case of MgSiO3 perovskite, much of
the difference between the two sets of the elastic moduli
[Karki et al., 1997c; Wentzcovitch et al., 1998b] can be
accounted for by differences in the pseudopotentials
used in the calculations. The results of Oganov et al.
[2001], however, differ substantially from the other two
sets because they used the generalized gradient approx-
imation that tends to underbind structure and underes-
timate the elastic moduli (see Table 1). The differences
between the two pseudopotential results with LDA are
similar in magnitude to those seen in MgO, as are the
differences with respect to the all-electron result
[Stixrude and Cohen, 1993]. The size of the errors in all
cases is comparable to the LDA error.

4.2. Effect of Pressure

4.2.1. Elastic moduli. The effect of pressure on
the elastic constants of all major mantle minerals is
large, as much as a factor of 5 over the regime of the
Earth’s mantle. This means that experimental or theo-
retical results at ambient pressure cannot be used to
reliably estimate elasticity at mantle pressures. This is
particularly true because the effect of pressure is much
larger for certain types of elastic constants than for
others (e.g., Figure 5): The pressure-induced variations
in the longitudinal elastic constants are relatively large
(c�ij0 � 5–10), compared with those for the shear and
off-diagonal constants (c�ij0 � 0.5–4) (see Table 1).

Finite strain theory [Birch, 1938, 1952; Davies, 1974]
can be used to understand the range of values of c�ij0 that
are found for longitudinal, off-diagonal, and shear elas-
tic constants. Expansions in the Eulerian finite strain are
known to provide rapidly convergent descriptions of
isothermal compression (P-V equation of state) to large
strains. This success can be understood by recognizing
that the coefficients of higher-order terms are small
[Jeanloz, 1988]. For example, the second-order trunca-
tion of the equation of state (i.e., setting a1 � 0 in
equation (22)) yields K�0 � 4. First-principles calcula-
tions show that K�0 spans the range of 4–4.5 for several
oxides and silicates. This implies that the coefficient a1
should be small and that the third-order Birch-Mur-
naghan equation should be adequate for most materials.
Truncation at second order of the anisotropic generali-
zation of the Eulerian finite strain expansion (b1 � 0 in
equation (25)) leads to the following relation for the
pressure derivatives of the elastic constants:
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TABLE 1. Calculated Athermal Elastic Moduli (M) and Their Pressure Derivatives (M�) at Zero Pressure of Earth
Minerals in Comparison With Experimentsa

Method,b

Sourcec Moduli c11 c22 c33 c44 c55 c66 c12 c13 c23 K G

Forsterite
PWPP, 1 M 367 220 233 78 89 91 78 79 81 141 89

M� 7.68 5.30 5.61 1.53 1.34 1.69 3.38 3.46 3.54 4.32 1.44
Exp, 2 M 328 200 235 65 81 81 64 69 74 129 81

M� 7.22 5.42 5.57 2.01 1.46 2.16 3.59 3.62 2.94 4.12 1.4

Wadsleyite
PWPP, 3 M 377 374 289 108 117 109 89 103 108 181 115

M� 6.16 5.87 6.96 0.87 0.78 2.06 4.01 2.93 3.49 4.34 1.16
Exp, 4 M 371 373 272 111 123 103 66 95 105 170 115

M� 4.3 1.4

Ringwoodite
PWPP, 5 M 361 134 118 199 129

M� 6.32 0.82 3.18 4.19 1.12
Exp, 6 M 327 126 112 184 119

M� 4.2 1.73

MgSiO3 Ilmenite
PWPP, 7 M 477 392 121 �28d �16e 153 89 222 144

M� 6.0 5.7 2.2 �0.4 0.3 3.5 3.9 4.5 1.6
Exp, 8 M 472 382 106 �27 �24 168 70 212 132

MgSiO3 Perovskite
PWPP, 9 M 493 523 460 201 183 147 135 145 158 260 174

M� 5.15 6.56 6.70 1.98 1.44 1.91 3.33 2.55 2.73 4.02 1.65
PWPP, 10 M 485 560 474 200 176 155 130 136 144 259 179
PWPP, 11 M 444 484 408 194 172 131 110 126 136 231 162
Exp, 12 M 482 537 485 204 186 147 144 147 146 264 177

M� 4.0 1.8
PIB, 13 M 548 551 441 241 253 139 54 153 175 256 196
RI, 14 M 460 506 378 162 159 112 139 184 177 260 140

CaSiO3 Perovskite
PWPP, 15 M 374 225 167 236 165

M� 7.28 2.47 3.0 4.42 2.46
PHF, 16 M 367 290 222 307 209
Exp, 17 M 232

M� 4.8

MgO
PWPP, 18 M 291 137 90 157 121
PWPP, 19 M 323 152 92 169 135

M� 9.0 1.05 1.91 4.27 2.39
Exp, 20 M 297 156 95 162 131

M� 9.17 1.11 1.61 4.13 2.53
PIB, 21 M 310 188 119 182 143
MEG, 22 M 226 142 142 170 86

CaO
PWPP, 23 M 241 77 52 115 83

M� 10.11 0.45 1.67 4.48 1.78
Exp, 24 M 223 81 59 114 81

M� 8.7 0.74 1.71 4.05 1.81
PIB, 25 M 206 66 50 102 71
MEG, 22 M 207 97 97 134 77

Stishovite
PWPP, 26 M 456 734 254 325 216 195 310 223

M� � � � 4.31 2.09 3.30 � � � 2.03 4.24 1.72
LAPW, 27 M 452 807 242 221 324
Exp, 28 M 453 776 252 302 211 203 312 226

M� 4.3 1.8
PIB, 29 M 623 977 347 424 450 146 412 277
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c�ij0 �
7
3

cij0

K0
� � ij. (63)

This results in three sets of c�ij0: one for longitudinal
moduli, another for off-diagonal and shear, and a third
for mixed elastic constants (Figure 6). For silicates and
oxides considered, it is found that the first-principles

pressure derivatives fall near the expected trends, which
account for the greater pressure derivatives of the lon-
gitudinal moduli, intermediate values for off-diagonal
and shear, and smallest pressure derivatives for the

Figure 6. Zero-pressure derivatives for longitudinal con-
stants (bold line) and for off-diagonal and shear constants (thin
line), and for mixed elastic constants (dashed line) implied by
the second-order finite strain theory. First-principle values for
all the minerals considered are denoted by symbols: diamonds,
longitudinal constants; squares, off-diagonal constants; circles,
shear constants; and triangles, mixed constants.

TABLE 1. (continued)

Method,b

Sourcec Moduli c11 c22 c33 c44 c55 c66 c12 c13 c23 K G

Al2O3
PWPP, 30 M 502 501 157 �19d 161 125 258 168

M� 5.52 5.10 2.03 0.19 3.09 3.57 4.06 1.44
Exp, 31 M 498 502 147 �23 163 117 255 163

M� 6.17 5.00 2.24 0.13 3.28 3.56 4.30 1.64
PIB, 29 M 540 455 157 �48 157 130 263 170

aThe pressure dependence of c11 and c12 of stishovite can be represented by (c11 � c12)/ 2 � 336 � 5.32P and (c11 � c12)/ 2 � 120[1 �
(P/47)3.5], where P is pressure, in gigapascals [Stixrude, 1999].

bAbbreviations are PWPP, plane wave pseudopotential; PIB, potential induced breathing; RI, rigid ion; PHF, periodic Hartree Fock; MEG,
modified electron gas; and LAPW, linearized augmented plane wave.

cSources are 1, da Silva et al. [1997]; 2, Yoneda and Morioka [1992] and Zha et al. [1996]; 3, Kiefer et al. [2001]; 4, Zha et al. [1997] and Li et
al. [1998]; 5, Kiefer et al. [1997]; 6, Weidner et al. [1984] and Rigden et al. [1992]; 7, da Silva et al. [1999]; 8, Weidner and Ito [1985]; 9, Karki et al.
[1997c]; 10, Wentzcovitch et al. [1998b]; 11, with the generalized gradient approximation [Oganov et al., 2001]; 12, Yaganeh-Haeri [1994] and
Sinelnikov et al. [1998]; 13, Cohen [1987b]; 14, Matsui et al. [1987]; 15, Karki and Crain [1998a]; 16, Sherman [1993]; 17, Wang et al. [1996]; 18,
Karki et al. [1997a]; 19, Karki et al. [1999]; 20, Sinogeikin and Bass [1999]; 21, Isaak et al. [1990]; 22, Cohen and Gordon [1976]; 23, Karki and Crain
[1998b]; 24, Chang and Graham [1977]; 25, Mehl et al. [1986]; 26, Karki et al. [1997d]; 27, Cohen [1991, 1992]; 28, Weidner et al. [1982] and Andrault
et al. [1998]; 29, Cohen [1987a]; 30, Duan et al. [1999]; 31, Geiske and Barsch [1968].

dMixed modulus c14.
eMixed modulus c25.

Figure 5. Three elastic moduli, namely, c11, c12, and c44, of
MgO in its face-centered cubic structure. The existing low-
pressure experimental data (to 19 GPa [Sinogeikin and Bass,
1999]) shown by symbols are well reproduced by theory [Karki
et al., 1997a].
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mixed moduli. Of the patterns apparent in these results,
only the systematically larger values of the off-diagonal
pressure derivatives as compared with the shear are not
explained. Therefore one expects that the third-order
expansion will be sufficient for describing the effect of
pressure on the elastic constants in many materials.

First-principles results allow us to evaluate the con-
vergence properties of the Eulerian finite strain descrip-
tion of the elastic constants. For example, the normal-
ized elastic constants of perovskite are found to depend
nearly linearly on finite strain over the pressure range
0–140 GPa (Figure 7). The finite strain expansion trun-
cated at the linear term fits the theoretical elastic con-
stants to within 1%. For the off-diagonal moduli (c12,
c13, and c23) the first-principles results appear to resolve
a small nonlinear term. Normalized elastic constants
that vary nearly linearly with finite strain have been
found for most other materials studied as well, suggest-
ing that the finite strain expansions of cij converge rap-
idly and that third-order equations are, in general, suf-
ficient. Exceptions include c11 and c12 of stishovite,
which show highly nonlinear behavior (due to the elastic
instability associated with the stishovite-to-CaCl2 phase
transition). It is worth emphasizing that Taylor series
expansions in variables other than the finite strain will
not converge as rapidly, in general. For example, Taylor
series expansions in the pressure are not appropriate: In
MgO, extrapolations linear and quadratic in pressure
differ by 100% at relatively low pressures (60 GPa)
[Karki et al., 1997a].

An alternative representation of the effect of com-
pression on elastic properties is provided by Birch’s law
[Birch, 1961]:

VP � a�M� � � b
, (64)

implying a unique relationship between compressional
velocity and density for materials of the same mean
atomic weight M� . Birch’s law refers only to the effective
longitudinal wave velocity of isotropic polycrystals, not
to the individual elastic constants. Birch speculated that
the above velocity density relations should hold for all
changes of density irrespective of their origin, i.e.,
whether caused by variations in pressure, temperature,
phase, or bulk composition.

The first-principles results show that the effect of
pressure on the elastic wave velocities of major mantle
minerals does not follow Birch’s law (Figure 8). In
particular, the calculated velocity profiles of several min-
erals are nonlinear in density. This behavior is in con-
trast to that of simpler ionic materials such as halite or
sylvite, which obey Birch’s law over a wide range of
compression [Campbell and Heinz, 1992]. The violation
of Birch’s law in silicates and oxides may be related to
the nature of bonding in these materials. Unlike in the
alkali halides, noncentral covalent and many-body forces
are important, as evidenced by violations of the Cauchy
conditions. While Birch’s law is not obeyed, it does

appear to provide a qualitative description of the effect
of pressure in silicates and oxides. In particular, the
Birch’s law slope is similar in most cases to the average
slope of theoretical results in density-velocity space.

Figure 7. Finite strain dependence of the normalized elastic
constants of MgSiO3 perovskite. Labels use Voigt notation.
The observed linear variations (solid lines) suggest that the
third-order finite strain theory can well account for the pres-
sure effects on most cases.
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The Cauchy conditions are only relevant for MgO,
CaO, and cubic CaSiO3 perovskite. The value of c12 �
c44 � 2P for these materials is found to be large and
negative and to increase in magnitude with increasing
pressure (Figure 9). The strong violation of the Cauchy
conditions in these minerals requires an important con-
tribution from noncentral (many-body) forces that in-
creases with pressure. The potential-induced breathing
model appears to capture the essential physics, as this
simplified model predicts correctly the Cauchy violation
in the alkaline Earth oxides [Isaak et al., 1990; Mehl et al.,
1986]. The relevant many-body force arises from a
spherically symmetric breathing of the oxygen ion in
response to strain-induced variations in the Madelung
potential at the oxygen site.

Rigorous bounds on the effective moduli of isotropic
polycrystalline aggregates can be determined once the
single-crystal elastic constant tensor is known [Watt et al.,
1976]. We find that for most silicates and oxides over the
pressure range of the mantle, the Hashin-Shtrikman
bounds differ by less than 2% for the shear modulus and
by less than 0.5% for the bulk modulus. The Voigt-Reuss
bounds are substantially broader, but the Voigt-Reuss-
Hill average generally falls within the Hashin-Shtrikman
bounds and agrees closely with the average of the

Hashin-Shtrikman bounds (Figure 10). The difference
between the bounds depends on the magnitude of the
anisotropy, which may change substantially with pres-
sure. The width of the bounds is large only where the
anisotropy is unusually large (e.g., AS � 50%). For
example, the condition c11 � c12 � 0 not only makes
the anisotropy of SiO2 diverge in the vicinity of the
stishovite-to-CaCl2 phase transition but also causes the
lower bound on the shear modulus to vanish [Karki et al.,
1997d] (see Table 2). In MgO (Figure 10) and the B1
phase of CaO, the bounds on the shear modulus are
relatively wide at high pressure where the anisotropy of
these phases is large [Karki et al., 1997a; Karki and Crain,
1998b]. In such situations the Hashin-Shtrikman and
Voigt-Reuss-Hill averaged values also differ significant-
ly: by 1% in MgO at 140 GPa, by 4% in CaO at 60 GPa,
and by 15% in stishovite at 46 GPa. In such cases the HS
bounds are preferred.

4.2.2. Instabilities. In most cases, elastic con-
stants increase monotonically with increasing pressure.
However, in several cases, elastic constants or combina-
tions of elastic constants may decrease with increasing
pressure and may vanish, implying an elastic instability.
The analysis of elastic instabilities plays an important
role in the theoretical understanding of phase transitions
[Salje, 1990]. We may divide the elastic instabilities
found in mantle materials into two groups. The first type
is directly responsible for equilibrium phase transitions;
an example is the vanishing of c11 � c12 at the stisho-

Figure 8. Calculated compressional velocity versus density
for several minerals, ol, forsterite; wa, wadsleyite; ri, ringwood-
ite; il, MgSiO3 ilmenite; pv, MgSiO3 perovskite; Ca-pv, CaSiO3

perovskite; pe, MgO; ca, B1 and B2 phases of CaO; si, three
phases (stishovite, CaCl2, and columbite) of SiO2; and al,
corundum and Rh2O3(II) phase of Al2O3. The mean atomic
weight of each phase is shown by the number in parentheses.
Thin lines are those estimated by Birch’s law for different M�
shown by numbers.

Figure 9. Pressure dependence of the Cauchy violation in
cubic crystals, MgO, CaO (B1 and B2 phases), and CaSiO3

perovskite [Karki, 1997]. All three systems show stronger vio-
lation at higher pressures.
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vite-to-CaCl2 structure transition in silica [Cohen, 1992;
Karki et al., 1997b]. The second type is more common
and is found outside the stability field of the mineral.
Elastic instabilities of this type may be associated with
metastable transformations. Examples are the instabili-
ties in diamond structure of Si [Mizushima et al., 1994],
zinc-blende structure of SiC [Tang and Yip, 1995], B1
phase of MgO and CaO [Karki et al., 1997e], corundum
and Rh2O3(II) phases of Al2O3 [Duan et al., 1999], and
forsterite [da Silva et al., 1997].

Silica provides an excellent example of a pressure-
induced elastic instability that can precisely be linked to
a phase transformation [Cohen, 1992; Karki et al., 1997b,
1997d]. In stishovite, c11 increases slowly with pressure
up to 40 GPa and then decreases on further compres-
sion, whereas c12 grows at an increasing rate, thereby
causing c11 � c12 to vanish at �47 GPa (the pressure of
the stishovite-to-CaCl2 transition), where the tetragonal
shear modulus of the CaCl2 phase also vanishes (Figure
11). The c11 � c12 � 0 instability arises from a strong
coupling between a shear strain of orthorhombic sym-
metry in the a-b plane and the soft B1g mode in stisho-
vite or Ag mode in CaCl2 phase. The strain provides a
deformation path that relates the lattices of the two
structures, whereas the B1g mode involves a rotation of

SiO6 octahedra around the c axis that relates the two
structures. The coupling between strain and vibrational
mode is strong: The calculated modulus c11 � c12 does
not soften around 47 GPa unless the ions are reopti-
mized (allowed to relax) in the deformed lattice (Figure
11). While the frequency of the B1g mode is softened
considerably by 47 GPa, it does not vanish until much
higher pressures (86 GPa), well beyond the stability field

TABLE 2. Voigt-Reuss-Hill Versus Hashin-Shtrikman
Isotropic Bulk and Shear Moduli for Three Phases of SiO2
[Karki et al., 1997d]a

P KVRH GVRH KHS GHS

Stishovite
0 312 � 5 225 � 12 312 � 1 226 � 2
20 390 � 3 244 � 25 390 � .8 246 � 6
40 479 � 2 226 � 65 478 � .7 233 � 28
46 507 � 1.5 149 � 142 507 � .7 132 � 116

CaCl2 Phase
50 505 � 16 266 � 47 508 � 7 267 � 22
60 521 � 13 306 � 31 523 � 5 305 � 12
80 586 � 6.3 350 � 22 586 � 2.2 349 � 7.2
100 654 � 5.5 380 � 21 655 � 1.8 379 � 6.7

Columbite Phase
100 696 � .5 371 � 5 696 � .1 371 � 1.2
120 760 � .5 395 � 6 760 � .1 395 � 1.4
140 830 � .4 413 � 7 830 � .1 413 � 1.8

aThe plus or minus signs represent the bounds on moduli.

Figure 10. Comparison between the Voigt-Reuss-Hill and
Hashin-Shtrikman averaging schemes for the shear modulus of
MgO at high pressure [Karki et al., 1997a]. Two types of
averages agree closely with each other, although Voigt and
Reuss bounds are much broader than the Hashin-Shtrikman
bounds at high pressure.

Figure 11. Pressure dependence of c11 � c12 (bold curve
indicates with ionic positions reoptimized in the deformed unit
cell, and dashed lines indicate without any ionic relaxation) of
stishovite (rutile phase) and CaCl2 phase of SiO2. Low-fre-
quency Raman modes (B1g for rutile and Ag for CaCl2 phase)
are shown by thin curves. The results are taken from Karki et al.
[1997b].
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of stishovite. The frequency of the Ag mode of CaCl2
phase increases with increasing pressure.

In MgO and CaO, c44 of the B1 phase is shown to
increase slowly with increasing pressure and then to
soften, vanishing at approximately 1400 and 180 GPa,
respectively [Karki et al., 1997e]. It can be shown that the
shear instability implied by the violation of the c44 � 0
stability criterion is a deformation path between the
face-centered cubic (B1) and simple cubic (B2) struc-
tures. However, the B1-B2 phase transition in these
materials takes place at a pressure much lower than that
of the elastic instability. The softening of c44 may be
taken as a precursor of the B1-B2 phase transition [Karki
et al., 1997e]. Other materials that show softening and
vanishing of elastic constants at pressures much higher
than the limit of their thermodynamic stability fields
include forsterite (two shear constants, c55 and c66,
decrease with pressure beyond 40 and 90 GPa, respec-
tively, and c55 vanishes at about 170 GPa [da Silva et al.,
1997]) and corundum (c66 decreases with increasing
pressure beyond 250 GPa). For the Rh2O3(II) phase of
Al2O3, c55 decreases with increasing pressure beyond
150 GPa, implying a shear instability at a higher pressure
[Duan et al., 1999].

4.2.3. Anisotropy. As was discussed above, differ-
ent elastic constants vary with pressure at different rates.
One consequence of this is that the elastic anisotropy is,
in general, a function of pressure. In some cases, not
only the magnitude but also the sense of anisotropy may
change significantly with increasing pressure; that is, the
directions of fastest and slowest propagation directions
may be reversed upon compression.

MgO is a good example of strongly pressure depen-
dent anisotropy. Its anisotropy at first decreases with
increasing pressure, vanishes near 15 GPa, and then
increases upon further compression [Karki et al., 1997b,
1999]. The magnitude of the anisotropy becomes very
large at pressures similar to those near the base of the
mantle ( As � 50% at 135 GPa); see Figure 12. The
anisotropy factor A (equation (37)) changes sign at �15
GPa with the consequence that the sense of anisotropy is
reversed. The sign of A is in turn determined by the ratio
of cs to c44, which exceeds unity only above 15 GPa. At
this pressure the direction of fastest S wave propagation
changes from [100], with velocity �c44/
, to [110], with
velocity �cs/
 [Karki et al., 1997b]. Similar behavior is
seen in the case of ringwoodite (Figure 13). The theo-
retically predicted behavior of MgO is consistent with
most experimental observations including those of Duffy
et al. [1995], Sinogeikin and Bass [1999], and the lower-
pressure data of Zha et al. [2000]. At higher pressures,
theory diverges substantially from the data of Zha et al.
[2000], who found that MgO remains essentially isotro-
pic at pressures greater than 20 GPa.

Other oxides including CaO, Al2O3, and SiO2 are also
highly anisotropic. The anisotropy of SiO2 is the largest
in this group and varies most rapidly with increasing
pressure (Figure 12). The anisotropy of stishovite dra-

matically increases near the transition to the CaCl2
structure ( As � 175%). The CaCl2 phase also shows
substantial anisotropy ( As � 75%) near the transition
pressure. This behavior is attributed to the shear insta-
bility associated with the vanishing of c11 � c12 at the
phase transition. The columbite phase of silica (also
known as -PbO2 structure) is less anisotropic than the
lower-pressure structures. The B1 phase of CaO shows
increasing anisotropy, which reaches a maximum as the
B1-B2 transition is approached (90% AS at 60 GPa).
This is due to softening of c44 [Karki and Crain, 1998b].
The anisotropy of the corundum phase is found to de-
crease with pressure up to 50 GPa and then increase
slowly [Duan et al., 1999]. In contrast, the anisotropy of
the Rh2O3(II) phase of alumina is relatively large ( As �
20% at 80 GPa) and increases with compression. The
fast and slow propagation directions also change with
pressure in Al2O3 and SiO2 but not in CaO, for which
they are fixed by the condition c44/cs � 1, which is
satisfied at all pressures.

Figure 12. Single-crystal anisotropy (P azimuthal and S azi-
muthal, i.e., variations with propagation direction; and S po-
larization, i.e., variation with polarization for a given direction)
of MgSiO3 perovskite [Karki et al., 1997c], MgO [Karki et al.,
1997a], and SiO2 [Karki et al., 1997d].
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In MgSiO3 perovskite the anisotropy at first decreases
with increasing pressure to approximately 30 GPa (Fig-
ure 12) and then increases, showing changes in the
extremal propagation directions [Karki et al., 1997c;
Wentzcovitch et al., 1998b]. For example, the direction of
slowest P wave propagation is [001] at 0 GPa but [100] at
140 GPa. This behavior can be understood in terms of
the ratio of the longitudinal moduli: c11/c33 � 1 at 0
GPa but c11/c33 � 1 at 140 GPa (Figure 7). In contrast,
the anisotropy of CaSiO3 perovskite rapidly decreases
with increasing pressure from its high initial value (40%
AS), while the extremal propagation directions remain
unchanged since c44/cs � 1 at all pressures [Karki and
Crain, 1998b].

Both theory [da Silva et al., 1997; Kiefer et al., 2001]
and experiments [Zha et al., 1996, 1997, 1998] show that
the anisotropy of forsterite and wadsleyite varies by only
a few percent without any change in the fast and slow
directions over the pressure range 0–30 GPa (Figure
13). Similarly, the anisotropy of MgSiO3 ilmenite de-
creases slightly under compression and remains large
(20% AS at 25 GPa) compared with other minerals of
the upper mantle and transition zone [da Silva et al.,
1999]. The small values of c14 and c25 in ilmenite lead to
a weak transverse anisotropy of ilmenite about the ver-
tical ( z) axis and also imply a slight difference between
the large anisotropy about the x and y axes. The extremal

propagation directions also change with pressure, as
determined by the pressure dependence of c14 and c25.

4.3. Effect of Structure and Composition
There has been substantial interest in establishing

systematic patterns in the effects of crystal structure and
composition on the elastic constants [Duffy and Ander-
son, 1989; Anderson et al., 1992]. The systematics based
on Birch’s law (equation (64)) are not well obeyed by
first-principles results (Figure 8). Discrepancies are pri-
marily of two types: (1) Results for isochemical poly-
morphs do not generally fall along the same trend, and
(2) results for some minerals do not lie near the curve
appropriate for their mean atomic weight. For example,
results for forsterite and Mg wadsleyite are nearly coin-
cident and fall near the appropriate curve (M� � 20), as
expected from Birch’s law, but results for ringwoodite
are discrepant, defining a distinct trend that lies near the
curve corresponding to M� � 21. Most minerals fall
along curves that correspond to a mean atomic weight
that is within one unit of the actual value. Notable
exceptions are the CaO polymorphs: Results for the B1
and B2 phases of CaO fall along very different trends,
both of which, moreover, lie far from the line corre-
sponding to the mean atomic weight of this material (M�
� 28). This discrepancy had been noted before in the
case of B1 CaO [Birch, 1961]. Birch’s law is not generally
useful in a quantitative sense for estimating the effects of
phase transformations on VP. For example, the change
in VP at the forsterite-to-wadsleyite transition is found to
be 0.84 km s�1 in the first-principles calculations, as
compared with the value that would be derived by using
Birch’s law to relate the density contrast to the velocity
contrast: 0.28 km s�1.

The failure of simple systematics such as Birch’s law is
perhaps not surprising given the complexity of the prob-
lem. In the case of polymorphic phase transitions, we
must expect a change not only in density, but also in
bonding and crystallographic symmetry. This means that
the number of independent elastic constants, as well as
their magnitude and pressure dependence, will change
in general. Pressure-induced phase transitions are ac-
companied by significant changes in the isotropic prop-
erties (VP and VS) as well as in the anisotropy (the
magnitude and character). Consider the Mg2SiO4 system
in which forsterite and wadsleyite are characterized by
nine elastic constants, whereas ringwoodite has three
(Figure 14). Even the two orthorhombic phases show
very different patterns of anisotropy: In forsterite, c11 �
c33 � c22, whereas in wadsleyite c11 � c22 � c33. The
P wave anisotropy of wadsleyite is a factor of 2 smaller
than that of forsterite; the anisotropy of ringwoodite is
much weaker still. The P and S velocities are found to
increase by 10–12% at the forsterite-to-wadsleyite tran-
sition and by 2–3% at the wadsleyite-to-ringwoodite
transition.

In some cases, it is possible to rationalize in a simple
way the effect of crystallographic structure on the elas-

Figure 13. Single-crystal anisotropy (P azimuthal, S azi-
muthal, and S polarization) of the Mg2SiO4 polymorphs: for-
sterite [da Silva et al., 1997], wadsleyite [Kiefer et al., 2001], and
ringwoodite [Kiefer et al., 1997].
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ticity of isochemical polymorphs. For example, in Mg-
SiO3 the isotropic wave velocities increase substantially
(VS by 20%) across the ilmenite-to-perovskite transition,
while the anisotropy drops by a factor of 2. The stiffer
perovskite structure results from the complete three-
dimensional network of corner sharing SiO6 octahedra.
The Si octahedron is relatively incompressible with a
polyhedral bulk modulus [Hazen and Finger, 1979] of 330
GPa [Karki et al., 1997c]. In contrast, ilmenite is a
layered structure in which planes of edge-sharing Si
octahedra alternate regularly along the c axis with much
softer Mg octahedra (polyhedral bulk modulus of 172
GPa [Karki et al., 2000]). This arrangement accounts for
the lesser isotropic moduli in ilmenite and for its large
anisotropy: Compression along c is relatively easy and is
accommodated mostly by the Mg octahedra, while com-
pression along a and b can only take place by compress-
ing Si and Mg polyhedra by similar amounts.

The effect of composition on isostructural series may

also be substantial. For example, the elastic moduli of B1
MgO are larger than those of B1 CaO at all pressures,
and the pressure dependencies of moduli also differ
substantially between the two oxides; for example, c11 of
CaO (B1 phase) increases much more rapidly with pres-
sure than that of MgO. Qualitatively, the lesser moduli
in CaO can be related to the greater volume of this
compound as compared with MgO. The perovskites pro-
vide an interesting contrast. In this structure the volume
is set primarily by the Si-O bond length. As a result, the
difference in mean atomic volume between Ca- and
Mg-silicate perovskites is smaller than would be ex-
pected on the basis of the difference in ionic radii of Mg
and Ca. The difference in volume is also related to
differences in octahedral rotation which lowers the sym-
metry of Mg-silicate perovskite. The isotropic moduli of
CaSiO3 are smaller than those of MgSiO3 perovskite at
zero pressure, but they increase more rapidly with in-
creasing pressure. For example, the shear modulus of

Figure 14. Elastic moduli of the Mg2SiO4 polymorphs. Lines indicate theory [da Silva et al., 1997; Kiefer et
al., 1997, 2001]. Symbols indicate the experimental data [Weidner et al., 1984; Yoneda and Morioka, 1992; Zha
et al., 1996, 1997].
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CaSiO3 perovskite overtakes that of Mg perovskite at 20
GPa. This may be understood in terms of the increasing
importance of short-range repulsion between the larger
cation (Ca) and its surrounding oxygens at high pressure.

Corundum and ilmenite are related by a chemical
substitution (Tschermak substitution) that replaces al-
ternating layers of Al octahedra with Mg and Si octahe-
dra. Despite the similar structure of these two minerals,
they have very different elasticity: In ilmenite, c11 is
much larger than c33, whereas in corundum, c11 and c33
are similar throughout the pressure range of stability
(Table 1). The greater anisotropy of ilmenite is due to
the alternating occupation of the octahedral layers by
Mg and Si. As also discussed above, this leads to a
relatively compressible c axis and greater resistance to
compression in the plane of the layers [Karki et al., 2000;
Weidner and Ito, 1985].

4.4. Comparisons With Seismological Observations
The elastic properties of the major Earth forming

minerals predicted by first-principles theory are of sub-
stantial geophysical significance. Comparisons of the
calculated elastic properties with those of the Earth’s
interior as determined seismologically lead to a better
understanding of the origin of one-dimensional and lat-
erally heterogeneous mantle structure. Moreover, the
predicted elastic anisotropy of component minerals can
be used to understand the origin of the seismic anisot-
ropy. The comparison is limited by our current lack of
knowledge of the effect of temperature on mineral elas-
ticity at the relevant pressures. The point of view
adopted here is that the effect of pressure on the elastic
properties is predominant, with temperature playing a
secondary role. However, a more precise interpretation
demands information regarding the thermal and compo-
sitional contributions, for example, the effect of iron
content.

4.4.1. Isotropic wave velocities. The properties
of the Mg2SiO4 polymorphs are compared with the seis-
mic profiles of the upper mantle and transition zone in
Figure 15. The velocities of forsterite are nearly parallel
to the seismic profiles between 200 and 410 km depth
and are shifted upward by approximately 7 and 13% for
P and S waves, respectively [da Silva et al., 1997]. This
discrepancy is expected and is due primarily to the
effects of temperature, since the theoretical calculations
are athermal. A more detailed comparison between the-
ory and seismology requires computations of the elastic
wave velocities at high temperature that have not yet
been performed. It will also be important to understand
the effects of composition (in the mantle, olivine con-
tains a significant amount of fayalite component) and
other phases including pyroxene and garnet. Compari-
sons at greater depth show similar patterns. The P and S
velocities of wadsleyite are 12 and 20% larger, respec-
tively, than the properties of the mantle near 410 km
depth, and the differences decrease rapidly at greater
depths due to steep seismic gradients in the transition

zone, which are due in part to phase transformations
among other phases including pyroxene and garnet that
occur over this range. The velocity profiles of ringwood-
ite remain parallel to and are 8 and 9% higher than the
seismic profiles over the depth range that this mineral is
expected to occur in the mantle [Kiefer et al., 1997].

The transition from olivine to wadsleyite is thought to
be responsible for the seismic discontinuity near 410 km
depth. The changes in P and S wave velocities associated
with this transition according to theory are 10 and 12%,
in good agreement with experimental measurements [Li
et al., 1998]. A number of authors have compared the
change in velocity due to the transition with the magni-
tude of the velocity discontinuity determined seismologi-
cally [Weidner, 1985; Zha et al., 1996; Fujisawa, 1998; Li
et al., 1998]. However, the seismological value is uncer-
tain in part because it is model-dependent and in part
because of real geographic variability in the Earth; seis-
mological estimates range from 2.6 to 3.9% for the
discontinuity in VP and from 3.6 to 6.7% for the discon-
tinuity in VS. Another important issue may be the ap-
parent frequency dependence of the properties of veloc-
ity discontinuities as predicted by thermodynamic
analyses [Helffrich and Bina, 1994; Stixrude, 1997]. Thus
the apparent magnitude of the seismic discontinuity may
not provide robust constraints on the olivine content.
What is needed is careful comparison between regional

Figure 15. Comparisons of the calculated longitudinal (P)
and shear (S) wave velocities of Mg2SiO4 polymorphs [da Silva
et al., 1997; Kiefer et al., 2001, 1997], with the seismic data of
the upper mantle and transition zone given by the preliminary
reference Earth model (PREM) [Dziewonski and Anderson,
1981].
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seismic velocity models and elastic constants determined
along geotherms and for bulk compositions appropriate
for that region. Nevertheless, the seismologically deter-
mined velocity jump appears to be systematically smaller
than that of the olivine-to-wadsleyite transition. This
indicates that the mantle is not pure olivine. This con-
clusion is consistent with a broad range of compositional
models of the mantle including pyrolite and piclogite.

Karki and Stixrude [1999] have presented comprehen-
sive comparisons of the calculated velocities of silicates
and oxides with seismic properties of the lower mantle,
focusing on two central issues of the composition of this
region: its dominant mineralogy and the detectability of
secondary and minor phases (Figure 16). The athermal
velocity profiles of MgSiO3 perovskite are nearly parallel
to and are higher than those of the lower mantle
[Dziewonski and Anderson, 1981]. The fact that the
velocity profiles of MgSiO3 perovskite are nearly parallel
and shifted upward by a few percent (8–10%) with
respect to the seismic profiles indicates that perovskite is
indeed the dominant phase in the lower mantle [Karki et
al., 1997c; Karki and Stixrude, 1999]. The differences can
be attributed to the effects of iron and high tempera-
tures in the lower mantle and to contributions from the
secondary phases such as magnesiowüstite and CaSiO3
perovskite. This picture has been supported in the past
by only a limited subset of seismological observations
(density and bulk sound velocity). The first-principles

studies show that VP and VS are also consistent with the
perovskite-rich lower mantle hypothesis. This is signifi-
cant because the P and S wave velocities are expected to
be more sensitive to bulk composition and mineral struc-
ture than are density and bulk modulus. However, the
lack of sufficient information regarding the effects of
high temperature and composition do not yet permit us
uniquely to resolve the composition and mineralogy of
the lower mantle. In particular, it is not yet possible on
the basis of first-principles calculations to distinguish
pyrolite from the more iron- or silica-rich compositions
that have been proposed [Jeanloz and Knittle, 1989;
Stixrude et al., 1992; Zhao and Anderson, 1994].

The density and bulk sound velocity profiles of
CaSiO3 perovskite are nearly identical with those of
(Mg,Fe) SiO3 perovskite with �10% iron. This has led
to the suggestion that CaSiO3 perovskite would be a
seismically invisible component of the lower mantle
[Mao et al., 1989; Wang et al., 1996]. However, theoret-
ical calculations of Karki and Crain [1998a] of the shear
wave velocity of CaSiO3 perovskite do not support this
view. The calculations show that VS of CaSiO3 perovs-
kite is substantially higher than that of Mg-rich silicate
perovskite in the deep lower mantle. Another potential
minor phase in the lower mantle, silica, also has distinc-
tive seismic properties. The calculated velocities of silica
are substantially higher than the seismic observations (by
as much as 20% in VS) [Karki et al., 1997d]. Moreover,

Figure 16. Comparisons of the calculated longitudinal (P) and shear (S) wave velocities of major silicates
and oxides (MgSiO3 perovskite [Karki et al., 1997c]; MgO [Karki et al., 1997a]; CaSiO3 perovskite [Karki and
Crain, 1998a]; high-pressure polymorphs of SiO2 [Karki et al., 1997d]; CaO [Karki and Crain, 1998b]; and
Al2O3 [Duan et al., 1999]) with the seismic data of the lower mantle given by the PREM [Dziewonski and
Anderson, 1981].
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in the neighborhood of the stishovite-to-CaCl2 phase
transition, due to the tetragonal shear instability, the P
and S velocities decrease by 20 and 60%, respectively.
This indicates that if free silica exists in the lower man-
tle, it should lead to an observable seismic discontinuity
near a depth of 1180 km. Thus, among the candidate
phases generally considered for the lower mantle, none
are invisible (Figure 16).

4.4.2. Lateral heterogeneity. Seismic tomography
has revealed significant lateral variations in velocities
throughout the mantle [van der Hilst et al., 1991; Robert-
son and Woodhouse, 1996]. The lateral heterogeneity
can, in general, be associated with lateral variations in
temperature, composition, or phase. In the transition
zone, lateral variations in phase assemblage, due to
temperature-induced phase transformations [Anderson,
1987], are expected to be particularly important. An
example of such a transition is that from garnet to
ilmenite, which would be expected as one moves from
normal mantle into a cold subduction environment. The
large contrast in velocity between two phases (10% in
VS) may contribute substantially to the observed lateral
velocity structure in the transition zone [da Silva et al.,
1997].

Lateral variations in composition including variations
in Fe/(Fe � Mg), Si/(Mg � Si), or Ca/(Ca � Mg) ratios
may be relevant for the lower mantle. The lateral het-
erogeneity may be characterized by the ratio  � � ln
VS/� ln VP, whose seismic value varies from 1.7 to 3
across the lower mantle [Robertson and Woodhouse,
1996]. A change in the Fe/(Fe � Mg) ratio that affects
the shear modulus selectively with negligible effect on
the bulk modulus should give  in the range of 1–1.5, as
estimated from the experimental data [Duffy and Ander-
son, 1989]. One can calculate the effect of variation in
Si/(Mg � Si) by comparing wave velocities of MgSiO3
perovskite and MgO (Figure 16) to give  � 1.2. How-
ever, a variation in the Ca/(Ca � Mg) ratio can make  
as high as 4 because the shear velocity of CaSiO3 per-
ovskite is much higher than that of MgSiO3 perovskite,
whereas their longitudinal velocities are similar in the
lower mantle (Figure 16). Lateral variations in temper-
ature must also contribute to lateral heterogeneity in the
lower mantle. Several studies have shown that the effect
of temperature on VP and VS changes with pressure in
such a way that  increases with depth [Karki et al., 1999;
Isaak et al., 1992]. Thermal anomalies alone appear
unable to account for the observed seismic heterogene-
ity at the bottom of the lower mantle [Karato and Karki,
2001].

4.4.3. Seismic anisotropy. Seismic anisotropy, a
measure of the variation of seismic wave velocities with
propagation or polarization direction, represents an ad-
ditional dimension in relating seismological observations
to geodynamical and tectonic processes. Among several
factors that have made the interpretation of the ob-
served anisotropy difficult has been the lack of informa-
tion about the elastic constants and anisotropy of con-

stituent minerals at geophysically relevant conditions.
Once these are known, the anisotropy of an aggregate is
then determined by the lattice-preferred orientation
(LPO) of its components or the shape-preferred orien-
tation (SPO) of aligned inclusions with distinct elastic
moduli [see Karato, 1998b].

The seismic anisotropy in the upper mantle, con-
firmed by several independent observations of body and
surface waves [see, e.g., Montagner, 1998; Mainprice et
al., 2000], has long been thought to be due to the
flow-induced lattice-preferred orientation in olivine
polycrystal [Ribe, 1989]. This is consistent with the strong
anisotropy of olivine experimentally and theoretically
determined at high pressure [Zha et al., 1998; da Silva et
al., 1997] and the experimentally observed deformation
mechanisms in this mineral.

The transition zone shows a transverse (radial) an-
isotropy with VSH � VSV. Wadsleyite may be responsi-
ble for the observed anisotropy in the upper part of the
transition zone: It is the most abundant mineral in this
depth range and is found to be highly anisotropic [Kiefer
et al., 2001]. On the other hand, in the lower part of the
transition zone, the likely major minerals, spinel and
garnet, show weak anisotropy (1–2%) at high pressures
[Kiefer et al., 1997; Chai and Brown, 1997]. The observed
anisotropy in this region, as suggested by Karato [1998b],
may require contributions from SPO associated with the
large contrast in the elastic moduli of these phases.

Significant seismic anisotropy has been reported in
the top and bottom few hundred kilometers of the lower
mantle [Montagner and Kennett, 1996; Kendall and Silver,
1996; Garnero and Lay, 1997; Lay et al., 1998], while the
bulk of this region appears to be isotropic [Kaneshima
and Silver, 1995; Meade et al., 1995]. Recently, theoreti-
cally predicted elastic constants of MgSiO3 perovskite
and MgO have been used to investigate the possible
origins of anisotropy in the lower mantle [Karato, 1998a,
1998b; Stixrude, 1999]. This remains an uncertain exer-
cise, because in contrast to the situation in the upper
mantle, we currently have no information regarding the
deformation mechanisms of lower mantle minerals at
the relevant pressures. The nature of the LPO that is
likely to develop in lower mantle aggregates critically
influences the sense of the seismic anisotropy. For ex-
ample, if the easiest glide plane in MgSiO3 perovskite is
(010), as it is in analog CaTiO3 perovskite [Karato,
1998b], then polycrystalline perovskite aggregates show
VSV � VSH (with (010) horizontal) (Figure 17). How-
ever, if (100) is the easiest glide plane, as suggested by
the ratio of c55/c44 at high pressure, then the sense of
anisotropy is reversed. The dominant glide plane in
MgO is likely to change from the {110} to {100} plane
in the deep lower mantle because with increasing pres-
sure c44 corresponding to the shear along the {100}
plane becomes increasingly smaller than (c11 � c12)/ 2,
which corresponds to the shear along the {110} plane
[Karato, 1998a]. The {100} glide results in VSH � VSV
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anisotropy, whereas the {110} glide yields the opposite
sense (Figure 17).

Comparing these results with seismology is further
complicated by the spatial variability of anisotropy in the
D� layer. While VSH � VSV is most frequently observed
(in the circum- and central-Pacific regions), VSV � VSH

is also reported below the central Pacific [Kendall and
Silver, 1996; Garnero and Lay, 1997; Lay et al., 1998].
There may be multiple sources of anisotropy at the base
of the mantle including LPO and contributions from
shape-preferred orientation. The single-crystal anisot-
ropy of both perovskite and MgO are strong enough to
cause seismically detectable anisotropy throughout the
bulk lower mantle. Similarly, other component minerals
including SiO2 and CaSiO3 perovskite also possess sig-
nificant anisotropy. The absence of seismic anisotropy in
the bulk of the lower mantle requires that LPO be weak
or absent in this region, implying a different mechanism
of deformation from that operative in the dynamical
boundary layers [Karato, 1998b; Meade et al., 1995].

5. FUTURE PROSPECTS

First-principles methods hold tremendous promise
for exploring materials behavior at the extreme condi-
tions that prevail in the deep interior. There is much still
to be learned about Earth materials and how their prop-

erties control the structure and dynamics of inner Earth.
Only a subset of end-member phases have so far been
studied from first-principles, but more complex phases
such as solid solutions (alloys) with Mg-, Fe-, Ca-, or
Al-bearing species are relevant. Computational alchemy
or cluster expansion methods have been traditionally
used in ab initio studies of semiconductor and metallic
alloys and could eventually be applied to oxide and
silicate phases as well [de Gironcoli et al., 1991; Saitta et
al., 1998; Wolverton and Zunger, 1995].

First-principles calculations have focused to date on
the dominant effects of pressure on material properties
in the Earth’s interior. However, it is only when thermal
effects are also fully considered that we will be able to
address issues such as the bulk composition of the lower
mantle and the origin of the lateral heterogeneity in
thermal, compositional, and petrologic contributions
and finally to better understand the dynamics of the
mantle. Unlike the case of high pressure, primarily be-
cause temperature breaks crystal symmetry, finite tem-
perature studies involve relatively large scale computa-
tions such as molecular dynamics simulations of large
supercells or determination of entire vibrational spec-
trum that are now becoming feasible within the frame-
work of density functional theory [e.g., Baroni et al.,
1987; Karki et al., 1999; Alfe et al., 2000].

Though stresses are expected to be nearly hydrostatic
in most of the Earth’s interior, there are regions such as
boundary layers where shear strain is large and persis-
tent. The Earth is a multiphase composite with proper-
ties dependent on textures, deformations, dislocations,
slip systems, flow patterns, and other rheological fea-
tures that are sensitive to both stress and temperature
conditions. Yet to be explored are the nature of trans-
port phenomena (diffusion, viscosity), heterogeneous
structures (solid/melt interfaces), and defects at high
pressure. All these properties involve large-scale molec-
ular dynamics simulations that have so far been tractable
only with interatomic potentials or simplified physical
models [e.g., Ita and Cohen, 1997]. First-principles stud-
ies in these areas represent exciting future directions in
mineral physics and solid Earth geophysics.
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