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[1] Earthquakes and the faults upon which they occur
interact over a wide range of spatial and temporal scales.
In addition, many aspects of regional seismicity appear
to be stochastic both in space and time. However, within
this complexity, there is considerable self-organization.
We argue that the occurrence of earthquakes is a prob-
lem that can be attacked using the fundamentals of
statistical physics. Concepts of statistical physics associ-
ated with phase changes and critical points have been
successfully applied to a variety of cellular automata
models. Examples include sandpile models, forest fire
models, and, particularly, slider block models. These
models exhibit avalanche behavior very similar to ob-
served seismicity. A fundamental question is whether

variations in seismicity can be used to successfully fore-
cast the occurrence of earthquakes. Several attempts
have been made to utilize precursory seismic activation
and quiescence to make earthquake forecasts, some of
which show promise. INDEX TERMS: 3220 Mathematical Geophys-
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1. INTRODUCTION: THE PROBLEM OF
EARTHQUAKES

[2] Earthquakes have great scientific, societal, and
economic significance. During the first 2 months of 2001
the 13 January magnitude 7.6 El Salvador earthquake,
the 26 January magnitude 7.9 Gujarat, India, earth-
quake, and the 28 February magnitude 6.8 Seattle,
Washington, United States, earthquake killed thousands
of persons and caused billions of dollars in property

losses. The 16 January 1995 Kobe, Japan, earthquake
was only a magnitude 6.9 event and yet produced an
estimated $200 billion loss. Similar scenarios are possi-
ble at any time in Los Angeles, San Francisco, Seattle,
and other U.S. urban centers along the Pacific plate
boundary. The magnitude of the potential loss of life and
property is so great that reliable earthquake forecasting
has been a long-sought-for goal. Many millions of dollars
and many thousands of work years have been spent on
observational programs searching for reliable precursory
phenomena.

[3] Possible precursory phenomena include changes
in seismicity, changes in seismic velocities, tilt and strain
precursors, electromagnetic signals, hydrologic phenom-
ena, and chemical emissions [Turcotte, 1991; Scholz,
2002]. A few successes have been reported, but, to date,
no precursors to large earthquake have been detected
that would provide reliable forecasts (Nature Debates,
Debate on earthquake forecasting, http://www.nature.
com/nature/debates/earthquake/, 1999, hereinafter re-
ferred to as Nature Debates, 1999).

[4] In terms of data acquisition several major ap-
proaches are currently being emphasized. These include
(1) paleoseismic observations of historic earthquakes
whose occurrence and locations are preserved in offset
surficial sediments; (2) patterns of seismicity (origin
time, location, and magnitude of earthquakes); (3) sur-
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face deformation measured via Global Positioning Sys-
tem (GPS) networks such as the Southern California
Integrated GPS Network (available at http://www.scign.
org) and the Bay Area Regional Deformation network
(Southern California Seismographic Network (SCSN)
catalog, available from Southern California Earthquake
Center (SCEC) Data Center, University of Southern
California, Los Angeles, and Nature Debates, 1999); and
(4) synthetic aperture radar interferometry (InSAR) ob-
servations of surface displacement. Observations of
these data types are also planned as part of the National
Science Foundation Earthscope initiative (see http://
www.earthscope.org). In fact, the Plate Boundary Ob-
servatory (PBO) plans to place more than a thousand
GPS, strain meter, and deformation sensors along the
active plate boundary of the western coast of the United
States, Mexico, and Canada at an eventual cost in excess
of $100 million (Nature Debates, 1999).

[5] It is clearly a very high priority to utilize this
wealth of new data to better understand the fundamen-
tals of earthquake occurrence. This understanding can
improve several aspects of the earthquake hazard: (1)
risk assessment, determining the probability of the oc-
currence of an earthquake of a specified magnitude in a
specified area within a specified time window, and (2)
earthquake forecasting (prediction), finding patterns of
behavior that can provide statistically acceptable fore-
casts of future major earthquakes. There are two serious
limitations to a purely observational approach to the
problems of understanding earthquake physics and
earthquake forecasting: (1) fundamentally unobservable
dynamics and (2) a vast range of space and timescales.

1.1. Unobservable Dynamics
[6] Earthquake faults occur in topologically complex,

multiscale networks or systems that are driven to failure
by external forces arising from plate tectonic motions
[Turcotte, 1997; Ben-Zion and Sammis, 2003]. The basic
problem is that the details of the true space-time, force-
displacement dynamics are unobservable, in general,
except in a few selected locations such as deep drill holes
(Earthscope, National Science Foundation Earthscope
Initiative and PBO, www.earthscope.org/, 2002) or in a
very crude, time-averaged sense such as the World Stress
Map [Zoback, 1992]. In order to completely specify the
problem the true dynamics would have to be observable
for all space and at all times. In fault systems these
unobservable dynamics are usually encoded [Stein, 1999]
in the time evolution of the Coulomb failure function,
CFF(x, t):

CFF�x, t� � ��x, t� � �s �N �x, t� , (1)

where �(x, t) is shear stress at point x and time t, �s is the
coefficient of static friction, and �N(x, t) is normal stress.
However, the space-time patterns associated with the
time, location, and magnitude of the sudden events
(earthquakes) are observable, leading to a focus on

understanding their observable, multiscale, apparent dy-
namics [Ball, 1999; Eneva and Ben-Zion, 1997a, 1997b;
Fukunaga, 1990; Giering and Kaminski, 1998; Holmes et
al., 1996; Lermusiaux and Robinson, 1999; Miller et al.,
1999; Molchan and Kagan, 1992; Mora, 1999; Matsu�ura
et al., 2001; Nijhout et al., 1997; Preisendorfer and Mobley,
1988; Rundle et al., 1999, 2000b, 2000c, 2000d, 2001,
2002; Tiampo et al., 2000, 2002b].

1.2. Range of Scales
[7] The second problem, equally serious, is that the

nonlinear earthquake dynamics is strongly coupled
across a vast range of space and timescales that are much
larger than “human” dimensions [Anghel et al., 2003;
Bufe and Varnes, 1993; Main, 1996; Mora, 1999; Rundle et
al., 1999, 2002; Scholz, 2002; Turcotte, 1997]. Important
spatial scales range from the microscopic scale (1�m to
1 cm) associated with friction to the tectonic plate
boundary scale (103–104 km) associated with the driving
force. These scales are summarized in Table 1 along with
the relevant physics, the input from smaller scales, the
output to larger scales, and relevant computational
methods. Important temporal scales range from seconds
(during dynamic rupture) to 103–104 years (repeat times
for earthquakes) to 107–108 years (evolution of plate
boundaries).

[8] Research should be focused on understanding the
origins and implications of space-time correlations and
dynamical patterns in these fundamentally multiscale
phenomena. We expect that a computational approach
to the earthquake problem will produce new models and
insights into observations such as GPS and InSAR, much
as large-scale computing approaches have had a signifi-
cant and lasting impact in other areas of science where
the underlying phenomena span significant ranges in
spatial and temporal scales. Although all scales are im-
portant, we place more emphasis on the fault network
and system scale, since this is the scale of most observa-
tional data networks.

[9] In this paper we will discuss how a statistical
physics approach to understanding earthquakes may
lead to statistically significant earthquake forecasts. We
will first discuss various statistically robust measures of
earthquake occurrence. We will then introduce a variety
of approaches to material failure that may lead to a
better understanding of earthquake occurrence. We will
then discuss how the fundamentals of statistical physics
can be applied to models that are relevant to the occur-
rence of earthquakes, and finally we will consider fore-
casting techniques arising from statistical physics meth-
ods that show promise for earthquake forecasting.
Research developments over the last decade provide
substantial support for the idea that new, systems-level
approaches to the numerical simulation of earthquake
fault systems, together with new ideas from fundamental
approaches to high-dimensional nonlinear systems aris-
ing from statistical physics, provide a successful and
critically important new path of investigation. An en-
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hanced program of numerical simulations can be used
either in the development of ensemble and other fore-
casting techniques or as a numerical laboratory in which
rigorous hypotheses can be posed, evaluated, and tested
[Rundle et al., 2000d, 2001; Solid Earth Research Virtual
Observatory Grid, http://www.servogrid.org/, 2002; Asia
Pacific Economic Cooperation for Earthquake Simula-
tions, http://quakes.earth.uq.edu.au/ACES/, 2002].

2. EARTHQUAKE SCALING

[10] The Earth�s crust is clearly extremely complex,
and earthquake statistics exhibit many random aspects.
However, despite this complexity, there are several uni-
versally valid scaling relations.

2.1. Frequency-Magnitude Statistics
[11] The best known scaling relation for earthquakes

is the Gutenberg-Richter frequency-magnitude relation
[Gutenberg and Richter, 1954]

log NGR� � m� � � b m � a , (2)

where NGR is the (cumulative) number of earthquakes
with a magnitude greater than m occurring in a specified
area and time and b and a are constants. This relation is
valid for earthquakes both regionally and globally. The
constant b or “b value” varies from region to region but
is generally in the range of 0.8 � b � 1.2 [Frohlich and

Davis, 1993]. The constant a is a measure of the regional
level of seismicity. There are a variety of measures for
the magnitude, including local, body wave, surface wave,
and moment magnitude [Lay and Wallace, 1995]. In
general, for small earthquakes (m � 5.5) these different
magnitude measures give approximately equivalent re-
sults.

[12] Although the Gutenberg-Richter frequency-mag-
nitude relation was originally developed as an empirical
relation, we now recognize that it belongs to a broad
range of natural phenomena that exhibit fractal scaling
[Turcotte, 1989, 1997]. For earthquakes, fractal scaling
implies the validity of the relation

NGR � C A�� , (3)

where NGR is the (cumulative) number of earthquakes
with rupture areas greater than A occurring in a speci-
fied area and time; C and � are constants with D 	 2�
the fractal dimension. Aki [1981] showed that equations
(2) and (3) are entirely equivalent with

� � b �
D
2 . (4)

Thus the universal applicability of the Gutenberg-Rich-
ter relation implies universal fractal behavior of earth-
quakes.

[13] As an example of the validity of Gutenberg-Rich-
ter scaling we consider seismicity in southern California.

TABLE 1. Earthquake Scaling Regimesa

Spatial Scale Physics Input From Lower Scale Output to Upper Scale
Computational

Methods

Grain size 1 �m
to 1 cm

contact interactions,
planar fault, elastic
walls

cohesive potential across
grains

effective viscosity, LG
effective constants

MD, PD

Fault zone 1 cm
to 100 m

fluidized viscous gouge,
elastic walls and
interactions, strong
correlations

effective viscosity, LG
effective constants

effective friction laws,
e.g., rate and state,
stick-slip, leaky stress,
elastic constants,
effective LG constants

FD, PD, FEM, CA,
BEM, inertial
solvers

Fault groups
100 m to 10
km

coarse-grained planar
faults, effective
friction, strong
correlations

effective friction laws,
e.g., rate and state,
stick-slip, leaky stress,
effective elastic
constants, effective
LG constants

effective elastic moduli,
effective friction
properties (�s, �d, 
),
effective LG constants

CA, BEM, FEM,
quasi-static
solvers

Fault networks
and systems
10–1000 km

complex fault topology,
viscoelastic
relaxation, static-
kinetic friction,
strong correlations

effective elastic moduli
and friction properties
(�s, �d, 
), effective
LG constants

effective viscosity
spectrum, effective
viscoelastic modulus
spectrum

CA, BEM,
GeoFEM

Tectonic plate
boundary

viscoelastic flow on
very long timescales,
kinematics of plate
motion at fault
velocity V

effective viscosity
spectrum, effective
viscoelastic modulus
spectrum

no larger scale of
interest

GeoFEM

aFEM, finite element method; GeoFEM, Japanese Geo FEM software; MC, Monte Carlo; DFT, density functional theory; FD, finite
difference; MD, molecular dynamics; PD, particle dynamics; LG, Landau-Ginzburg; CA, cellular automata; and BEM, boundary element
method.
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The frequency-magnitude distributions of the regional
seismicity in southern California on a yearly basis are
plotted in Figure 1 using data obtained from the SCSN
catalog (2003). For each individual year between 1983
and 2002 the cumulative number of earthquakes NGR
with magnitudes greater than m is plotted as a function
of m. The period 1983–2003 taken together results in the
Gutenberg-Richter power law relation (2) with b 	 1.0
and a 	 5.4, shown as the solid straight lines in Figures
1a–1d. In Figure 1, there is generally good agreement
between each individual year�s data and the Gutenberg-
Richter relation (solid straight line) for the period 1983–
2003. The exceptions can be attributed to the aftershock
sequences of the 1987 Whittier-Narrows, 1992 Landers,
1994 Northridge, and 1999 Hector Mine earthquakes.

[14] With aftershocks removed, the background seis-
micity in southern California illustrated in Figure 1 is

nearly uniform from year to year and is not a function of
time. Small earthquakes behave like thermal back-
ground noise. There is observational evidence that the
Earth�s crust is continuously on the brink of failure
[Scholz, 1991]. One example is induced seismicity.
Whenever the crust is loaded, earthquakes are induced
whether in a tectonically active area or not. Examples of
nontectonic loading include the filling of a reservoir
behind a newly completed dam or the high-pressure
injection of fluids in a deep well.

2.2. Temporal Decay of Aftershocks
[15] A universal scaling law describes the temporal

decay of aftershock activity following an earthquake.
This is known as the modified Omori�s law and as most
widely used has the form [Scholz, 2002]

Figure 1. Cumulative number of earthquakes per year, NGR, occurring in southern California with magni-
tudes greater that m as a function of m. Twenty individual years are considered (SCSN catalog, 2003): (a)
1983–1987, (b) 1988–1992, (c) 1993–1997, and (d) 1998–2002. The solid straight line in Figures 1a–1d is the
Gutenberg-Richter relation (2) with b 	 1.0 and a 	 5.4. The larger number of earthquakes in 1987, 1992,
1994, and 1999 can be attributed to the aftershocks of the Whittier-Narrows, Landers, Northridge, and Hector
Mine earthquakes, respectively. If aftershocks are excluded, the background seismicity in southern California
is nearly uniform in time.
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dNas

dt �
1

t0 �1 � t/t1�
p , (5)

where Nas is the number of aftershocks with magnitudes
greater than a specified value, t is time measured for-
ward from the occurrence of the main shock, t0 and t1 are
constants, and the power p has a value near p � 1. When
an earthquake occurs, there are regions where the stress
is increased. This increase in stress is the fundamental
cause of aftershocks. However, the systematic time delay
before the occurrence of aftershocks requires an expla-
nation. Das and Scholz [1981] have attributed this delay
to stress corrosion combined with a critical stress inten-
sity factor. Shaw [1993] has utilized a phenomenological
approach to the dynamics of subcritical crack growth. A
time delay is implicit in the empirically derived rate and
state friction law. Dietrich [1994] has related the power
law decrease in aftershock activity to this law. Time
delays are also associated with the failure of composite
materials and other engineering materials. Damage me-
chanics is a widely used empirical approach to these
problems. Main [2000] and Shcherbakov and Turcotte
[2003b] have explained the power law decay of after-
shocks in terms of damage mechanics. There appear to
be fundamental similarities between aftershock delays
and the nucleation of bubbles in a superheated liquid.
These similarities led Rundle [1989], Rundle and Klein
[1993], and Rundle et al. [1999] to relate aftershock
sequences to the power law scaling in the vicinity of a
spinodal line. This association is also supported by the
relationship between the three-dimensional spatial dis-
tributions of aftershocks and the “backbone” of a three-
dimensional percolation cluster given by Robertson et al.
[1995].

[16] Another approach to explain the occurrence of
aftershocks is based on a branching stochastic process.
The epidemic-type aftershock model has been intro-
duced by Kagan and Knopoff [1981, 1987] and Ogata
[1988] and studied in detail by Helmstetter and Sornette
[2002a, 2002b] and Helmstetter et al. [2003]. In this model
each event is capable of producing secondary aftershock
sequences and can be considered simultaneously as a
foreshock, main shock, or aftershock. The resulting af-
tershock sequence is a combined effect of many after-
shock sequences produced by each aftershock.

2.3. Accelerated Moment Release
[17] There is also accumulating evidence that there

may be an increase in the number of intermediate-sized
earthquakes prior to a large earthquake. The occurrence
of a relatively large number of intermediate-sized earth-
quakes in northern California prior to the 1906 San
Francisco earthquake has been noted by Sykes and
Jaumé [1990]. These authors also pointed out increases
in intermediate-sized events before the 1868 Hayward
and 1989 Loma Prieta events in northern California.
Ellsworth et al. [1981] first pointed out that the rate of
intermediate-sized events in the San Francisco Bay re-

gion started increasing about 1955 from its post-1906
low. It has also been suggested that there is a power law
increase in seismicity prior to a major earthquake as first
proposed by Bufe and Varnes [1993]. They considered
the cumulative amount of Benioff strain in a specified
region. The cumulative Benioff strain εB(t) attributed to
a precursory earthquake is defined by

εB�t� � �
i	1

N�t�

�ei , (6)

where ei is the seismic energy release of the ith precur-
sory earthquake and N(t) is the number of precursory
earthquakes considered up until the time t. Bufe and
Varnes [1993] showed that an accurate retrospective
prediction of the Loma Prieta earthquake could be
made by assuming a power law increase in Benioff strain
prior to the earthquake. This power law increase takes
the form

εB�t� � ε0 � B ��t�s , (7)

where ε0 is the cumulative Benioff strain at the time of
the characteristic earthquake and �t is nondimensional
time remaining until the next characteristic earthquake
given by

�t � 1 � t/tf , (8)

where t is the time measured forward from the previous
characteristic earthquake and tf is the time interval be-
tween characteristic earthquakes. Just after a character-
istic earthquake we have �t 	 1; the next characteristic
earthquake occurs at �t 	 0. The constants B and s are
used to fit the data.

[18] Systematic increases in intermediate-level seis-
micity prior to a large earthquake have been proposed
by several authors [Varnes, 1989; Bufe et al., 1994;
Knopoff et al., 1996; Varnes and Bufe, 1996; Brehm and
Braile, 1998, 1999a, 1999b; Robinson, 2000]. A systematic
study of the optimal spatial region and magnitude range
to obtain the power law seismic activation has been
carried out by Bowman et al. [1998]. Four examples of
their results are given in Figure 2, where the cumulative
Benioff strain ε(t) has been correlated (solid line) with
equation (7). Clear increases in seismic activity prior to
the 1952 Kern County, 1989 Loma Prieta, 1992 Landers,
and 1983 Coalinga earthquakes are illustrated.

[19] It has also been argued that the accelerated seis-
mic release exhibits a log-periodic behavior in addition
to the power law increase given in equation (7) [Sornette
and Sammis, 1995; Saleur et al., 1996b; Sornette, 1998;
Sammis and Sornette, 2002]. However, this behavior is
not widely accepted.

[20] In obtaining the data given in Figure 2, Bowman
et al. [1998] investigated circular regions about each of
the characteristic earthquakes they considered. They
determined the optimal radius for activation. Sornette
and Sammis [1995] associated this precursory activation
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with the approach to a critical phase transition. Saleur et
al. [1996a, 1996b] interpreted this behavior in terms of
correlation lengths that increase prior to the character-
istic earthquake. Thus we will refer to this radius of the
optimal activation region as an activation correlation
length (ACL).

[21] The power law exponents s and the ACL  for the
12 earthquakes studied by Bowman et al. [1998] are
given in Table 2. The mean value of s for these earth-
quakes is s� 	 0.26�0.15 (error given is 1 standard
deviation). Using similar approaches to the accelerated
moment release, ACLs of other earthquakes have been
obtained by Brehm and Braile [1998, 1999a] and by
Robinson [2000]. All of these data are given in Figure 3.

Activation correlation lengths are given as a function of
earthquake magnitude and the characteristic rupture
length. Although there is considerable scatter, there is a
clear increase in the ACL with increasing earthquake
magnitude. Also included for comparison is the relation

 � 10 A1/ 2 . (9)

Many of the ACLs are greater than 10 times the char-
acteristic rupture length.

[22] Dobrovolsky et al. [1979] and Keilis-Borok and
Kossobokov [1990] reported a similar scaling for the
maximum distance between an earthquake and its pre-
cursors using pattern recognition techniques. Large
ACLs are also suggested by the remotely triggered af-

Figure 2. Data points are cumulative Benioff strains ε(t) determined from equation (6) prior to four major
earthquakes in California [Bowman et al., 1998]. Clear increases in seismic activity prior to the 1952 Kern
County, 1989 Loma Prieta, 1992 Landers, and 1983 Coalinga earthquakes are illustrated. In each of the four
examples the data have been correlated (solid lines) with the power law relation given in equation (7). The
values of the power law exponent s used in equation (7) are given in Table 2. Dashed straight lines represent
a best fit constant rate of seismicity.

TABLE 2. Observed Earthquake Scales

Earthquake Date Magnitude  , km s

Assam 15 August 1950 8.6 900 � 175 0.22
San Francisco 18 April 1906 7.7 575 � 240 0.49
Kern County 21 July 1952 7.5 325 � 75 0.30
Landers 28 June 1992 7.3 150 � 15 0.18
Loma Prieta 18 October 1989 7.0 200 � 30 0.28
Coalinga 2 May 1983 6.7 175 � 10 0.18
Northridge 17 January 1994 6.7 73 � 17 0.10
San Fernando 9 February 1971 6.6 100 � 20 0.13
Superstition Hill 24 November 1987 6.6 275 � 95 0.43
Borrego Mountain 8 April 1968 6.5 240 � 60 0.55
Palm Springs 8 July 1986 5.6 40 � 5 0.12
Virgin Islands 14 February 1980 4.8 24 � 2 0.11
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tershocks following the Landers, California, earthquake
[Hill et al., 1993].

[23] The seismic activation hypothesis is illustrated in
Figure 4 [Rundle et al., 2000a]. The cumulative frequen-
cy-magnitude distribution of earthquakes is shown for
three time periods during the earthquake cycle, 1.0 � �t
� 0.2, 0.2 � �t � 0.1, and 0.1 � �t � 0.0, where �t has

been defined in equation (8). Small earthquakes occur
uniformly at all times but early on in the earthquake
cycle 1.0 � �t � 0.2; there is a systematic lack of
intermediate-sized earthquakes. In the time period 0.2
� �t �0.1, there is an increase of intermediate-sized
events. In the precursory time period 0.1 � �t � 0.0 this
is seismic activation and a further increase in the num-
bers of intermediate-sized events. Finally, when �t 	 0,
the characteristic earthquake occurs. The first two
curves are also evidence of growing correlation lengths
as we discuss in section 3. The last curve represents
unstable growth of earthquake clusters.

[24] We further suggest that the behavior described
above is nested. The 1992 Landers and 1994 Northridge
earthquakes generated precursory activation that will be
described in section 3. However, it is likely that the
Landers and Northridge earthquakes represent precur-
sory activation that is associated with the next great
(characteristic) earthquake on the San Andreas Fault in
southern California.

[25] Zöller et al. [2001] directly estimated the ACL
from earthquake catalogs using single-link cluster anal-
ysis [Frohlich and Davis, 1990]. They studied 11 earth-
quakes in California with m � 6.5 since 1952 and found
systematic increases in the correlation lengths prior to
most of these earthquakes. Main [1999], Jaumé and
Sykes [1999], Jaumé [2000], Vere-Jones et al. [2001], Bow-
man and King [2001], Zöller and Hainzl [2001, 2002], and
Ben-Zion and Lyakhovsky [2002] have provided critical
reviews of seismic activation. Goltz and Bose [2002] have
studied precursory seismic activation using configura-
tional entropy.

[26] An important question that remains unresolved is
whether earthquake scaling, as discussed in section 2.1,
is associated with the scaling of faults in the crust. It has
been shown that the fragmented structure of the crust is
fractal over a very wide range of scales [Sammis et al.,
1986, 1987; Sammis and Biegel, 1989; Sammis and Stacey,
1995]. However, an association of this scaling with earth-
quake scaling has not been demonstrated.

3. PHASE TRANSITION MODEL: NUCLEATION
AND CRITICAL PHENOMENA

[27] The observed scaling laws associated with earth-
quakes have led a variety of researchers [Rundle, 1989;
Bowman et al., 1998; Fisher et al., 1997; Mora, 1999; Klein
et al., 2000; Rundle et al., 1996; Jaumé and Sykes, 1999;
Turcotte, 1997] to the conclusion that these events can be
regarded as a type of generalized phase transition, sim-
ilar to the nucleation and critical phenomena that are
observed in thermal and magnetic systems [Ma, 1976].
The physics of these systems, and their application to
earthquake phenomena, has been detailed elsewhere, so
we do not repeat these discussions here [Ma, 1976;
Gunton and Droz, 1983]. However, we give a brief sum-
mary, as background to the discussions that follow.

Figure 3. Correlation lengths  for precursory seismic acti-
vation are given as a function of the square root of the rupture
area and the earthquake magnitude m. The circles are the
values given by Bowman et al. [1998] and tabulated in Table 2.
The open squares are values obtained for earthquakes in the
New Madrid seismic zone by Brehm and Braile [1998]. The
error bars are limits obtained for earthquakes in the western
United States by Brehm and Braile [1999b]. The solid squares
are values obtained for earthquakes in New Zealand by Rob-
inson [2000].

Figure 4. Gutenberg-Richter illustration of the cumulative
number of earthquakes occurring per unit time with magni-
tudes greater than m as a function of m. Data are for different
time periods during the earthquake cycle 1 � �t � 0 prior to
the occurrence of a characteristic earthquake at �t 	 0. Small
earthquakes occur at a constant rate, but there is an activation
of intermediate-sized earthquakes prior to the occurrence of
the characteristic earthquake.
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[28] In order to illustrate the relevant statistical phys-
ics we first discuss the phase diagram for the coexistence
of the liquid and vapor phases of a pure substance. A
schematic pressure-volume projection of a phase dia-
gram is illustrated in Figure 5 [Debenedetti, 1996]. We
consider a liquid initially at point A in Figure 5. The
pressure is decreased isothermally until the coexistence
point is reached at point B. In thermodynamic equilib-
rium the liquid will boil at constant pressure and tem-
perature until it is entirely a vapor at point G. Further
reduction of pressure will result in isothermal expansion
of the vapor along path GF. However, it is possible to
create a metastable, superheated liquid at point B. If
bubbles of vapor do not form or are rapidly reabsorbed
by the fluid, either by homogenous or heterogeneous
nucleation, the liquid can be superheated along path
BD. The point D is the intersection of the liquid P–v
curve with the spinodal curve S. It is not possible to
superheat a liquid beyond this point. If the liquid is
superheated to the vicinity of point D, explosive nucle-
ation and boiling (instability) will take place. If the
pressure and temperature are maintained constant dur-
ing this highly nonequilibrium explosion, the substance
will follow path DE to the vapor equilibrium curve GF.
If the explosion occurs at constant volume and temper-
ature, the pressure will increase as the substance follows
the path DH to the equilibrium boiling line BG. Any
horizontal path between the superheated liquid BD and
vapor GE is possible. An example is the path IJ. The
entire shaded region is metastable. The critical point C
is at the critical pressure Pc and critical specific volume

vc. A point on a horizontal line, for example IJ, is
determined by the “wetness” of the liquid-vapor mix-
ture, the mass fraction that is liquid. At point I the mass
fraction of liquid is essentially 1; at point J the mass
fraction of liquid is essentially 0. Which path is followed
in the metastable region is determined by the physics of
the bubble nucleation process [Debenedetti, 1996].

[29] At the critical point [Stanley, 1971; Ma, 1976] the
parameters in the equation of state of a substance such
as the water liquid-vapor system, which is governed by a
Van der Waals–type equation of state, can be shown to
specify a location in state space at which the specific heat
c(T) has a cusp, or singularity, when plotted as a function
of temperature T. Phase transitions of this type are
called second-order, since the quantity displaying the
singularity c(T) is the second derivative of the thermo-
dynamic free energy. For temperatures T at, or higher
than, the critical temperature, the density � is a contin-
uous function of pressure P. Laboratory observations
demonstrate the existence of very large spatial and tem-
poral fluctuations in the density of the liquid-vapor mix-
ture near the critical point. Observations indicate that
these fluctuations are correlated over distance and time-
scales that are characterized by the correlation length 
and the correlation time �, respectively. As the critical
point is approached, usually by controlling T and v in
some kind of piston-cylinder apparatus, laboratory ob-
servations indicate that both  and � diverge ( ¡ � and
� ¡ �). The divergence of the correlation timescale � is
called critical slowing down. In addition, experiments
indicate that � � z, where z is a dynamic scaling expo-
nent. For diffusive systems a typical value of z is z 	 2.

[30] Magnetic systems exhibit a similar type of physics
at the Curie point, defining the transition from low-
temperature ferromagnetic behavior to high-tempera-
ture paramagnetic behavior. In these magnetic systems
the critical temperature is the Curie temperature Tc, the
magnetization M plays a role similar to the density � in
a liquid-gas system (M N �), and an applied external
magnetic field h plays a role similar to the pressure P in
liquid-gas systems (h N P). It is also found that at the
Curie point, large fluctuations in M are associated with
the transition from ferromagnetism to paramagnetism
and that these fluctuations are characterized by diverg-
ing length and timescales,  and �, respectively. A com-
mon terminology has evolved to describe all such sys-
tems. Thus, for example, M and � are called the order
parameters of the respective systems. These are the
physical fields that respond to changes in the control
parameters (T, h) or (T, P).

[31] Away from the critical point, phase transitions
are first order and are associated with nucleation [Stan-
ley, 1971; Klein and Unger, 1983; Klein and Leyvraz, 1986;
Debenedetti, 1996; Klein et al., 2000]. In the water liquid-
vapor system, nucleation is the process in which bubbles
of water vapor form within liquid water prior to boiling.
Changes in T or P can make a thermal system unstable
to a change in �, leading to the appearance of a new

Figure 5. Schematic pressure-volume (P-v) projection of the
phase diagram of a pure substance [Debenedetti, 1996]. The
equilibrium and nonequilibrium behaviors of the liquid-vapor
mixture are discussed in the text. The shaded region is meta-
stable.
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phase. An example is the change of water from a liquid
phase to a gas phase as T is increased at constant P. In
making the transition from the liquid to the gas phase,
the mass of liquid water may progress from its stable
equilibrium regime through a region of metastable equi-
librium, but it cannot remain as a stable metastable
liquid past the classical limit of stability or spinodal line
[Debenedetti, 1996; Klein and Unger, 1983; Ray and Klein,
1990; Rundle et al., 2000a]. The existence of a spinodal
line is a consequence of the Van der Waals–type equa-
tion of state. The spinodal line has a number of inter-
esting properties, the most important of which is that it
behaves like a line of critical points for the nucleating
droplets of vapor. Near the spinodal line, one observes
divergent length scales  and timescales �, as well as the
appearance of large fluctuations in � and scaling as in the
relationship � � z.

[32] Many real thermal systems can never approach
the spinodal line because of the existence of random
thermal fluctuations arising from environmental factors.
These random fluctuations cause the liquid-vapor tran-
sition to occur at very shallow quench depths (“cloud
points”) in the metastable regime, far from the spinodal
line [Gunton et al., 1973]. However, for systems having
long-range interactions, such as spin dipoles or elastic
forces, these random fluctuations tend to be suppressed
at wavelengths less than the range of the interactions
because of the spatial averaging effects of the interac-
tions. Thus each molecule or spin sees only the average
field, or mean field, of all the other interacting molecules
or spins [Klein and Unger, 1983]. In mean field systems,
only the longest wavelength fluctuations survive the av-
eraging effects, leading to a stabilization of the system
through the metastable regime. The result is that the
metastable phase in mean field systems can approach
very near the spinodal line, and so the scaling and other
critical phenomena-like properties of the spinodal line
can be observed [Klein et al., 2000].

[33] In a system that is near but not at the mean field
limit because of long but finite range interactions, the
relative size of fluctuations in the order parameter will
increase. These fluctuations, which grow increasingly
large as the limit of stability (spinodal line) is ap-
proached, are due to increasingly large regions of the
system condensing into droplets of the “other phase,”
then evaporating and reverting to the “original phase.”
One of the large droplets of the “other phase” finally
becomes large enough to nucleate the system, and the
phase transition then occurs. The same increase in fluc-
tuation amplitude can be observed as the critical point is
approached.

[34] The size of the fluctuations in a liquid-gas system
is typically measured by the Ginzburg criterion �:

� �
Var�� � �gas�

��� � �gas��2 . (10)

Here Var{���gas} represents the variance of the order

parameter, which is the density ���gas in a liquid-gas
system, and ����gas� is the mean. Since the Ginzburg
criterion is applied to systems that are in either equilib-
rium or long-lived metastable equilibrium, all averages
are taken over both space and time. In a spin system the
fluctuating order parameter is the spin density, and a
similar Ginzburg criterion can be written. Typically, the
“critical region,” indicating proximity of the system to a
critical point, is defined by the condition [Ma, 1976]

� � 10% , (11)

which is an indication of large fluctuations. For systems
undergoing a first-order phase transition, one expects to
see a large value of � prior to the occurrence of the
transition.

4. BRITTLE FRACTURE

[35] Before addressing the earthquake problem, we
will briefly consider the association between brittle fail-
ure and statistical physics. The brittle failure of a solid is
a complex phenomenon that has received a great deal of
attention from engineers, geophysicists, and physicists.
A limiting example of brittle failure is the propagation of
a single fracture through a homogeneous solid. How-
ever, this is an idealized case that requires a preexisting
crack or notch to concentrate the applied stress. Even
the propagation of a single fracture is poorly understood
because of the singularities at the crack tip [Kanninen
and Popelar, 1985; Freund, 1990]. In most cases the
fracture of a homogeneous brittle solid involves the
generation of microcracks. Initially, these microcracks
are randomly distributed; as their density increases, they
coalesce and localize until a throughgoing rupture re-
sults. This process depends upon the heterogeneity of
the solid. There is an analogy between the microcracks
leading to fracture and bubble nucleation leading to
boiling.

[36] Many experiments on the fracture of brittle solids
have been carried out. In terms of rock failure the early
experiments by Mogi [1962] were pioneering. Acoustic
emissions associated with microcracks were monitored,
and power law frequency-magnitude Gutenberg-Richter
statistics were observed for the acoustic emissions.
When a load was applied very rapidly, the time to failure
was found to depend on the load. Many other studies of
this type have been carried out. Otani et al. [1991]
obtained the statistical distribution of the lifetimes with
constant stress loading for carbon fiber epoxy microcom-
posites. Johansen and Sornette [2000] studied the rupture
of spherical tanks of kevlar wrapped around thin metal-
lic liners and found a power law increase of acoustic
emissions prior to rupture. Guarino et al. [1998, 1999]
studied the failure of circular panels (222 mm diameter
and 3–5 mm thickness) of chipboard and fiberglass. A
differential pressure was either applied rapidly across a
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panel and was held constant until the panel failed or was
increased linearly in time until the panel failed. Acoustic
emission events associated with microcracks were care-
fully monitored, located, and quantified. Initially, the
microcracks appeared to be randomly distributed across
the panel; as the number of microcracks increased, they
tended to localize and coalesce in the region where the
final rupture occurred. Guarino et al. [1998, 1999] also
showed that the frequency-magnitude statistics of the
acoustic emissions satisfy the power law (Gutenberg-
Richter) relation, equations (2) and (3). They also mea-
sured the cumulative energy in the acoustic emission
events eAE as a function of time t. The total acoustic
emission energy at the time of rupture is etot. The ob-
served dependence of eAE/etot on (1�t/tf) for these ex-
periments is given in Figure 6. After an initial transient
period, good power law scaling was observed. In this
scaling region it was found that eAE � (1�t/tf)

�0.27. This
activation is very similar to the power law seismic acti-
vation given in equation (7) illustrated in Figure 2. In the
case of a rapid application of pressure, Guarino et al.
[1999] found a systematic dependence of the time to
failure tf on the applied pressure P. Shcherbakov and
Turcotte [2003a] correlated this dependence with the
relation

tf � �P � Py�
�2.25 , (12)

where Py is a threshold or yield stress.
[37] Statistical physicists have related brittle rupture

to liquid-vapor phase changes in a variety of ways.
Buchel and Sethna [1997] have associated brittle rupture
with a first-order phase transition. Similar arguments
have been given by Zapperi et al. [1997] and Kun and
Herrmann [1999]. On the other hand, Sornette and

Andersen [1998] and Gluzman and Sornette [2001] argue
that brittle rupture is analogous to a critical point phe-
nomena rather than the metastability of a first-order
phase change. They associated observed power law scal-
ing in brittle failure experiments with a critical point (a
second-order phase change). A number of authors have
considered brittle rupture in analogy to nucleation near
spinodal line [Rundle and Klein, 1989; Selinger et al.,
1991; Rundle et al., 1997b, 1999, 2000a; Zapperi et al.,
1999].

[38] We next apply the concept of phase change to the
brittle fracture of a solid. For simplicity, we will discuss
the failure of a sample of area a under compression by a
force F. The state of the sample is specified by the stress
� 	 F/a and its strain � 	 (L0 � L)/L0 (where L is length
and L0 is initial length). At low stresses we assume that
Hooke�s law is applicable so that

� � E0 � , (13)

where E0 is Young�s modulus, a constant.
[39] We hypothesize that a brittle solid will obey lin-

ear elasticity for stresses in the range 0 � � � �y, where
�y is a yield stress. From equation (13) the correspond-
ing yield strain �y is given by

�y �
�y

E0
. (14)

If stress is applied infinitely slowly (to maintain ather-
modynamic equilibrium), we further hypothesize that
the solid will fail at the yield stress �y. The failure path
ABG in Figure 7 corresponds to the equilibrium failure
path ABG in Figure 5. This is equivalent to perfectly
plastic behavior. We draw an analogy between the phase

Figure 6. (a) Cumulative acoustic energy emissions eAE(t) at time t divided by the total acoustic energy
emissions etot at the time of rupture (t 	 tf) as a function of (1 � t/tf). A constant pressure difference was
applied at t 	 0. The straight line correlation is with eAE � (1 � t/tf)

�0.27 [Guarino et al., 1999]. (b) Cumulative
acoustic energy emissions eAE(t) divided by the total acoustic energy emissions etot at the time of rupture (t
	 tf) as a function of (Pf � P)/Pf, where P is the applied pressure difference across the failing panel of
chipboard and Pf is the pressure difference when the board fails. The applied pressure difference across the
panel was increased linearly with time. The straight line correlation is with eAE � (1 � P/Pf)

�0.27 [Guarino et
al., 1998].
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change behavior illustrated in Figure 5 and the inelastic
deformation of a solid illustrated in Figure 7. Pressure P
is analogous to stress �, and specific volume v is analo-
gous to strain �.

[40] If an elastic solid is loaded very rapidly with a
constant stress �0 � �y applied instantaneously, the solid
will satisfy equation (13) and will follow the path ABI as
shown in Figure 7. Subsequently, damage will occur at a
constant stress along the path IJ until the solid fails. This
behavior is analogous to the constant pressure boiling
that occurs along path DE in Figure 5.

[41] Alternatively, the elastic solid could be strained
very rapidly with a constant strain �0 � �y applied instan-
taneously, and again the solid will satisfy equation (13)
and follow the path ABI as shown in Figure 7. In this
case, damage will occur along the constant strain path
IH until the stress is reduced to the yield stress �y. This
behavior is analogous to the constant volume boiling
that occurs along the path DH in Figure 5.

[42] Shcherbakov and Turcotte [2003b] have argued
that this stress relaxation process is applicable to the
understanding of the aftershock sequence that follows
an earthquake. During an earthquake some regions in
the vicinity of the earthquake experience a rapid in-
crease of stress (strain). The stress � is greater than the
yield stress �y, and microcracks (aftershocks) relax the
stress to �y just as illustrated in Figure 7. The time delay
of the aftershocks relative to the main shock directly
corresponds to the time delay of the damage. The delay

results because it takes time to nucleate microcracks
(aftershocks).

[43] When the stress on a brittle solid is increased at
a constant finite rate, linear elasticity (equation (13)) is
applicable in the range 0 � � � �y. At stresses greater
that the yield stress, � � �y, damage occurs in the form
of microcracks. This damage is accelerated strain and a
deviation from linear elasticity. A typical failure path
ABE is illustrated in Figure 7. In order to quantify the
deviation from linear elasticity the damage variable � is
introduced in the stress-strain relation

� � E0 �1 � �� � . (15)

When � 	 0, equation (15) reduces to equation (13),
and linear elasticity is applicable; as � ¡ 1 (� ¡ �),
failure occurs. Positions in the stress-strain plot (Figure
7) corresponding to � 	 0.0, 0.25, and 0.5 are shown. It
must be emphasized that the analogy between boiling
and fracture illustrated in Figures 5 and 7 is not com-
plete. Boiling is a reversible process; fracture is not.
However, we believe the analogy is illustrative.

[44] On the basis of thermodynamic considerations
[Kachanov, 1986; Krajcinovic, 1996; Lyakhovsky et al.,
1997] the time evolution of the damage variable is re-
lated to the time-dependent stress �(t) and the strain �(t)
by

d��t�
dt � H���t�� ���t��y

� 2

, (16)

where H[�(t)] is known as the hazard rate. It should be
noted that there are alternative formulations of both
equations (15) and (16) and that H[�(t)] can take many
forms [Krajcinovic, 1996]. In our analysis we will assume
that equations (15) and (16) are applicable and will
further require that [Shcherbakov and Turcotte, 2003a]

H���t�� � 0 , 0 � � � �y (17)

H���t�� �
1
td
���t��y

� 1� � , � � �y , (18)

where td is a characteristic timescale for damage and � is
a power to be determined from experiments. The rate at
which damage accumulates is proportional to a power of
the stress excess over a yield stress �y.

[45] The monotonic increase in the damage variable �
given by equations (16)–(18) represents the weakening
of the brittle solid due to the nucleation and coalescence
of microcracks. This nucleation and coalescence of mi-
crocracks is analogous to the nucleation and coalescence
of bubbles in a superheated liquid as discussed in section
3. A brittle solid in the shaded region in the stress-strain
diagram given in Figure 7 is metastable in the same
sense that the nonequilibrium boiling in the shaded
region in Figure 5 is metastable.

[46] Solutions of equations (16)–(18) give both the
power law activation prior to an earthquake [Lyakhovsky
et al., 1997; Ben-Zion and Lyakhovsky, 2002; Turcotte et

Figure 7. Idealized stress-strain diagram for a brittle solid. It
is hypothesized that the solid behaves as a linear elastic mate-
rial at stresses less that the yield stress �y and strains less than
the yield strain �y (path AB). Failure at an intermediate con-
stant rate of stress increase takes place along path ABE. The
dashed lines correspond to constant values of the damage
variable �.
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al., 2003] and the power law decay of aftershock activity
associated with the modified Omori�s law [Shcherbakov
and Turcotte, 2003b]. Main [2000] introduced an empir-
ical strain scaling law for damage and also was able to
reproduce power law precursory seismic activation and
the power law decay of aftershock activity.

[47] Some forms of damage are clearly thermally ac-
tivated. The deformation of solids by diffusion and dis-
location creep is an example. The ability of vacancies
and dislocations to move through a crystal is governed by
an exponential dependence on absolute temperature
with a well-defined activation energy. The role of tem-
perature in brittle fracture is unclear. Guarino et al.
[1998] varied the temperature somewhat in their exper-
iments on the fracture of chipboard and found no effect.
A systematic temperature dependence of rate and state
friction was documented by Nakatani [2001]. This has
also been shown to be true for the lifetime statistics of
kevlar fibers [Wu et al., 1988].

[48] Time delays associated with bubble nucleation in
a superheated liquid are explained in terms of thermal
fluctuations. The fluctuations must become large enough
to overcome the stability associated with surface tension
in a bubble. The fundamental question in damage me-
chanics is the cause of the delay in the occurrence of
damage. This problem has been considered in some
detail by Ciliberto et al. [2001]. These authors attributed
damage to the “thermal” activation of microcracks. An
effective “temperature” can be defined in terms of the
amplitude of random elastic vibrations of the solid. The
spatial variability of stress in the solid is caused by the
microcracking itself not by thermal fluctuations. This
microcracking occurs on a wide range of scales.

5. DISCRETE MODELS

5.1. Fiber Bundle Model
[49] Another approach to the brittle failure is appli-

cable to composite materials. A composite material is
made up of strong fibers embedded in a relatively weak
matrix. Failures of composite materials have been
treated by many authors using the concept of fiber
bundles [Smith and Phoenix, 1981; Curtin, 1991; Newman
and Phoenix, 2001]. The failure statistics of the individ-
ual fibers that make up the fiber bundle are specified.
The statistics can be either static or dynamic. In the
static case the probability of the failure of a fiber is
specified in terms of the stress on the fiber. Failure is
assumed to occur instantaneously. In the dynamic case
the statistical distribution of times to failure for the
fibers is specified in terms of stresses on the fibers
[Coleman, 1956, 1958]. Experiments generally favor the
dynamic failure, fiber bundle models. When stress is
applied to a fiber bundle, the fibers begin to fail. It is
necessary to specify how the stress on a failed fiber is
redistributed to the remaining sound fibers [Smith and
Phoenix, 1981]. In the uniform load sharing hypothesis

the stress from a failed fiber is redistributed equally to
the remaining fibers. This is a mean field approximation.
The alternative redistribution model is the local load
sharing hypothesis. In this case the load on the failed
fiber is redistributed to neighboring fibers. Local load
sharing is applicable to strongly bonded fibrous (com-
posite) materials, whereas equal load sharing is applica-
ble to weakly bonded fibrous materials.

[50] Krajcinovic [1996] and Turcotte et al. [2003] have
shown that the mean field fiber bundle model with
dynamic failure statistics gives a solution for the failure
of the bundle that is identical to that obtained using the
damage equations (16)–(18). The continuum damage
equation and the discrete fiber bundle model give iden-
tical results for the transient failure of a brittle material.
The coupled failure of fibers is directly analogous to the
coupled microcracks associated with damage.

5.2. Sandpile Model
[51] The concept of self-organized criticality [Turcotte,

1997, 1999; Jensen, 1998] evolved from the “sandpile”
model proposed by Bak et al. [1988]. In this model, there
is a square grid of boxes, and at each time step a particle
is dropped into a randomly selected box. When a box
accumulates four particles, they are redistributed to the
four adjacent boxes, or in the case of edge boxes they are
lost from the grid. Since only nearest-neighbor boxes are
involved in the redistribution, this is a cellular automata
model. Redistributions can lead to further instabilities
and avalanches of particles in which many particles may
be lost from the edges of the grid. The input is the steady
state addition of particles. A measure of the state of the
system is the average number of particles in the boxes.
This “density” fluctuates about a quasi-equilibrium
value. Each of the multiple redistributions during a time
step contributes to the size of the model avalanche. One
measure of the size of a model avalanche is given by the
number of particles lost from the grid during multiple
redistributions; an alternative measure of size is the
number of boxes that participate in multiple redistribu-
tions. According to Bak et al. [1988] a system is in a state
of self-organized criticality if it is maintained near a
critical point. The system is in a marginally stable state
when perturbed from this state, it will evolve naturally
back to the state of marginal stability. In the critical
state, there is no longer a natural length scale so that
fractal statistics are applicable. However, this definition
is controversial as we will show when considering the
related forest fire and slider block models.

5.3. Forest Fire Model
[52] The forest fire model [Bak et al., 1992; Drossel

and Schwabl, 1992] has many similarities to the sandpile
model but also has important differences. The standard
forest fire model consists of a square grid of sites. At
each time step a model tree is dropped on a randomly
chosen site; if the site is unoccupied, the tree is planted.
The sparking frequency fs is the inverse number of
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attempted tree drops on the square grid before the
model match is dropped on a randomly chosen site. If fs
	 1/100, there have been 99 attempts to plant trees
(somesuccessful and some unsuccessful) before a match
is dropped at the 100th time step. If the match is
dropped on an empty site, nothing happens. If it is
dropped on a tree, the tree ignites, and a model fire
consumes that tree and all adjacent (nondiagonal) trees.

[53] Having specified the size of the square grid and
the sparking frequency fs, a simulation is run for Ns time
steps, and the number of fires NF with area AF is deter-
mined. The area AF is the number of trees that burn in
a fire. In all cases the number of small fires NF scales
with their area AF in good agreement with the fractal
relation (3). If fs is relatively large, the power law region
is confined to small fires. If fs is small, fires occur that
span the grid, and there is a peak in the frequency-
magnitude distribution for large fires. The parameter fs
can be “tuned” so that fires cross the grid, but it is not
clear that this is a critical point. In terms of self-orga-
nized criticality the steady input is the planting of trees,
the “avalanches” are the fires, and the number of trees
on the grid fluctuates about the quasi-equilibrium value.

[54] The forest fire model is also characterized by a
frequency-size distribution of clusters, which is directly
related to the frequency-size distribution of fires; both
are fractal. Studies of the forest fire model show that
clusters of trees continuously grow in size. Small fires
sample the frequency-size distribution of clusters, but
only a small fraction of the small clusters are lost in the
fires. Significant numbers of trees are lost only in the
largest fires. Malamud et al. [1998] have shown that
actual forest fires also exhibit near-fractal frequency-
area scaling.

[55] A simple multiplicative-cascade model has been
introduced to explain the behavior of the forest fire
model and to provide insights into self-organized criti-
cality [Turcotte, 1999; Gabrielov et al., 1999]. Clusters of
trees grow as trees are planted. Large clusters are cre-
ated primarily by the coalescence of smaller clusters.
Clusters are also lost, but the loss rate is proportional to
the number of clusters, whereas the rate at which clus-
ters combine is proportional to the number of clusters
squared. Thus significant losses occur only for the very
largest clusters. The combination of clusters leads to a
scaling region with a fractal frequency-size distribution.
This scaling is terminated when a significant number of
clusters are lost in fires.

[56] An important question is the relationship of self-
organized criticality to ordinary critical phenomena. The
site percolation model is a classic critical point problem
that is closely related to the forest fire model. Again, a
square grid of points is considered, and trees are planted
on a site with a probability p. This probability can be
“tuned” until a cluster of trees spans the grid; this is the
critical point. Clusters do not combine, and trees are not
lost in fires. The frequency-size distribution is fractal
only in the immediate vicinity of the critical point.

5.4. Slider Block Models
[57] The family of high-dimensional dynamical mod-

els with the most direct relevance to simulating the
behavior of earthquake faults is slider block models. The
first slider block model with massive blocks was the
model of Burridge and Knopoff [1967]. The first cellular
automaton slider block model having massless blocks
was given by Rundle and Jackson [1977]. The first mean
field slider block model was discussed by Rundle and
Klein [1993].

[58] Consider a single block of mass m pulled over a
surface by constant velocity V driver plate. The driver
plate is attached to the slider block by a loader spring
with spring constant kL. The interaction of the block
with the surface is controlled by friction in some form.
The static frictional threshold, associated with the static
coefficient of friction, determines the force required to
initiate slip of the block. A variety of laws have been
proposed for the dynamic friction operative during slip.
According to the classical Coulomb-Mohr friction law,
stick-slip behavior is observed if the kinetic (dynamic)
friction is less than the static friction. The dynamic
friction can be taken to be constant, a function of the slip
velocity or, more generally, a function of both slip ve-
locity and slip history (rate and state friction). For a
single slider block the stick-slip behavior results in peri-
odic slip events. This behavior is analogous to the clas-
sical hypothesis of periodic characteristic earthquakes
on major faults [Schwartz and Coppersmith, 1984].

[59] Now consider the behavior of a pair of slider
blocks rather than just a single block as above. Both
blocks are attached to a constant velocity driver plate by
loader springs, each having spring constant kL. The
blocks are connected to each other with a connecting
spring, where the connecting spring constant kC is not
necessarily equal to the loader spring constant kL. The
ratio of the spring constants 
 	 kL/kC determines the
stiffness of the system. If 
 �� 1, the stiff system tends to
behave as a single block with periodic slip events. If 
 	
0, each of the blocks has periodic, independent slip
events. In between these two limits a wide range of
interesting behaviors can occur. If the system is symmet-
ric (equal masses, friction, and connecting spring con-
stants), periodic behavior is also observed. However, if
the symmetry is broken (i.e., nonequal masses), the pair
of slider blocks exhibits deterministic chaos [Huang and
Turcotte, 1990]. The period-doubling route to chaos is
observed with positive values of the Lyapunov exponent
in the chaotic regions. The pair of slider blocks is a
fourth-order dynamical system (the velocity and dis-
placement of each block), and the behavior is very sim-
ilar to that of the Lorenz equations [Lorenz, 1963] and
the logistic map [May, 1976]. The behavior is quasiperi-
odic and cannot be predicted with certainty.

[60] The chaotic behavior of the low-dimensional
Lorenz equations (third order) is now accepted as evi-
dence that the behavior of the atmosphere and oceans is
chaotic [Palmer, 1991; Read, 1993]. Similarly, the chaotic
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behavior of a pair of slider blocks is evidence that
earthquakes might exhibit chaotic behavior. Chaotic be-
havior has led to the concept of ensemble weather fore-
casting. The sensitivity of a forecast to initial conditions
is taken to be a measure of the reliability of a forecast.
Similarly for earthquakes, absolute prediction of the
time and place of an event is not possible for a chaotic
system. However, probabilistic forecasts are certainly
possible, and it may also be possible to utilize ensemble
techniques to establish the reliability of forecasts.

[61] Since the pioneering work of Burridge and
Knopoff [1967] many studies of multiple slider block
models have been carried out. The standard multiple
slider block model consists of a square array of slider
blocks as illustrated in Figure 8. In its simplest form the
blocks have equal masses, are connected to the constant
velocity driver plate with loader springs (spring constant
kL), and are connected to each other with connecting or
coupling springs (spring constant kC). If the Coulomb-
Mohr static-dynamic friction law is assumed to hold, the
static coefficient of friction �s and the kinetic (dynamic)
coefficient of friction �d must be specified. It is further
assumed that motion of the driver plate is so slow that it
is appropriate to neglect its motion during a slip event.
The behavior of this model is then controlled by the size
of the n � n array, the stiffness of the system 
 	 kL/kC,
and the ratio of static to kinetic friction.

[62] Many other variations on these models have been
considered in the literature, and comprehensive reviews
have been given by Carlson et al. [1994], Rundle and
Klein [1995a], and Turcotte [1997, 1999]. Variations in-
clude the following:

5.4.1. Method of Solution
[63] We discuss two solutions: (1) Molecular dynam-

ics (MD) solutions allow many blocks to slip simulta-
neously during a multiple-block slip event. The required

numerical codes are very similar to the MD codes used
to study the behavior of solids, which simply solve New-
ton�s second law equations for particles moving in the
combined potential of all the other particles. (2) Cellular
automata (CA) solutions are those in which the first
block that becomes unstable is allowed to complete its
motion before a second block is allowed to slip. This
approach greatly simplifies computations since only one
equation must be solved at a time.

[64] Another way of stating the difference between
these two solution methods is that one solves differential
equations deterministically in the MD case in two space
dimensions plus one time dimension, whereas the CA
models typically use a Monte Carlo update scheme with
the model defined on a spatial lattice of two dimensions.
In the CA case, time is defined in units of Monte Carlo
sweeps that can be related to actual time via the various
dimensional constants in the problem [Binder and Heer-
mann, 1997]. CA simulations often have considerable
physical meaning since most interesting nonlinear pro-
cesses have a strong stochastic component, and the re-
sulting probability distributions are the relationships to
be compared to data. CA simulations also have the
distinct advantage of being far faster to run on modern
computers, so very large systems sizes can be used, and
finite size effects are consequently minimized. By con-
trast, MD simulations are extremely computing inten-
sive, so simulations are frequently limited to small sys-
tem sizes (a few hundred particles) and very short time
intervals (typically microseconds or less for the entire
run). Deterministic simulations are also often less “rig-
orous” than they appear, since the values for the many
parameters entering the models are usually not well
known or not known at all.

[65] It should be noted that care must be taken in
interpreting solutions. Morein et al. [1997] considered
the motion of slider blocks with static friction but zero
dynamic friction. No driver plate was used, and energy
was conserved. Using a mean field CA approach with
long-range spring, thermolization of the initial energy
was found. However, Morein and Turcotte [1998] consid-
ered the same problem using the MD approach, with no
noise and with nearest-neighbor springs and found nor-
mal mode solutions which behaved as solitons.

5.4.2. Inertia
[66] If the CA approach is used, the inertia (mass) of

a block is neglected. The final state of a block after slip
is then specified by a jump or transition rule. Otherwise,
if masses are not neglected, the differential equations of
motion (Newton�s second law) must be solved. In the
CA approach, only a single equation requires solution,
whereas in the MD approach with nearest-neighbor
springs the simultaneous solution of many equations is
required.

Figure 8. Illustration of the two-dimensional slider block
model. An array of blocks, each with mass m, is pulled across
a surface by a driver plate at a constant velocity V. Each block
is coupled to the adjacent blocks with either leaf or coil springs
(spring constant kC) and to the driver plate with leaf springs
(spring constant kL).
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5.4.3. Range of Interaction
[67] The range of interaction specifies how many ad-

jacent blocks to which each block is coupled via a spring
or alternative mechanism for stress transmission, such as
bulk elasticity. There are a variety of possibilities: (1)
nearest-neighbor redistribution, in which stress is trans-
ferred to or from only the nearest-neighbor blocks as
illustrated in Figure 8; (2) equal redistribution, in which
the stress transfer is equally redistributed to all other
blocks, representing a “flat interaction” approximation;
and (3) long-range interactions, which can be either of
the flat interaction approximation (strength of interac-
tion independent of the distance) or perhaps via an
inverse power of distance. Stress is redistributed to q
other blocks as a function of the block�s distance from
the slipping block. In the extreme case of redistribution
from one block to all other blocks, fluctuations in stress
(force) are averaged out, and one approaches the mean
field regime, where each block is considered to interact
with the mean field produced by all other blocks. For
example, it can be shown that if each block interacts with
q other blocks by means of a flat interaction, with each
block-block interaction having strength kC, then the
mean field condition is increasingly approached as qkC

¡ � [Klein et al., 2000]

5.4.4. Friction Law
[68] There are a variety of friction laws that are used;

these include [Rabinowicz et al., 1995] the following: (1)
The static-dynamic law is of the Coulomb-Mohr or
“freshman physics” type, in which there is a constant
static coefficient of friction �s and a constant dynamic
coefficient of sliding friction �d. Stick-slip behavior is
obtained if �s � �d. (2) Velocity weakening is the
friction law, used in the classic Burridge and Knopoff
[1967] paper; it involves a static friction threshold, fol-
lowed by a dependence on an inverse power of the
slipping velocity. (3) The slip weakening law is similar to
the static-dynamic law, but the friction weakens over a
characteristic distance. (4) Rate and state friction law is
a phenomenological law arising from laboratory experi-
ments, in which a block slides over a surface, with
occasional sudden changes in sliding velocity. After each
change in sliding velocity it is observed that stress relaxes
to a new value over some characteristic sliding distance.
Conditions under which these friction laws are observed
to have unstable sliding include an extremely stiff testing
machine and clean sliding surfaces.

5.4.5. Imposed Randomness
[69] There are two principal types of imposed ran-

domness: (1) Quenched randomness is represented as
random variations from block to block in parameters
such as spring constants and/or friction coefficients. (2)
In annealed randomness, stress drops in the CA ap-
proach on a block during a slip event are randomly
varied by adding a random undershoot or overshoot. A
characteristic of all solutions is that, over at least a

limited range, the slip events tend to have a power law
frequency-area distribution, although true power law
behavior is only observed in models with long-range
interactions [Ferguson et al., 1999; Castellaro and Mu-
largia, 2002]. An example is given in Figure 9. The
number of slip events per time step with area Ae, Ne/N0,
is given as a function of Ae. In this simulation the cellular
automata approach was used with static-dynamic fric-
tion. Results are given for stiffness 
 	 30, ratio of static
to dynamic friction is 1.5, and grid sizes are n � n 	 20
� 20, 30 � 30, 40 � 40, and 50 � 50. For stiff systems,
large 
, the entire grid of slider blocks is strongly corre-
lated, and large events, including all blocks, occur regu-
larly. These are the peaks at Ae 	 400, 900, and 1600
illustrated in Figure 9.

6. STATISTICAL PHYSICS OF SLIDER BLOCK
MODELS

6.1. Application to Earthquakes
[70] In the emerging picture of earthquake physics it

has been shown that earthquakes can be regarded as
generalized phase transitions [Smalley et al., 1985;
Rundle, 1989; Main, 1996]. There has been a lively de-
bate about whether earthquakes are best represented by
a second-order or first-order phase transition. However,
recent results [Rundle and Klein, 1993, 1995b; Rundle et
al., 1997a, 1998; Klein et al., 1997, 2000] are leading to
the view that the first-order transition represents by far
the richer physical picture, complete with predictions of

Figure 9. Results of simulations for a two-dimensional slider
block model with multiple blocks [Huang et al., 1992]. The ratio
of the number of slip events Ne, with area Ae, to the total
number of slip events N0 is plotted against Ae, the number of
blocks involved in an event [Huang et al., 1992]. Results are
given for systems with stiffness kC/kL 	 30, friction Fs/Fd 	 1.5,
and grid sizes 20 � 20, 30 � 30, 40 � 40, and 50 � 50. The
peaks at Ae 	 400, 900, and 1600 correspond to catastrophic
slip events involving the entire system. From Huang et al.
[1992], reprinted with permission of Blackwell Publishing.
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scaling phenomena and space-time patterns that have
been successfully tested by observations.

[71] In the first-order, phase-transition picture, plate
tectonic forces drive a fault into a state of metastable
equilibrium. Because the elastic interactions are long
range [Klein and Unger, 1983; Ray and Klein, 1990], near
mean field conditions prevail, and the fault can approach
a near spinodal line [Rundle and Klein, 1993]. In fact, in
the case of repeated earthquakes on a fault through time
the system is regarded as residing permanently in the
neighborhood of the spinodal line, executing a variety of
fluctuations near the spinodal line through time [Klein et
al., 2000]. In this picture the order parameter for the
fault can be regarded as either the stress, the slip, or the
slip deficit, all of which change dramatically at the time
of an earthquake on the fault.

6.2. Multistate System
[72] To make this discussion a bit more concrete and

to provide a connection of the physics discussed in
section 3 to slider blocks and earthquakes, consider the

energy function U[�], which is a function of the variable
�,

U��� � ε �2 � � �4 � f � . (19)

U[�] is an example of a Ginzburg-Landau functional
[Ma, 1976]. In a typical example, U[�] is the potential
energy associated with two particles separated by a dis-
tance �, the constants ε and � represent the interparticle
forces, and f is an applied force. Equations of the form
of equation (19) have been used to describe systems with
multiple possible states, in which sudden transitions be-
tween the states are possible. Typical dependencies of
U[�] on � are given in Figure 10 for various values of the
parameters. It can be seen from Figure 10 that the form
of U changes depending upon the sign of � and ε and
upon whether f is nonzero. In most physical systems, one
would only be interested in conditions when � � 0,
because then U can be minimized for finite values of the
variable �. The control parameter f determines whether
the function U is symmetric under a space reflection or
not.

Figure 10. Potential energy U [�] as a function of displacement � as given by equation (19). (left) With ε
� 0, a single potential well. (right) With ε � 0, two potential wells. With f 	 0 the wells are equal. As f is
increased, the left well becomes shallower, and the right well becomes deeper. The left well is a metastable
state since it is not the state of minimum potential energy. As f is increased further, an inflection point occurs,
and the left minimum disappears; this is the spinodal point.
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[73] As an example of a system that might be gov-
erned by an equation such as equation (19), consider the
case of a block being pulled along a surface by a constant
velocity driver connected to the block by a spring. If we
consider U to represent the thermodynamic free energy
of this system, then the system configuration point �
tends to evolve in such a way as to minimize U. Similarly,
equilibrium is described by the following equation:

dU
d� � 2 ε � � 4 � �3 � f � 0 , (20)

which is obtained by taking the derivative of equation
(19) and which is a representation of the principle of
minimum free energy.

[74] The situation is illustrated in Figure 10. The left
plots, where ε � 0, can be considered to represent stable
sliding of the block. Here there is only a single local
potential well in U; thus a small force f produces a small
shift of the stable point �0 corresponding to the mini-
mum value of U. These equations describe a simple
model of stable sliding.

[75] In the right plots of Figure 10, ε � 0, and there is
a very different physical situation in which there are two
locally stable (minimum energy) states �L and �R (left
and right). If f 	 0, the two local potential wells are at
equal depth, and neither state of � is preferred on the
basis of the lowest potential energy. However, now con-
sider the situation when f � 0, so that the right well has
lower energy than the left well. As f is increased, the left
well becomes shallower, and the right well becomes
deeper. Between the left local minimum in U and the
right local minimum in U, there is a local maximum of U,
�max � 0, a free energy barrier between the two local
minima. The left local minimum has higher energy than
the right local minimum; thus the left minimum �L is
metastable, whereas the right minimum �R is the lowest
energy state and is therefore stable. When f is increased
further, an inflection point will occur, and the left min-
imum will disappear; this is the limit of metastability.
For the slider block model this limiting value of f corre-
sponds to the static coefficient of friction, and the block
will suddenly slip, thus reducing f. The local maximum is
correspondingly a state of locally unstable equilibrium.
This model is therefore a candidate for a process of
unstable stick slip: If the system configuration initially
corresponds to the metastable state, as f increases, a
sudden transition will occur at some point as the system
configuration moves from the higher free energy, meta-
stable well to the lower free energy, stable well. In doing
so, the system point must pass over the local energy
barrier near � 	 0. In a more generic sense this process
is called nucleation, and it corresponds to a first-order
phase transition.

[76] The spinodal line is defined by the values of
parameters �, ε, and f at which the energy barrier just
disappears, and the function U[�] has a point of inflec-
tion. The spinodal line represents the classical limit of

stability of the system, since the disappearance of the
energy barrier means that the system now has only one
local minimum, the globally stable minimum, instead of
two local minima. Therefore the transition from �L to
�R with increasing f becomes inevitable.

[77] It is clearly desirable to extend the model de-
scribed above, which is applicable to a single slider
block, to a large array of slider blocks. A more general
version of equation (20) that allows for both spatial and
temporal fluctuations �f� (x, t) is the time-dependent
Ginzburg-Landau equation [Haken, 1983]:

T
��

�t � R2  2� � 2 ε � � 4 � �3 � f . (21)

This equation arises in many branches of science when
the effects of sudden (first order) transitions from one
state to another are observed. In the case of earth-
quakes, for example, it is a simple representation for the
physical situation of two media in contact at an irregular
sliding surface, having bumps, divots, and asperities, in
which �(x, t) represents the difference between the
displacement at point x and time t.

[78] Here the coefficient T is a characteristic time, and
the coefficient R2 of the new Laplacian term is the
square of the range of interaction R, which physically
represents the distance over which the effects of a fluc-
tuation in �(x, t) at x are directly communicated to
physical variables such as the stress and slip that are
located at another point x�. Spatial and temporal varia-
tions in �(x, t) are now possible.

6.3. Scaling
[79] Equation (21) allows us to demonstrate that scal-

ing and power law statistical distributions are necessarily
associated with second-order phase transitions. The ba-
sic idea is to scale equation (21) so that it is uniformly
valid near possible phase transitions. The important
control parameters in this process are ε and f, since the
magnitude and sign of these parameters controls the
form of U[�(x, t)] and therefore the characteristics of
the phase transition.

[80] Let us first set f 	 0 and consider the necessary
scaling of equation (21) in the vicinity of ε 	 0. In order
to do this we introduce the scaled nondimensional vari-
ables

x! �
x


, t! �
t
�

, �! �
�

ε1/ 2 . (22)

Substitution of equation (22) into equation (21) taking f
	 0 gives

��!

�t! �  !2�! � 2 �! � 4 � �!3 . (23)

On the basis of the scaling given in equation (22) we
define a correlation length  and correlation time �
according to
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 �
R

ε1/ 2 , � �
T
ε . (24)

In the limit ε ¡ 0 the critical point, the correlation
length, and time approach infinity with a power law
scaling.

[81] Alternatively, we can set ε 	 0 and consider the
necessary scaling of equation (21) in the vicinity of f 	 0.
In order to do this we introduce the scaled nondimen-
sional variables:

x! �
x


, t! �
t
�

, �! �
�

f1/3 . (25)

Substitution of equation (25) into equation (21) taking ε
	 0 gives

��!

�t! �  !2�! � 4 � �!3 � 1 . (26)

On the basis of the scaling given in equation (24) we
define a correlation length  and correlation time �
according to

 �
R
f1/3 � �

T
f2/3 . (27)

In the limit f ¡ 0 the critical point, the correlation length
, and correlation time � again approach infinity with
power law scaling.

[82] These values for (ε, f), i.e., (0, 0), define the
Landau-Ginzburg “critical point.” The control parame-
ters (ε, f), which measure the proximity of the system to
the critical point, are called “scaling fields.” A unique
property of such a critical point is that, independent of
whether ε or f is the control parameter, one has a scaling
relation for the length  in terms of one of the scaling
fields, where  is the correlation length, because it sets
the scale for the spatial fluctuations arising from the
Laplacian term [Stanley, 1971; Gunton and Droz, 1983;
Binney et al., 1993]. Likewise � is the correlation time,
because it sets the timescale for fluctuations arising from
the time derivative term.

[83] A more concrete connection between the physics
of nucleation and critical phenomena and earthquakes
was made by a model called the traveling density wave
(TDW) model for earthquakes [Rundle et al., 1996].
Here the equation analogous to equation (21) can be
written as

T
��

�t � � �kL � � R2  2�

� 2� " sin �"�� � V t��� , (28)

where the term kL� has replaced f. The sine term is new
and represents a periodic friction force. The system is
driven at the plate velocity V by the sine term. In appli-
cations to real materials the sine term would presumably
be replaced by a Fourier sum of terms. There might also
be noise in the form of an additive random noise term,

the two effects leading to a random, disordered pinning
force representing friction between sliding surfaces
[Rundle et al., 1996].

[84] To understand the dynamics of equation (28), let
us search for a solution � (x, t) ¡ �(t) that is uniform in
space (no spatial fluctuations) but varying in time. Then
we have the following equation:

T
d�
dt � � �kL � � 2� " sin �"�� � V t��� . (29)

Corresponding to equation (29), there is also an energy
function U[�, t]:

U��, t� �
1
2 kL �

2 � 2� cos �"�� � V t�� . (30)

Equation (29) is related to equation (30) via the princi-
ple of minimum energy in irreversible thermodynamics
[Rundle, 1989]:

d�
dt � �

�U��, t�
��

. (31)

[85] The physics of this model is illustrated in Figure
11, which again involves the idea of metastability and a
spinodal line or limit of stability. If the parameter # $
2� "2/kL � 1, we have the situation shown at the top of
Figure 11; a metastable state is possible, and a recurring
spinodal line appears. If # � 1, we have the situation at
the bottom of Figure 11, where there is always only one
time-dependent, stable state. The top plots represent the
case of periodic stick-slip, whereas the bottom plots
represent the case of stable sliding at variable speed.

[86] The kL term in equation (29) is represented by a
quadratic potential well (1/2)kL�

2 that is periodically
distorted by the leftward propagating cosine wave. The
top right plot in Figure 11 illustrates how the plate
motion V in equation (29) prepares the system for the
next event by (1) taking the globally stable potential well
just after the last event and moving the system configu-
ration point into a state of metastable equilibrium and
then (2) gradually reducing the energy barrier until the
spinodal line is reached, eventually allowing the system
to decay spontaneously during the unstable slip event. It
can be seen from this discussion that between events,
there is a period of time just after the last earthquake
when there is only one globally stable system state. At a
later time the globally stable state gradually transforms
to a metastable state, at which three equilibrium points
exist: one metastable state, one unstable state, and one
globally stable state. Stick-slip sliding is only possible
when the three solutions come into existence, since only
then is a decay from a metastable equilibrium possible.

[87] The TDW model illustrates intermittent critical-
ity [Sammis et al., 1996]. The process of decay can be
understood by an analysis of the solutions to equation
(29), and, in particular, these solutions have a number of
the scaling properties observed in nature, including
Gutenberg-Richter scaling, Omori-type scaling, and so
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forth [Rundle et al., 1996, 1997a, 1997b]. The time inter-
val %t 	 t � tsp, during which the nucleation barrier
disappears and the decay from the metastable state
becomes inevitable, acts as a scaling field because it
brings the system toward or away from the spinodal line.
The latter acts as a critical point near which scaling
occurs.

[88] The preevent and postevent fluctuations and the
process of decay from metastability may be related to
the underlying physical mechanisms behind the fore-
shock–main shock–aftershock sequence. Examples of
our simulation results, together with real data from
cycles of activity in the Mammoth Lakes, California,
region, are shown in Figure 12. Similar cycles can be
seen in other areas of the world [Scholz, 2002]. The
simulation results were obtained on a lattice of size 64 �
64 	 4096 sites. The correlation length  [Klein et al.,
1996; Rundle et al., 1997a, 1997b] varies inversely with
the barrier height separating the stable and metastable
states:

 � �kL V�%t���1/4 . (32)

Equation (32) says that as the main shock time is ap-
proached, the correlation length grows. In the vicinity of
the spinodal line the correlation length diverges as the
inverse-fourth power of the barrier height rather than
the inverse-half power encountered in equation (23).
The description of this physical process closely resem-
bles the “intermittent criticality” model proposed by
Sammis et al. [1996] to explain the development and
growth of correlations on an earthquake fault as the time
of the main shock approaches. Corresponding changes
in earthquake scaling during the foreshock and after-
shock phases, consistent with the predictions of equation
(32), have recently been observed by Jaumé and Sykes
[1999] and Bowman et al. [1998]. We will thus be moti-
vated to explore these similarities in detail to find out
what observable properties should be reflected in seis-
micity distributions and clustering. Depending on the
physical details of the configuration of the metastable
well, this model may be associated either with quies-
cence (depressed foreshock activity), or with elevated
precursory activity (enhanced foreshock activity).

Figure 11. Traveling density wave model. (top) Plots with parameter # 	 2 so that a spinodal exists
(recurrent “brittle failure”). (bottom) Plots with # 	 0.5 so that a spinodal does not exist (recurrent “ductile
sliding”). (left) Stress � as a function of slip deficit �. (right) Energy U as a function of slip deficit �.
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7. EARTHQUAKE FORECASTING METHODS

[89] As discussed in sections 1 and 2, it is generally
accepted that earthquakes are a chaotic phenomenon.

Thus, as in the case of weather forecasting, earthquake
forecasting must be considered on a statistical basis.
However, there are no widely accepted earthquake fore-
casting algorithms currently available. A fundamental

Figure 12. Cycles of earthquake activity (foreshock–main shock–aftershock events) from (a) Mammoth
Lakes, California, and (b) traveling density wave simulations [after Rundle et al., 1999].
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question is whether patterns of seismicity can be used to
forecast future earthquakes. Promising results suggest-
ing that this may be possible have recently been ob-
tained. The data on accelerated moment release given in
section 2.3 certainly indicate that there may be “action at
a distance” prior to at least some earthquakes. This
“action at a distance” may be the physics underlying the
earthquake prediction algorithms developed at the In-
ternational Institute for the Theory of Earthquake Pre-
diction and Theoretical Geophysics in Moscow under
the direction of academician V. I. Keilis-Borok. This
approach is based on pattern recognition of distributed
regional seismicity [Keilis-Borok, 1990; Keilis-Borok and
Rotwain, 1990; Keilis-Borok and Kossobokov, 1990; Kei-
lis-Borok and Soloviev, 2003]. Premonitory seismicity
patterns were found for strong earthquakes in California
and Nevada (algorithm “CN”) and for earthquakes m �
8.0 worldwide (algorithm “M8”). When a threshold of
the anomalous behavior was reached, a warning of the
time of increased probability (TIP) of an earthquake was
issued. Successful TIPs were issued prior to 42 of 47
events. TIPs were released prior to the Armenian earth-
quake on 7 December 1988 and prior to the Loma Prieta
earthquake on 17 October 1989. This approach is cer-
tainly not without its critics. Independent studies have
established the validity of the TIP for the Loma Prieta
earthquake; however, the occurrence of recognizable
precursory patterns prior to the Landers earthquake is
questionable. Also, the statistical significance of the size
and time intervals of warnings in active seismic areas has
been questioned. Nevertheless, seismic activation prior
to a major earthquake certainly appears to be one of the
most promising approaches to earthquake forecasting.

[90] An alternative pattern informatics (PI) approach
to earthquake forecasting has been proposed by Rundle
et al. [2000d, 2002] and Tiampo et al. [2002a, 2002c]. This
approach is based on the strong space-time correlations
that are responsible for the cooperative behavior of
driven threshold systems such as the TDW model de-
scribed in section 6.3. The correlations arise both from
the threshold dynamics, as well as from the mean field
(long range) nature of the interactions. Driven threshold
systems can be considered to be examples of phase
dynamical systems [Mori and Kuramoto, 1997] when the
rate of driving is constant, so that the integrated stress
dissipation or firing rate over all sites is nearly constant,
with the exception of small fluctuations.

[91] In threshold systems such as earthquake faults,
the stress is typically supplied at a steady rate but is
dissipated episodically by means of the earthquakes.
Owing to the mean field nature of both the simulated
and real threshold systems it is found that as the size of
the system N is increased, the amplitude of the “small
fluctuations” decreases roughly as 1/�N.

[92] Using both simulations and observed earthquake
data, Tiampo et al. [2000, 2002c] and Rundle et al.
[2000d, 2002] have shown that the space-time patterns of

threshold events (earthquakes) can be represented by a
time-dependent system state vector in a Hilbert space.
The length of the state vector represents the average
temporal frequency of events throughout the region and
is closely related to the rate f[�, V] at which stress is
dissipated. It can be deduced that the information about
space-time fluctuations in the system state is represented
solely by the phase angle of the state vector hence the
term “phase dynamics.” Changes in the norm of the
state vector represent only random fluctuations and can
for the most part be removed by requiring the system
state vector to have a constant norm.

[93] This PI approach is best illustrated using a spe-
cific example. Tiampo et al. [2000, 2002b] analyzed data
from southern California since 1932 between 32& and 37&
north latitude and 238& to 245& east longitude. The
surface area was divided into N 	 3162, square boxes
with size LCG 	 0.1& ' 11 km, corresponding roughly to
the linear size of a magnitude m ' 6 earthquake. The
standard online data set available through the web site
maintained by the SCEC (the SCSN catalog) was used.
This data set includes all instrumentally recorded earth-
quakes in southern California beginning at time t0 	 1
January 1932 and extending to the present. For this
region, earthquakes with magnitude greater than mc 	 3
are typically used to insure catalog completeness since
1932. The idea is to use small events having scales ( �
LCG to forecast the occurrence of large events having
scales ( � LCG.

[94] The seismic intensity in box i is defined to be the
total number, N (xi, tb, t), of earthquakes in the box
during the time period tb to t with magnitudes greater
than mc. For each box an activity rate function S(xi, tb, t)
is defined to be the average rate of occurrence of earth-
quakes in box i during the period tb to t. That is,

S�x i, tb, t� �
N�x i, tb, t�

t � tb
. (33)

The normalized activity rate function is found by sub-
tracting the spatial mean for all boxes and dividing by
the spatial standard deviation

Ŝ�x i, tb, t�

�

S�x i, tb, t� �
1
N �

j

S�x j, tb, t�

� 1
N �

j
�S�x j, tb, t� �

1
N �

k

S�xk, tb, t�� 2	 1/ 2 . (34)

The change in the normalized activity rate function for
the forecast time period t1 to t2 is found by subtracting
the normalized activity rate function for the time period
tb to t1 from the normalized activity rate function for the
time period tb to t2

�Ŝ�x i, tb, t1, t2� � Ŝ�x i, tb, t2� � Ŝ�x i, tb, t1� .

(35)

41, 4 / REVIEWS OF GEOPHYSICS Rundle et al.: STATISTICAL PHYSICS OF EARTHQUAKES ● 5-21



Changes in the normalized activity rate function are then
obtained for a sequence of values of tb taken at yearly
intervals from t0 to t1 � 1. These changes are then
averaged to give the mean normalized change in activity

�s�x i, t0, t1, t2� �
1

t1 � 1 � t0
�

tb	t0

t1�1

�Ŝ�x i, tb, t1, t2� .

(36)

Finally, we introduce a probability of change of activity
in a box relative to the background; this is given by the
difference between the square of the mean normalized
change in activity for a box and its spacial mean:

�P�x i, t0, t1, t2� � ��s�x i, t0, t1, t2��
2

�
1
N �

j

��s�x j, t0, t1, t2��
2 . (37)

Because the �s(xi, t0, t1, t2) are squared, the probability
is a measure of both seismic activation and seismic
quiescence. The use of the �P to forecast earthquakes is
referred to as the pattern informatics method.

[95] We will now apply the PI method to southern
California. The distribution of relative seismic intensities
for southern California for the period 1932–1991 are
given in Figure 13a. The relative intensity is defined to
be the logarithm of the ratio of N(xi, t0, t1)/N(xi, t0, t1)max,
where N(xi, t0, t1) is the number of earthquakes in box i
during the period t0 	 1 January 1932 and t1 	 31
December 1991 and N(xi, t0, t1)max is the largest value of
N(xi, t0, t1).

[96] A PI method forecast of earthquake occurrence
in this region is given in Figure 13b. In applying the
method to the N 	 3162 0.1& � 0.1& boxes with mc 	 3.0,
the times used were t0 	 1 January 1932, t1 	 1 January
1978, and t2 	 31 December 1991. This was meant to be
a retrospective forecast for the period 1992–2002. Rel-
ative values of the probability of activity are given in the
form log10 (Pj/�Pjmax). The color-coded anomalies are
shown in Figure 13b. Note that only positive values of
log10 (�Pj/�Pjmax) are given. Thus the color-coded re-
gions represent regions of anomalously high seismic
activation or high seismic quiescence. Note that no data
were used in the shaded anomalies of Figure 13b from
the time after 31 December 1991, 6 months prior to the
27 June 1992 m ' 7.3 Landers earthquake (34&13!N
latitude, 116&26!W longitude). Earthquakes with m �
5.0 that occurred during the period 1978–1991 are
shown as inverted triangles. Earthquakes with m � 5.0
that have occurred since 1991 are shown as circles.

[97] Visual inspection of Figure 13b shows that the
retrospective forecast is reasonably successful, but rigor-
ous statistical testing is needed. Tiampo et al. [2000,
2002b] used two types of null hypotheses to test the
forecast in Figure 13b. (1) Thousands of randomized
earthquake catalogs were generated from the observed
catalog by using the same location and total number of

events but assigning each event a random occurrence
time from a uniform probability distribution over the
years 1932–1991. Randomizing the catalog in this way
destroyed whatever coherent space-time structure may
have existed in the data. These random catalogs were
used to construct a set of null hypotheses, since any
forecast method using such a catalog cannot, by defini-
tion, produce useful information. (2) For the second null
hypothesis the seismic intensity data in Figure 13a was
used directly as a probability density as has been pro-
posed in the literature [Kagan and Jackson, 2000] for the
standard null hypothesis.

[98] A maximum likelihood test [Gross and Rundle,
1998; Bevington and Robinson, 1992; Kagan and Jackson,
2000; Tiampo et al., 2002a] was used to evaluate the
accuracy with which probability measure �Pi can fore-
cast “future” (t � t2) “large” (m � 5.0) events, relative to
forecasts from the null hypotheses. The likelihood � is a
probability measure that can be used to assess the utility
of one forecast measure over another. Typically, one
computes log10(�) for the proposed forecast measure �
and compares that to the likelihood measure �N for a
representative null hypothesis. The ratio of these two
values then yields information about which measure is
more accurate in forecasting future events.

[99] Figure 13c shows computations of (1) log10(�)
for 500 random catalogs of the first type (histogram), (2)
log10(�) for the seismic intensity map in Figure 13a
(vertical dashed-dotted line), and (3) log10(�) for the
forecast of Figure 13b (dashed line). Since larger values
of log10(�) indicate a more successful hypothesis, the
logical conclusion is that the method has forecasting
skill.

[100] The true test of any earthquake forecasting al-
gorithm is to make a future forecast that proves correct.
Tiampo et al. [2002a] and Rundle et al. [2002] did this for
the period 2000–2010. This forecast is reproduced in
Figure 14. Values of log10(�Pj/�Pjmax) are given using
the same color code as in Figure 13b. For this forecast
the times used were t0 	 1 January 1932, t1 	 1 January
1990, and t2 	 31 December 1999. Also shown in Figure
14 are events with m � 5.0 that took place during the
period 1990–1999.

[101] The success rate of this method of forecasting
has been encouraging. A number of events were coinci-
dent, within the �11 km margin of error (the coarse
graining box size), with the forecasts, in that the large
earthquakes occurred in areas predicted by the method
to have a rapidly increasing probability of an event.
These events (SCSN catalog) included the m 	 5.1 Big
Bear I event of 10 February 2001 (event 1, Figure 14);
the m 	 5.1 Anza event of 31 October 2001 (event 2,
Figure 14); the m 	 5.7 Baja event of 22 February 2002
(event 3, Figure 14); the m 	 4.9 (first reported at m 	
5.2) Gilroy event of 13 May 2002 (event 4, Figure 14);
and the m 	 5.4 Big Bear II event of 22 February 2003
(event 5, Figure 14). Of these events the first (Big Bear
I) occurred after the research [Rundle et al., 2002] had
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been completed (January 2001); the second (Anza) oc-
curred after the paper was in press (June 2001); and
events 3–5 all occurred after the publication of the
article by Rundle et al. [2002] on 19 February 2002.

8. DISCUSSION

[102] This review describes recently developed ap-
proaches to understanding earthquake physics based on
applying statistical physics to observed data and numer-
ical simulations of earthquake processes. Earlier ap-
proaches emphasized either geologic investigations and
mapping or the application of continuum methods de-
veloped in engineering, including fields such as elasticity,
viscoelasticity, plasticity, fluid mechanics, and friction.
The statistical physics approach differs from the earlier
approaches by its emphasis on the treatment of earth-
quake faults and fault systems as high-dimensional dy-
namical systems characterized by a wide range of scales
in both space and time. Examples of these scales can be
seen in the fractal topology of fault systems, in the
linearity of the Gutenberg-Richter magnitude-frequency
relation, and in other observed statistics of earthquakes,
including the modified Omori�s aftershock relation and
the Bufe-Varnes law for precursory activation.

[103] We have also described a variety of models,
together with their analysis by statistical mechanical
methods. Many of these models have been used to
construct numerical simulations of earthquake physics, a
number of which have used a cellular automaton ap-
proach. The first successful example of this class of
models was the Burridge-Knopoff slider block model
[Burridge and Knopoff, 1967], which used massive blocks
leading to a set of differential equations based on New-
ton�s second law. The first cellular automaton version of
the Burridge-Knopoff slider block model was published
by Rundle and Jackson [1977] and also included an

Figure 13. (a) Relative seismic intensities log10[N(xi, t0, t1)/
N(xi, t0, t1)max] for southern California for the period 1932–
1991 using the color code below Figure 13. (b) A retrospective
forecast of earthquakes for the period 1992–2002 using the PI
forecasting methodology. Relative probabilities for activity
log10(�P/�Pmax) are given for southern California using the
color code above Figure 13. The times used were t0 	 1
January 1932, t1 	 1 January 1978, and t2 	 31 December 1991.
Earthquakes that occurred between 1978 and 1991 are shown
as inverted triangles (smallest triangles 5.0 � m � 6.0, inter-
mediate triangles 6.0�m � 7.0, and largest triangles m� 7.0).
Earthquakes that have occurred since 1991 are shown as circles
(smallest circles 5.0 � m � 6.0, intermediate circles 6.0 � m �
7.0, and largest circles m � 7.0). (c) Likelihood (log10�) values
for 500 randomized test catalogs (histogram), intensity map in
Figure 13a used as a forecast map (left vertical dashed-dotted
line), and PI method from Figure 13b (right vertical dashed
line). Larger relative likelihood values represent more proba-
ble forecast models.
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analysis of earthquake physics based on a friction law
characterized by time-dependent weakening.

8.1. Statistical Physics Applied to Fracture
[104] The statistical physics approach considers an

earthquake to be a type of generalized phase transition.
While some researchers have stressed the analogy of
earthquakes to second-order phase transitions (“critical
point model for earthquakes”), more recent work indi-
cates that models based on nucleation and first-order
phase transitions are probably more applicable. Both
approaches lead to scaling laws or power law distribu-
tions for the dynamical variables. Second-order transi-
tions demonstrate scaling near a critical point, whereas
first-order transitions demonstrate scaling when the
range of interaction is large (mean field condition), as is
the case with elastic interactions. In first-order transi-
tions the mean field condition allows the spinodal line,
or classical limit of stability, to be approached during the
transition process. The spinodal line behaves as a line of
critical points, at which scaling laws with well-defined
scaling exponents are seen.

[105] Brittle fracture, a process that is closely associ-
ated with earthquakes, is another example of a process
that can be modeled by first-order phase transitions. The
nucleation and coalescence of microcracks in brittle
failure is analogous to the homogeneous nucleation of

bubbles in a superheated liquid. A solid stressed above
the yield stress is then considered to be in a metastable
regime similar to that of the superheated liquid. The
explosive homogeneous nucleation of bubbles in a su-
perheated liquid occurs adjacent to the spinodal line,
which is the limit of allowed superheating. Phase
changes near a spinodal line have many of the scaling
aspects of a second-order transition near the critical
point but with different scaling exponents in general.
Thus it appears reasonable to argue that the generation
and coalescence of microcracks prior to material frac-
ture is very similar to the homogeneous and/or hetero-
geneous nucleation of bubbles prior to the liquid-to-gas
phase change in a superheated liquid.

8.2. Thermodynamic Variables
[106] Temperature plays an essential role in almost all

applications of statistical physics. Thermal fluctuations
are directly associated with the approach to a critical
point or a phase change. These fluctuations are respon-
sible for the homogeneous nucleation of a superheated
liquid near a spinodal line.

[107] In the analogy between a phase change and
brittle fracture it is clearly appropriate to associate stress
with pressure and strain with specific volume (density).
However, what about temperature? Experimental re-
sults are ambiguous. However, there is considerable
evidence that fluctuations in stress (elastic vibrations)
associated with microcracking play a role in brittle frac-
ture that is analogous to the fluctuations in pressure
caused by thermal fluctuations in a classical phase
change.

8.3. Earthquake Nesting
[108] A fundamental question in earthquake physics is

whether earthquakes are scale invariant. Is a magnitude
m 	 2.0 the same as a magnitude m 	 4.0 is the same as
a magnitude m 	 6.0 is the same as a magnitude m 	
8.0? Observations of seismic activation suggests it occurs
for both large and small earthquakes. Increased num-
bers of earthquakes of magnitude 4 precede a 5.5 earth-
quake, increased numbers of earthquakes of magnitude
5.5 precede a 7.0 earthquake, and increased numbers of
earthquakes of magnitude 7 precede an 8.5 earthquake.
On the basis of results given in section 2.3, seismic
activation occurred prior to the m 	 7.5 Kern County
earthquake, the m 	 7.3 Landers earthquake, and the m
	 6.7 Northridge earthquake.

8.4. Statistical Physics Models
[109] A number of models have been introduced in

the past 15 years that exhibit the repetitive avalanche
behavior and the power law scaling associated with fault
systems. The model most closely associated with fault
systems is the slider block model. The movement of the
blocks over a surface takes place in slip events. These
events scale in a manner similar to actual fault ruptures.

Figure 14. Pattern informatics method forecast for southern
California for the period 2000–2010 [Tiampo et al., 2002a;
Rundle et al., 2002]. Relative probabilities log10(�P/�Pmax) are
given using the color code at the top of Figure 14. The times
used were t0 	 1 January 1932, t1 	 1 January 1990, and t2 	
31 December 1999. Earthquakes with m � 5.0 that took place
during 1990–1999 are shown as inverted triangles. Circles
represent events with magnitude m� 5.0 that have occurred so
far during the time period of the forecast.
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[110] Extensive studies of slider block models show
that they exhibit a range of behaviors that commonly
occur in statistical physics. The distribution of energies
in the springs becomes thermalized and exhibits a Max-
well-Boltzmann distribution in many cases [Rundle et al.,
1995].

8.5. Earthquake Forecasting and Earthquake Patterns
[111] Statistical physics leads, in a natural way, to the

development of methods for defining space-time pat-
terns of seismicity. These methods can be used to deter-
mine whether there are systematic patterns of seismicity
that might be precursors to future large earthquakes.
Seismic activation, as proposed by Bufe and Varnes
[1993], has now been recognized to have occurred for a
significant number of earthquakes with a wide range of
magnitudes (see Figure 2). Precursory quiescence, while
more difficult to define and observe, may also occur: The
power law increase in Benioff strain does not occur (or
cannot be recognized) for all earthquakes. Studies of
seismic activation to date have been largely retrospec-
tive, and forecasting and prediction of future large
earthquakes based on pattern analysis methods is only
just beginning.

[112] The Russian group, under the direction of V. I.
Keilis-Borok, has developed a number of intermediate-
term earthquake prediction algorithms based on pat-
tern-recognition techniques [Keilis-Borok and Soloviev,
2003]. Regular earthquake “alarms” (Times of In-
creased Probability, or “TIPs”) are issued. There have
been two claims of success with this methodology, the
1988 Armenian earthquake and the 1989 Loma Prieta,
California, earthquake. However, a number of relatively
large earthquakes have not been predicted or forecast,
and the approach is mired in controversy. A key element
in these algorithms is a precursory increase in seismic
activity over areas similar in size to the recognized
patterns of seismic activation.

[113] Another, more recent approach to earthquake
forecasting using Pattern Informatics (PI) was proposed
by the Colorado group [Rundle et al, 2002; Tiampo et al.,
2002b, 2002c]. This approach, which does not rely on
fitting any model parameters to training data, is based
instead on ideas about phase dynamical systems. Classi-
cal examples of phase dynamics include fluid systems,
reaction-diffusion systems, and in general, any dissipa-
tive system in which a phase can be defined [Mori and
Kuramoto, 1998]. Here a probability for future large
events can be computed from the data itself, without
reference to any model. In this method, the migration of
the smallest earthquakes from one spatial region to the
next through time is used as an indicator for future
activity of the largest events. Maps can be computed that
forecast the locations and maximum magnitudes of the
largest future events. A map of this type was published
by Rundle et al. [2002] and Tiampo et al. [2002a]. Three
earthquakes with magnitude m � 5.0 have occurred
since publication of the first paper on February 19, 2002,

and all three events have correctly fallen into the fore-
cast regions (see Figure 14), thereby indicating that the
method may have considerable promise.

9. CONCLUSION

[114] We have argued that earthquake fault systems
represent a class of driven nonlinear dynamical systems
characterized by a wide range of scales in both space and
time, from centimeters to thousands of kilometers, and
from seconds to many thousands of years. Patterns of
behavior in high-dimensional natural systems are usually
chaotic and complex. In most cases, it is difficult or
impossible to directly observe the current state of the
system, or to have detailed knowledge of the dynamics
by which the system is evolving. The nonlinearity in the
dynamics usually leads to strong couplings between the
various space and timescales, so that activity on large
space and long timescales can have dramatic impacts on
the events that happen on small space and short time-
scales, and vice-versa. Observations of natural systems
may have only limited utility in forecasting or extrapo-
lating the future evolution of the system, since such
observations are taken over a very limited range of
scales, and are necessarily incomplete. A comprehensive
understanding of the nonlinear dynamics of earthquake
fault systems can only be developed by supplementing
observations with a sophisticated program of numerical
simulation, leading to the development of theoretical
insights and results that can then be applied to the
natural system. Simulations have the distinct advantages
that 1) the effects of multiple scales in space and time
can be examined, even those much larger and longer
than human dimensions; 2) a variety of nonlinear dy-
namical processes can be proposed, and their effects
determined, as candidates for the unobservable dynam-
ics that characterize the natural system; and 3) data can
be assimilated into the simulations using well-under-
stood techniques, enabling the rigorous evaluation of the
importance of particular data and leading to the devel-
opment of organized data collection programs. Here we
have summarized results from a new generation of
earthquake fault system simulations, together with new-
ly-developed analytical techniques for these fundamen-
tally high-dimensional systems that arise from a statisti-
cal physics point of view. Note that the analytical
techniques are fundamental and are already being ap-
plied to the understanding of other high-dimensional
nonlinear systems, including neural networks, glass tran-
sitions, driven foams, semiconductors, and superconduc-
tors. The research we describe demonstrates the useful-
ness of even simple high-dimensional models such as
slider block systems with cellular automaton dynamics,
forest fire models, and percolation models. Even at this
early stage, the models are predicting results that are
being confirmed by new observations. An example is the
time variation in regional earthquake magnitude-fre-
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quency distribution prior to large earthquakes. A new
state vector analysis technique for regional seismicity
observations is another example that shows considerable
promise as an intermediate-term earthquake forecasting
tool.

NOTATION

a measure of the regional level of
seismicity.

A rupture area.
Ae area of slip events.
AF area of a burning cluster.

b “b value.”
B constant in equation (7).
C constant in equation (3).
c specific heat.

D fractal dimension.
ei seismic energy release of ith

earthquake.
E0 Young�s modulus.

f force.
fs sparking frequency.
F compressive force.
h magnetic field.
H hazard rate.

kC connecting spring constant.
kL loader plate spring constant.
L length of sample.

LCG size of square box.
� likelihood probability measure.
m magnitude of earthquake.

mc magnitude cutoff.
m mass of a slider block.
M magnetization.
N number of events.

Nas number of aftershocks.
Ne numbers of slip events.
NF number of fires.

NGR cumulative number of earthquakes.
p exponent in the Omori�s law.
p probability.
P pressure.

Pc critical pressure.
Pf failure pressure.
Py yield pressure.
�P change in probability for seismic

activity.
q lattice coordination number.
R range of interaction.
s exponent in equation (7).
s� mean value of s.
S activity rate function.
Ŝ normalized activity rate function.
�s mean normalized activity rate

t time.
t0, t1 constants in the Omori�s law.

t0, t1, t2, tb reference dates.
tf time to failure.
td characteristic damage time.

tsp time at which the spinodal point is
reached.

%t time interval.
�t nondimensional time.
T characteristic time.
T temperature.

Tc temperature at the critical point.
U energy potential.
v specific volume.

vc critical specific volume.
V driver plate velocity.
z dynamic exponent.
x spatial coordinate.
� damage variable.
� constant.

 stiffness of the system.
� exponent in equation (3).
� parameter in equation (28).
� Ginzburg criterion.
ε constant in equation (19).

εB cumulative Benioff strain.
ε0 cumulative Benioff strain at �t 	 0.
� strain.
�y yield strain.
" parameter in equation (28).
( length scale.
# parameter in section 6.3.
�d coefficient of dynamic friction.
�s coefficient of static friction.
� order parameter (slip deficit).

�L, �R, �max extremum values of �.
� slip deficit.
� shear stress.
� critical slowing down.
� stress.
�N normal stress.
�y yield stress.
� exponent in equation (18).
� density.
�c density at the critical point.

�gas density of a gas phase.
 correlation length.
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