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m Abstract The mechanisms of exchange of hydrogen between the deep interior
and surface of Earth, as well as the means of retention and possible abundance of hydro-
gen deep within the Earth, are examined. The uppermost several hundred kilometers
of Earth’s suboceanic upper mantle appear to be largely degassed, but significant pri-
mordial hydrogen could be retained within the transition zone, lower mantle, or core.
Regassing of the planet occurs via subduction: Cold slabs are likely particularly effi-
cient at transporting hydrogen to depth within the planet. Marked changes in hydrogen
cycling have taken place throughout Earth’s history: Evidence of hydrated ultramafic
melts in the Archean and probable hydrogen retention within a Hadean magma ocean
indicate that early in its history, the deep Earth was substantially wetter. The largest
enigma associated with hydrogen in the deep Earth lies in the core: This region could
represent the dominant reservoir of hydrogen on the planet, with sfd®® hydro-
spheres of hydrogen present as a high-pressure iron-alloy.

INTRODUCTION

Hydrogen is the most abundant element in the solar system, and together with
oxygen, which ranks third, it forms water—ubiquitous at the Earth’s surface and,
in liquid form, arguably the distinguishing feature of this planet. Despite its cos-
mic ubiquity, the elemental abundance of hydrogen within our planet has been
enigmatic. Estimates of the hydrogen abundance in Earth’s interior have spanned
arange from less than the equivalent of the current hydrosphere to on the order of
100 hydrospheres if hydrogen is the dominant light alloying component in Earth’s
outer core. The underlying unanswered question here, pivotal for our understand-
ing of Earth’s evolution, is how efficiently is our planet’s interior degassed.

The uncertainties about the abundance of hydrogen in the planet are strik-
ing, given both the profound effect of hydrogen on properties and processes on
microscopic-to-global scales, and its primary roles in the evolution of the planet.
These effects include its demonstrable weakening of rocks and minerals and the
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major effects it has on phase relations, especially the dramatic depression of the
solidus, and on the formation of hydrous high-pressure phases. The geologic man-
ifestations of the presence of water and its interactions with the interior have
produced the major distinguishing topographic features of our planet, including
continents [generated by hydrous melting (Campbell & Taylor 1983)] and prob-
ably the narrow zones at mid-ocean ridge crests at which new plate is produced
[generated by dehydration-induced strengthening of the oceanic upper mantle dur-
ing partial melting (Hirth & Kohlstedt 1996)]. At higher pressures, uncertainties
about the amount of hydrogen in mantle and core materials give rise to variations
of a thousand degrees in the inferred temperature profile of Earth’s core. More-
over, it has long been inferred that the source of the hydrosphere was degassing
from Earth’s solid mantle (e.g. Rubey 1951). Thus, the behavior and abundance of
hydrogen in the planet is key to understanding the evolution, dynamic state, and
thermal structure of not only the deep interior, but ultimately the evolution of the
crust and hydrosphere as well.

Recent work across a broad range of disciplines has resulted in new views about
hydrogen in the Earth. Materials studies have established that the extreme pressure-
temperature conditions characteristic of the deep interior impart dramatic changes
in bonding properties associated with hydrogen, precluding extrapolation of the
behavior of materials studied under near-surface conditions. Mineralogical studies
of the past several decades have established that nominally anhydrous phases
can contain significant amounts of hydrogen as defects (e.g. Bell & Rossman
1992, Ingrin & Skogby 2000). If the amount of hydrogen found in these phases
is representative of the entire mantle, then a volume of water at least as large
as the current oceans could be retained within Earth’s silicate mantle without
the presence of separate hydrous phases at depth. Moreover, new classes of dense
hydrous phases have been discovered (Prewitt & Parise 2000). Furthermore, recent
experiments provide possible new constraints on the abundance of hydrogen (along
with other light elements) in the core (e.g. Jana & Walker 1999).

In tandem with these experimental advances, the role of water in generating
voluminous mantle melting has been recently reexamined, with water having been
proposed as playing a principal role in the genesis of continental flood basalts and
the genesis of komatiites, a major ultramafic rock type of the Archean (Turner &
Hawkesworth 1995, Parman et al 1997). Additionally, enhanced attention has been
directed to the manner in which water was incorporated within the earliest Earth,
from its meteoritic and cometary origins to its likely incorporation and reten-
tion within a primordial magma ocean (e.g. Lecuyer et al 1998, Righter & Drake
1999). A backdrop to these terrestrial issues is the evidence of significant water
abundances elsewhere in the solar system, including polar caps and channels on
Mars as well as the recent observational evidence of large subsurface quantities of
water on Mars (Malin & Edgett 2000, Zuber et al 2000). Suggestions have been
made that large quantities of hydrous phases could be present on Europa, as well
(McCord et al 1999).

This article attempts to systematically review many of these interrelated ques-
tions. We are not concerned with hydrogen cycling and exchange inthe near-surface
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environment (which we loosely define as extending to normal crustal depths), as
this has been the subject of numerous previous reviews. Instead, we focus on con-
straints on volatile retention and cycling in the lower four hydrogen reservoirs
shown in Figure 1. Yet we recognize that the characteristics of hydrogen in the
shallower reservoirs (Figure 1) provide crucial observational baselines and ground
truths for any discussion of the fate of hydrogen at depth. These include forms as
diverse as the deuterium/hydrogen (D/H) ratio of the hydrosphere or the degree
of hydration of deep-seated magmas and xenoliths that have been emplaced at the
surface. The review is organized as follows. We first examine evidence related to
hydrogen recycling between the hydrosphere and the deep Earth. We then review
the mineralogic mechanisms by which hydrogen can be transported to, and re-
tained within, the deep Earth. We conclude with a discussion of the likely history
of hydrogen incorporation, retention, and cycling in the deep Earth.

OBSERVATIONAL CONSTRAINTS ON HYDROGEN
DEGASSING AND REGASSING FROM THE MANTLE

Subduction-Related Regassing

Plate tectonic processes represent the dominant means at present for exchange of
water between the interior and the hydrosphere. Indeed, the subduction of oceanic
lithosphere into the underlying mantle appears to lead to reincorporation of water
in the mantle. This is because the amount of degassing observed in arc-magmatic
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systems s, with broad uncertainties, approximately an order of magnitude less than
the amount that is subducted (e.g. Gill 1981, Ito et al 1983, Peacock 1990, Be-
bout 1995). The uncertainties in this comparison are multifold. First, the amount of
pelagic sedimentthatis actually subducted beyond the accretionary prismisill con-
strained [although it is clear from observations of the cosmogenic nu€idein

arc magmas that some sediments must be carried to a depth of at least 100-150 km,
the actual amount subducted is generally assumed to be a default value, such as a
200-m column of sediments (Peacock 1990)]. Second, the degree (and depth de-
pendence) of hydration/hydrothermal alteration of the oceanic crust is unknown.
Third, the amount of water that is actually transported to depth relative to that
emplaced within the overlying plate/mantle wedge or returned to the surface along
the decollement between the two plates (e.g. Moore & Vrolijk 1992) is unknown.
That is, the role of igneous intrusions and subduction-associated metamorphism
in retaining or diffusely degassing water within the arc at depth is ill constrained,
as is the absolute volume of water that escapes along the interplate shear zone.

In spite of these broad uncertainties, the estimated magnitudes of the flux of
water into subduction zones and their corresponding degassing rates provide a
first-order indication that subduction zones act as major sinks of water: Peacock
(1990) infers that 8.% 10 kg of H,O/year is subducted, with 1:410'* kg/year
being returned through arc magmatism. Thus, if current rates of volatile subduction
and return provide a representative estimate for these rates in post-Archean Earth,
we would infer that 7.3< 10?°kg of water would be subducted every billion years.
This corresponds to approximately half the size of the current hydrosphere being
transported to depth via subduction every billion years. The interest of this number
is simply that the hydration of sediments and the oceanic crust is produced directly
from interactions with seawater, and the subduction process thus provides a direct
linkage between the hydrosphere and deep Earth.

How much water ultimately reaches the deep Earth in the subduction process
is likely governed by the stability of high-pressure hydrous metamorphic phases,
such as lawsonite, as described below. From the point of view of the geochemical
evolution of the mantle, the role of subduction in the cycling of water is likely
twofold: First, subduction plausibly enriches both the mantle wedge and litho-
spheric mantle and the deep crustal portions of the overriding plate in volatile
components; and second, prior to either the dehydration or ultimate homogeniza-
tion of the hydrated portions of subducted slabs through convective stirring and
diffusive processes, subduction introduces localized, water-enriched zones into the
deep Earth. That portions of the continental lithospheric mantle are water enriched
is well documented: Not only are deeply exhumed, ultramafic complexes observed
to contain hydrous phases that formed at high pressures (Scambelluri et al 1995),
but mantle-derived mica- and amphibole-bearing xenoliths are observed in a range
of continental volcanic environments (e.g. Dawson & Smith 1977, Boettcher &
O’Neil 1980, Dyar etal 1993, Agrinier et al 1993). These observations of hydration
of lithospheric mantle are in accord with calculations of the thermal structure and
phase equilibria of hydrous phases in these environments (Peacock 1993, Wyllie
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1978). Observations of water-rich fluid inclusions in diamonds indicate that deeper
subcontinental (and likely sublithospheric) mantle has been exposed to hydrous
metasomatic fluids (Schrauder & Navon 1994). This subcontinental water enrich-
ment may be profoundly important for planetary magmatism, with small quantities
of water (~0.4%) having been proposed as playing a pivotal role in the genera-
tion of voluminous continental flood basalts (Gallagher & Hawkesworth 1992,
Turner & Hawkesworth 1995). This possible linkage between water and flood
basalt generation indicates the effect that even comparatively small degrees of
hydration of Earth materials can have in producing phenomena of considerable
geodynamic and petrologic importance.

Degassing of the Mantle

The production of basalt at mid-ocean ridges and hot spots is generally regarded
as a primary mechanism by which water is extracted from the mantle: how much
of this water is simply retained within the oceanic crust until it is subducted, and
how much enters into the hydrosphere is unclear (e.qg. Ito et al 1983). The water
content of basalts does, however, provide prima facie constraints on the abundance
and nature of water held within the shallow mantle. Indeed, since the pioneering
study of Moore (1970), such studies of basalts have been used to place limits on
the possible abundance of water in the suboceanic mantle (Michael 1988, Byers
et al 1986, Delaney et al 1978, Dixon et al 1988, Sobolev & Chaussidon 1996).
Although wide variations in water content are common (Delaney et al 1978),
near-primary basaltic compositions (those that have not experienced significant
fractional crystallization) have water contents that range fraf@0 to~6000 ppm.

For comparison, characteristic amounts of water in basalts from back-arc basins lie
between 1.0 and 2.9 wt% (Sobolev & Chaussidon 1996), which demonstrates the
importance of water in generating the geochemical characteristics of subduction-
related basalts (Stolper & Newman 1994).

The amount of water enrichmentin mid-ocean ridge basalts (MORB) commonly
correlates with the enrichmentin elements that are incompatible in the solid mineral
phases from which MORB is derived, such as K, Nb, Ce, and Nd (e.g. Michael
1988, Dixon et al 1988, Sobolev & Chaussidon 1996, Danyushevsky et al 2000).
These results demonstrate that water behaves as a component that partitions into
the magma with a bulk partition coefficient near 0.01. Such a partition coefficient
indicates that water is more compatible than Kin MORB and generally comparable
in geochemical behavior to rare-earth elements such as Ce, La, and Nd. When
these measurements of the water contents of basaltic magma are coupled with the
estimated partitioning behavior of water and probable degree of melting associated
with MORB, the likely water content of the source material can be estimated. As
such, these abundances allow a first-order constraint on the abundance of water
and its degree of heterogeneity in the upwelling subridge mantle.

For mantle sources that are depleted in incompatible elements [normal MORB
(N-MORB)], a mantle water content of the order of 80—-180 ppm is inferred;



Annu. Rev. Earth. Planet. Sci. 2001.29:365-418. Downloaded from arjournals.annualreviews.org
by University of British Columbia Library on 12/19/05. For personal use only

370

WILLIAMS = HEMLEY

for those that are more enriched in such elements (E-MORB), estimated source
region abundances are between 200 and 950 ppm (Michael 1988, Sobolev &
Chaussidon 1996). Three primary questions emerge from such datdoW is

this water sequestered in the mantt®;l{ecause these abundances reflect average
source compositions, how homogeneously distributed is this sequestered water;
and €) how representative of the upper mantle is this sampling or how much of
the mantle does the mid-ocean ridge system sample? The first of these questions
has been probed from a petrologic and mineralogic viewpoint, whereas the latter
two questions are at least partially geodynamic in character.

The degree of heterogeneity of the MORB source region is critical for assessing
how water may be contained in this zone. Whether MORB is generated from a
largely homogeneous source region or from depleted mantle interspersed with
geochemically enriched pockets or veins is a topic of longstanding discussion.
Recently, trace and major elemental and isotopic evidence has indicated that the
geochemistry of MORB is produced by a mixing of melts derived from enriched
and depleted components. The enriched component s likely associated with garnet
pyroxenite (and possibly meta-basalt) inclusions in the mostly depleted peridotite
MORB source region (Lundstrom etal 1995, Hirschmann & Stolper 1996, Bourdon
et al 1996). This concept is a straightforward manifestation of the “marble-cake”
mantle hypothesis, originally proposed based upon the presence of pyroxenite
veining in peridotite massifs (Allegre & Turcotte 1986). Indeed, if a portion of the
enriched component of MORB represents fossil oceanic crust recycled into the
MORB source region (e.g. Hanan & Graham 1996), then the presence of water
within MORB represents the final cycling of subducted water.

The possible presence of geochemically enriched components in the MORB
source region is critically important for the means of retention of water in minerals:

If this region were largely chemically homogeneous, then the water content of the
N-MORB source is such that nominally anhydrous phases could retain most, if not
all, ofthe average concentration of 80—180 ppm of water presentin this zone (Bell &
Rossman 1992, Dobson et al 1995, Ingrin & Skogby 2000). However, if most of
the water in the MORB source region resides in geochemically enriched pods,
then water contents in these enriched regions could be over an order of magnitude
higher than the inferred average of this region, based upon the likely abundance of
enriched garnet pyroxenite veins in the N-MORB source region (Hirschmann &
Stolper 1996). These higher water contents would probably require the presence
of a separate hydrous phase in the MORB source region. Moreover, the higher
water contents of E-MORB and MORBs that are intermediate between E-MORB
and N-MORB (occasionally referred to as transitional or T-MORB) may simply
reflect a greater abundance of enriched zones within the source region rather than
an enhancement of the bulk water content of the entire source region. The pivotal
uncertainty in such an analysis lies in the actual composition(s) of the component
in the MORB source that gives rise to the enriched signatures.

The idea that amphibole (of uncertain chemistry) and/or phlogopite are primary
upper mantle hydrous phases is generally compatible with the frequently observed
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correlation between K and water content in MORB (e.g. Michael 1988). Although
amphibole is likely to be stable in nonupwelling regions of the mantle, the thermal
regime beneath mid-ocean ridges as well as continued interaction with liquid at
depths shallower than 70-100 km makes the presence of any amphibole unlikely
once large-scale melting has been initiated (Thompson 1992). Phlogopite has been
reported to have a relatively large thermal stability field at modest pressures, with
a reported maximum temperature of existence of betweer® Hr&D1300C near

4 GPa in peridotite assemblages (Kushiro et al 1967, Olafsson & Eggler 1983). In
spite of the possible stability of phlogopite, the observation that mantle potassium
contents are generally low limits its possible abundance, and thus its water-carrying
capacity. This limitation has led to the proposal that an additional, non—K-rich and
reasonably refractory hydrous phase may be present within the MORB source
region at depths greater than about 70 km (Michael 1988). Within a few MORB
samples, an observed decoupling of water and potassium contents indicates that
the source for the water need not be associated with a potassium-bearing phase,
such as amphibole or phlogopite: This K-poor water source has been proposed to
be an HO-bearing, CQ-rich fluid (Sobolev & Chaussidon 1996). Accordingly, it
appears that two different origins may exist for the observed water within MORB:
Some water could have been produced through dehydration of a K-bearing hydrous
phase, whereas some MORB samples require an additional water-bearing phase
within their source region. This additional phase may be associated with high-
pressure hydrous phases or hydration of nominally anhydrous phases, or it may
indicate the presence of a (possibly £ah) mantle fluid associated with the
petrogenesis of MORB. Regardless of the precise identity of this inferred hydrated
phase, the available data on MORB indicate that water transport from depth within
the mantle occurs beneath ridges, and that an upward flux of water thus occurs in
this region.

In contrast to the water contents of erupted MORB, data are comparatively lim-
ited on the water contents of primary melts from ocean-islands/hot spots. The water
contents of glasses from the mid-Atlantic ridge in close proximity to the Azores
and Iceland hot spots are enriched by factors of 2—4 relative to the surrounding
mantle (Schilling et al 1983, Kingsley & Schilling 1995). This enhancement is in
accord with the general tendency of geochemically enriched sources to be more
water enriched and has even led the Azores and Iceland to be referred to as mantle
“wetspots” (Schilling et al 1983). If the melting regime associated with hot spots
samples more deeply than MORB, then the higher water content of these hot spots
could indicate a net increase in the amount of retained water at depth within the
planet. Again, as with the observed chemistry of MORB, the known properties of
hot spot—associated magmas provide indications of moderate quantities of deep-
seated water retained within the deep upper mantle. Other magmatic types also
may provide indications of the presence of deep-seated water in Earth’s mantle. In
a study of the HO-saturated solidus of a model mantle composition, Kawamoto &
Holloway (1997) found that experimental partial melts near 10 GPa are close in
chemistry to kimberlitic magmas. This suggests that kimberlites could be derived
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from relatively low-temperature melting of an,®-rich mantle at depths of 150—
300 km, and it implies that the major diamond-producing deposits of the planet
could be associated with hydrous melting processes.

A key question is the extent to which substantial amounts of water are rein-
troduced into the mantle through subduction processes relative to the amount of
water retained within the mantle from the Earth’s accretion (Ahrens 1989). Out-
side of such regions as back-arc basins that are obviously dominated by subducted
water, the history of mantle water remains a difficult issue to resolve. As dis-
cussed below, D/H ratios do not provide diagnostic constraints on whether water
degassed from the mantle has been cycled through the surface hydrosphere and
subducted. Yet, based on the water content of erupted basalts, three key observa-
tions can be made concerning the distribution of water in Earth’s mantle. First, the
MORB source region appears grossly globally homogeneous with respect to its
average water content [with modest regional variations (Michael 1995)], implying
that either subducted water has been remixed relatively homogeneously into the
MORB source region, or that the MORB source region has undergone reasonably
uniform degassing throughout Earth’s history. Yet this observation of gross global
homogeneity does not preclude local, lithologically controlled variations in water
content. Second, zones associated with deep mantle upwellings (such as hot spots)
have been associated with regions of higher water content than the normal MORB
source region. Third, abundant evidence from xenoliths (and possibly from con-
tinental flood basalts) indicates that at least portions of the subcontinental upper
mantle are significantly hydrated. Two end-member possibilities thus eisté
bulk of primordial water in the mantle has been degassed, and subduction over the
course of Earth’s history has rehydrated the oceanic upper mantle at a low level,
with deeper depth levels prospectively retaining modestly more subducted water;
or (b) subducted water has been dominantly emplaced either shallowly in the sub-
continental upper mantle, or below the MORB source region (perhaps within the
lower mantle), with relatively little recycling into the oceanic upper mantle. In the
latter scenario, the bulk of Earth’s oceanic upper mantle would retain primordial
water at the 100-ppm level, with the amount of primordial hydration (and prospec-
tively subduction-induced hydration) increasing with depth. The key issues here
are not only the ultimate fate of subducted material and the efficiency with which
the planet has degassed, but also the degree of exchange of water between different
mantle reservoirs (Figure 1).

HYDROGEN IN THE DEEP MANTLE

Structure and Bonding of Hydrogen

Any discussion of the fate and role of hydrogen-bearing material at depth must con-
sider the fundamental properties of structure and bonding (e.g. speciation) in solid
and fluid phases that form (or have formed) at depth within the planet. In materi-

als of the near-surface environment (e.g. crustal minerals and fluids), hydrogen is
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commonly incorporated as Otand H,0, with “free” protons usually considered
bound as HO*, H;O,*, and NH,* (Hawthorne 1992, Prewitt & Parise 2000). As
noted below, the incorporation of hydrogen as hydroxyl can form relatively dense
structures that are directly related to equivalent anhydrous structures by simple
substitution and/or crystallographic shearing mechanisms (Finger & Prewitt 1989,
Prewitt & Parise 2000). Another mechanism is the so-called hydrogarnet substitu-
tion, the exchange of 4Hfor Si*+ (or 3H* for AI3*) (Lager et al 1989, Wright et al
1994, Armbruster 1995, Lager & VonDreele 1996; for a more detailed discussion,
see Prewitt & Parise 2000). In addition, hydrogen in core-forming metal alloys
can be considered a hydride (H(Fukai 1993).

A central concept is the hydrogen bond and its response to the range of pres-
sures, temperatures, and chemical composition found within the Earth. Conven-
tionally, the hydrogen bond is considered to occur in a linear'O-Hnit and in-
volves the pairing of a weak ® and strong (covalent) O-H linkage. The strength
of hydrogen bonding in such a linkage depends on the oxygen-oxygen distance
and O-HO bond angle. Extensive work has been conducted on simple hydroxides
such as Mg(OH)and Ca(OH) under pressure to provide a systematic basis for
evaluating the effect of pressure on the hydrogen bond (Kruger et al 1989, Duffy
etal 1991, Fei & Mao 1993, Johnson & Walker 1993, Parise et al 1994, Catti et al
1995, Nagai et al 2000). Yet, a range of spectroscopic and crystallographic studies
have shown that hydrogen bonding can either increase or decrease on compres-
sion, depending on crystal structure and composition (Williams 1992, Cynn &
Hofmeister 1994, Faust & Williams 1996, Williams & Guenther 1996, Liu et al
1997a,b, Liu etal 1998a,b, Hemley etal 1998, Lu et al 1999, Hofmeister et al 1999,
Scott & Williams 1999, Kagi et al 2000). High-pressure polymorphism in hydrous
phases is likely to be strongly influenced by pressure-induced variations in hydro-
gen bonding (Faust & Williams 1996). Neighboring cations and pressure-induced
changes in the bonding properties of the oxygen anion may each also play a role
in the magnitude of hydrogen bonding at pressure (Williams & Guenther 1996,
Larsen & Williams 1998). Moreover, at the very highest pressures, the conven-
tional (ambient pressure) concept of the hydrogen bond is no longer valid in such
materials, where a symmetric hydrogen bonded state can exist. The prototypical
case is the symmetric hydrogen-bonded phase,0f &t 60 GPa (Aoki et al 1996,
Goncharov et al 1996). Compression of the GeHgroup in this system gives
symmetric hydrogen bonding with distances of 2.38—A40

These changesin bonding propertiesinduced by pressure (and temperature) may
have significant effects on physical properties, as detailed below. The weakened
covalent OH bonds under pressure may give rise to large anharmonic effects prior
to melting, including weakening of materials and possible diffusive behavior or
superionic conductivity (e.g. as predicted for subsolidy®HCavazzoni et al
1999). Such behavior would stabilize the solid to higher temperature as well as
provide a possible mechanism for attenuation at seismic frequencies (i.e. eveninthe
absence of the production of a freg®irich fluid phase). A related phenomenon
occurs on metastable compression of some hydrous materials: Pressure alone can
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induce a disordering of the hydrogen sublattice (Duffy et al 1995a,b; Nguyen
et al 1997; Parise et al 1998), perhaps driven by increased hydrogen-hydrogen
repulsion on compression. In some materials, the disordering can be viewed as
amorphization. Such low-temperature metastable transitions have been proposed
as the origin for large-scale phenomena such as deep-focus earthquakes (i.e. driven
by pressure-induced amorphization/dehydration in serpentine) (Meade & Jeanloz
1991), but this is not supported by high-pressure experiments carried out at higher
(and thus relevant) temperatures (Irifune et al 1996, Kuroda & Irifune 1998).

Hydrogen in Nominally Anhydrous Mantle Phases

Upper Mantle Phases The possibility that nominally anhydrous mantle phases
could take up significant quantities of water as crystallographic defects has long
been considered (e.g. Fyfe 1970). Garnets provided the prototype for such a substi-
tution, as a complete solid solution exists at low pressures betwe@h,Sa0; -
grossular and G&,(O4H,);-hydrogarnet. Both the manner in whichH) group-

ings substitute for Sigxetrahedra and the effect of this substitution on the physical
properties of garnet have been extensively probed (e.g. Lager et al 1989, Knittle
et al 1992, O'Neill et al 1993). Yet the maximum amount of water that can be
taken up through the B, substitution by the magnesium-rich garnets present in
Earth’s mantle is much smaller than those of calcium-rich garnets: on the order of
500 ppm, or 0.05 wt% (Ackermann et al 1983, Lu & Keppler 1997). This amount
is about an order of magnitude larger than typical amounts of water present in
garnets in mantle xenoliths (Aines & Rossman 1984, Bell & Rossman 1992), and
there are indications that the manner in which some of the water substitutes into
natural garnets may be more complex than the hydrogarnet substitution (Lager
et al 1989, Lu & Keppler 1997).

Indeed, xenolithic samples of each of the other major upper mantle phases,
olivine, orthopyroxene, and clinopyroxene, contain variable amounts of struc-
turally bound water as defects. The orthopyroxenes typically contain between 200
and 650 ppm of water, whereas mantle-derived olivines generally have below
100 ppm of water (Miller et al 1987, Skogby et al 1990, Bell & Rossman 1992,
Kohn 1996, Keppler & Rauch 2000, Ingrin & Skogby 2000), although somewhat
larger contents have been reported (Kurosawa et al 1992). In olivine, some of
these defects involve planar layers that resemble intercalations of lamellae sev-
eral angstroms thick of clinohumite or chondrodite-type structures (Kitamura et al
1987) (see Table 1). Aside from the few observations of such planar features,
the detailed crystal chemistry of these defects remains uncertain, but they likely
involve the substitution of OH-hydroxyl units for oxygen ions coupled with the
formation of Mg+ or Si*+ vacancies to charge balance (e.g. Libowitzky & Beran
1995). Some defects may also be associated with interstitial oxygen ions (Bai &
Kohlstedt 1993). Regardless of the precise structural origin of these defects, the
diffusion rate of hydrogen in olivine indicates that dissolved water would be lost
on a timescale of hours on ascent from depth at temperatures in excess ©f 800



Annu. Rev. Earth. Planet. Sci. 2001.29:365-418. Downloaded from arjournals.annualreviews.org
by University of British Columbia Library on 12/19/05. For personal use only

HYDROGEN IN EARTH 375

(Mackwell & Kohlstedt 1990). Although few data are available on hydrogen diffu-
sion rates in other mantle phases, it is probable that the estimates of water contents
on minerals in mantle-derived xenoliths probably represent lower estimates of the
amount of water present at depth.

The experimental situation with respect to defect water solubility in olivine
has been examined in moderate detail (Bai & Kohlstedt 1993, Young et al 1993,
Kohlstedt et al 1996). The solubility of water in olivine increases rapidly with
pressure, ultimately reaching a maximum value of near 0.12 wt% (1200 ppm) at
temperatures of 110CQ at pressures corresponding to those present at a depth of
400 km (Kohlstedt et al 1996). If this solubility is used as an upper bound for that
present throughout the upper mantle, then the amount of water that could be
retained in nominally anhydrous olivine alone within the upper mantle is limited
to an absolute maximum of 10%-15% of the present mass of the hydrosphere (and
more probably lies in the 0.5%—1.5% range). This comparatively small amount
indicates that defect substitution of water into nominally anhydrous phases is un-
likely to drastically alter the estimated bulk water content of the planet: Rather, the
primary importance of such defect water lies principally in its effects on electrical
and viscous transport properties, and on the chemistry of low-degree partial melts.
These effects are discussed in more detail below.

Notably, the amount of water observed within “anhydrous” phases in mantle
xenoliths (of the order of 100 ppm) is in gross accord with the average amount
of water inferred to be present in the source region of N-MORB, but below
the average content of 200—950 ppm inferred for the source region of E-MORB
(e.g. Michael 1988, Sobolev & Chaussidon 1996). As such, the concentrations of
water in the E-MORB source region may exceed the amount able to enter into nom-
inally anhydrous phases (particularly if the water is heterogeneously distributed),
thus possibly requiring the presence of a separate hydrous phase.

Defect Substitution in Transition Zone PhasesConsiderable recent attention

has been focused on defect substitution of hydrogen into the phases of the transi-
tion zone. In particular, efforts have been made to establish the effect of water on
the phase relations among the polymorphsf, andy phases) of (Mg,FepiO,.
Systematic studies of phase relations as a function of pressure and temperature
have demonstrated that the stability field of the high-presgupbase expands

into both thex-olivine andy-spinel fields when ED is present (e.g. Gasparik
1993, Lu et al 1996). Indeed, in apparent contrast to the limited solubility of
water in olivine, the high-pressufephase (which likely dominates Earth’s man-

tle between a depth of 400 and 520 km) has been observed to take up quantities of
water as high as 3.1 wt% (e.g. McMillan et al 1991, Young et al 1993, Gasparik
1993, Cynn & Hofmeister 1994, Inoue 1994, Inoue et al 1995), confirming predic-
tions by Smyth (1987, 1994). The crystal-chemical underpinnings of this defect
substitution are straightforwarg-(Mg,Fe)SiO, contains SiO; units, unlike the
isolated SiQ-tetrahedra present in olivine anespinel. Therefore, 0.5 oxy-
gens per formula unit iB-phase are not bound to a silicate tetrahedra but are
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rather completely bound to magnesium ions. These oxygen sites can be viewed
as “underbonded” and are particularly amenable to protonation (Smyth 1987).
Therefore, the large amounts of water dissolvablg-iphase are a direct (and
predictable) consequence of the crystal chemistry of this phase.

Indeed, much as end-member hydrogarnets exist, there is a stoichiometric
hydrogen-bearing phase, MgSiH, -0, (or Mg,Si,H,O,), which has been ob-
served to exist in th@-phase structure (Inoue et al 1995). Variable amounts of
solid solution between this phase and anhydréyshase generate intermediate
stoichiometries of hydrategl-phase, and the Mg/Si ratio of the resultant materials
can be used to directly constrain the amount of water in the structure. Yet the mech-
anism of substitution of water int§-phase does not appear entirely straightfor-
ward: Recent single-crystal X-ray diffraction studies of hydrgud/ig,Fe)SiO,
indicate the existence of two different structures in this material (wadsleyite |
and 1) (Smyth 1994, Smyth & Kawamoto 1997, Smyth et al 1997). The impor-
tance of these phases lies not only in their comparatively high water contents, but
also in the fact that wadsleyite Il has been observed to form within a system of
peridotite chemistry: The stability of few high-pressure hydrous phases has been
demonstrated in chemically complex systems. The hydrogen positions in these
phases were located by X-ray diffraction and were systematically observed to
be associated with nonsilicate-bound oxygens in these materials, in accord with
the original proposal of Smyth (1987). The deviation of these two phases from
the orthorhombic symmetry of anhydrogsphase may result from the combined
ordering of H, Mg/Fe, and Si. From a semantic viewpoint, it is with such different
symmetry, yet closely structurally related, phases that the boundary between nom-
inally anhydrous phases containing defect water and crystallographically distinct
hydrous phases becomes blurred.

The importance of this hydroy$-phase is not only that it could retain large
amounts of water, but also that the difference in water solubility betywegmase
and its lower-pressure polymorph could produce release of water from material
convectively traversing the 410-km discontinuity, potentially resulting in melting
and plume-like upwellings (Young et al 1993). Moreover, the differential solubility
in water between the olivine agfidphases could affect the thickness over which the
phase transition between these materials occurs at depth: As seismic characteriza-
tion of the 410-km discontinuity indicates that this transition proceeds over a depth
interval (in some locations) of less than about 10 km (Benz & Vidale 1993), and
thermochemical analysis indicates that this thickness should provide a strict upper
bound of about 200 ppm on the water content of the mantle at this depth (Wood
1995). However, the dissolution of water with#aphase is strongly temperature
dependent. Figure 2 shows the amount of water held wihinase synthesized
under a range of temperatures, as derived from the Mg/Si ratios of the resultant
materials: Atthe temperatures relevant to normal (nonsubduction influenced) man-
tle, it appears likely that less than 0.1 wt% water is soluble wihphase, and
it is possible that for realistic mantle temperaturg@ghase could be essentially
anhydrous. Therefore, water present near depths of 400 km may not be sequestered
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Figure 2 Amount of water in hydroug-(Mg,Fe)SiO, as a function of temperature, as
derived from reported Mg/Si ratios gfphase within water-bearing charges. Data are from
Inoue (1994), Gasparik (1993), Kohlstedt et al (1996), and Young et al (1993). The results of
Kawamoto et al (1996) show a similar trend, although their reported temperatures are higher
for comparable water contents: This may be a consequence of thermal gradients within their
samples. The possible role of changes in crystal symmetry on the temperature dependence
of water solubility in this material remains largely unexplored (Smyth & Kawamoto 1977).

within g-phase, rendering estimates of mantle water content based on the sharpness
of the 400-km discontinuity only lower bounds on the amount of water at depth.
(Mg,Fe),SiO, y-spinel has also been observed to retain significant quantities of
water at temperatures lower than those of the mantle: 2.7 wt% at temperatures of
1100C and pressures corresponding to depths near 585 km (Kohlstedt et al 1996,
Inoue et al 1997). However, unlil@phase, essentially no information is available
onthetemperature dependence of the water dissolution reactiesgimel; neither
is there any straightforward crystal-chemical rationale for the manner in which it
dissolves water.

Defect Substitution in Lower Mantle PhasesAt higher pressures, the lower
mantle (from 670 to 2950 km deep) is dominated by high-pressure, perovskite-
structured phases of silicates and (Mg,Fe)O-magnesitite. The high-pressure
silicates in this zone fundamentally differ in their bonding environments from
the silicates present in the crust and upper mantle, in that silicon resides entirely
in sites with six nearest-neighbor oxygens (octahedral coordination) rather than
the fourfold (tetrahedral) sites that predominate at shallower depths. Few data
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exist on the solubility of water in such phases, but spectroscopic studies of the
higher-pressure mantle phases and their analogs have produced some insights into
the mode of incorporation of hydrogen in these materials (Rossman & Smyth
1990, Pawley et al 1993, Lu et al 1994, Meade et al 1994, Li et al 1997, Lu
et al 1999). Experiments on analogs of the high-pressure phases include single-
crystal neutron studies of hydrogen-containing FiQtile, which indicate that the
hydrogenislocated near the shared edge of the cation octahedra (Swope etal 1995),
consistent with single-crystal infrared spectra of hydrogen-bearing isostructural
SiO,-stishovite (Pawley et al 1993). Similar arguments based on diffraction and
electrical conductivity of perovskite analogs (Beran et al 1996, Kreuer et al 1998,
Navrotsky 1999) have been used to understand the crystal chemistry of hydrogen-
bearing silicate perovskites (Lu et al 1994, Meade et al 1994). In the case of both
perovskite and stishovite, the coupling of hydrogen with aluminum substitution
for silicon for charge balance plays a key role in controlling the uptake of the
hydrogen (Pawley et al 1993, Smyth et al 1995, Navrotsky 1999).

Yet, as with the upper mantle phases, the absolute amount of water that can be
incorporated via defect- or impurity-related substitutions in nominally anhydrous
phases is rather small (Meade et al (1994): Magnesium silicate perovskite synthe-
sized under hydrothermal (water-saturated) conditions at temperatures 6€1830
and pressures of 27 GPa (corresponding to depths near 800 km) can incorporate
about 0.006 £0.0015) wt% water (700 H atoms/A8i atoms). Notably, the tem-
perature at which these synthesis experiments were conducted is compatible with
that inferred to be present at the top of the lower mantle. Although the pressure
dependence of the solubility of water in silicate perovskite is unknown, magne-
sium silicate perovskite is plausibly the most abundant mineral in the planet, and
even this comparatively small amount of water could produce a reservoir of water
retained in nominally anhydrous perovskite of about 12% of the mass of Earth’s
hydrosphere (Meade et al 1994). Plausibly, this value represents a lower bound on
how much water could dissolve in perovskite of the lower mantle as the roles of
added aluminum and increased pressures should each be to enhance the solubility
of water within silicate perovskite. Indeed, the ability of high-pressure phases con-
taining octahedrally coordinated silicon to retain small quantities of bound water is
further illustrated by the observation that rutile-structured,Sitshovite contains
about 0.008 wt% KO at 1200C and pressures corresponding to those at depths
of 300 km (Pawley et al 1993).

Hydrated Phases Stable at High Pressure

Highly Stable Hydrated Metamorphic PhasesAlthough the importance of am-
phiboles and micas as possible hydrous phases within the upper mantle has long
been appreciated, the past decade has seen aremarkable resurgence ininterestin the
stabilities of a wide range of well-known metamorphic phases such as talc, zoisite,
lawsonite, chlorite, topaz, and serpentine. This interest has been triggered by the
recognition that at the relatively low-temperature—high-pressure conditions of sub-
duction zones, several of these phases have stability fields that extend to depths
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of 150-300 km. Moreover, phases such as lawsonite, zoisite, and chlorite have
been demonstrated to occur in hydrated basalt (Poli & Schmidt 1995, Okamoto &
Murayama 1999), whereas topaz could be a major component of subducted pelitic
sediments at high pressure (Wunder et al 1993b, Schreyer 1995, Domanik &
Holloway 1996). Therefore, these phases could likely represent carriers of water in-
to the deep upper mantle, and the coupling of their dehydration conditions with the
geotherms in subducting slabs could be important in determining the pattern of wat-
errelease from the subducted slab into the overlying mantle (Schmidt & Poli 1998).
Figure 3 shows the pattern of phase stability in hydrated basalt juxtaposed
with several mantle geotherms (Poli & Schmidt 1995). Clearly, lawsonite, usu-
ally associated with the blueschist facies, has an extremely large stability range
within hydrous basalt. Moreover, among mantle-relevant hydrous phases, it is un-
usual in the amount of water it contains (11 wt%) in its relatively high density
(near 3.1 g/cr¥) and in the manner in which it retains water. With a formula
of CaAlLSi,0,(OH),H,0, it contains water as both hydroxyl ions and as water
molecules bound within its lattice: The presence of water molecules within large
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Figure 3 Phase equilibria of the basalt-water system to depths of 330 km (after
Poli & Schmidt 1995). Dotted line indicates extrapolated behavior; the shift in slope of
the lawsonite decomposition reaction near 9 GPa due to the coesite to stishovite reaction
has been observed in both single-phase lawsonite and MORB (Schmidt 1995, Okamoto &
Murayama 1999). Hot- and cold-slab geotherms are after Peacock (1990).
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cages (shared with calcium ions) is uniqgue among high-pressure hydrous phases
(Figure 4).

Therefore, lawsonite is likely particularly efficient at transporting water to depth
in subduction zones and has thus been the topic of extensive study. Although
lawsonite appears to undergo a structural change near 9 GPa (Scott & Williams
1999, Daniel et al 2000), it does not break down until pressures of 12-13.5 GPa
(corresponding to depths of 360—400 km) at temperatures 6£860 C (Schmidt
1995, Pawley 1994). Such temperatures (or colder) are likely present in metabasalt
subducted to depths near 600 km (e.g. Helffrich et al 1989), and therefore lawsonite
could represent a primary carrier of water into the transition zone of Earth’s mantle.
Indeed, there is some seismic evidence that blueschist-rich assemblages persist to
depths of 100-250 km within subducted slabs, based upon the apparent presence
of a thin (1-7 km thick), relatively low velocity (minus 5% to minus 7%) layer
near the top of northern Pacific subduction zones (Abers 2000).

Serpentine [ideally Mghi,O5(OH),] is likely an important phase in retaining
water to depth within subduction zones (Ulmer & Trommsdorff 1995, Wunder &
Schreyer 1997, Irifune et al 1998). This phase is generated through hydration of
typical mantle rocks and is thus a potential water carrier within any hydrated mantle
within subducting slabs. Depending on the degree of serpentinization, mantle
material can retain up to 13 wt% water: The magnitude of hydration of oceanic
mantle is, however, poorly constrained. The upper pressure limit of the stability
range of serpentine has been estimated from as low as 4.4 GPa to above 7 GPa
(near 500C): Its maximum thermal stability is between 6%hd 730C at 2-4 GPa
(Ulmer & Trommsdorff 1995, Wunder & Schreyer 1997). Therefore, serpentine
could transport water within subducted slabs into the 150- to 200-km depth range:
Its dehydration from the mantle portion of the slab could contribute to arc volcanism
and/or simply hydrate the overlying basaltic crust, forming lawsonite.

A number of other phases could also play a role in the subduction of wa-
ter into Earth’s mantle: zoisite [ideally Gal;Si;0;,(OH)] occupies a stability
field that could be intercepted by subducted slabs, closing at depths near 90 km
(see Figure 3) (Poli & Schmidt 1995, 1998). However, relative to lawsonite, phases
such as zoisite contain comparatively little water by weight; as such, they are likely
to be minor contributors to the water budget of slabs, although they could have sub-
stantial geochemical importance. An additional phase that could play arole in both
ultramafic compositions and aluminous pelitic sediments is magnesian pumpel-
lyite [ideally MgsAlsSigO,4(OH);]. This phase is stable to pressures of 5-6 GPa
and temperatures of 689770 C (Artioli etal 1999, Fockenberg 1998, Domanik &
Holloway 1996) and appears to be stabilized by calcium- and iron-rich compo-
sitions. As such, this phase could be locally important within subduction zones.
Additionally, depending on the alkali content of material associated with subducted
zones, K-amphibole could be a critically important carrier of water into the man-
tle: Inoue et al (1998) have documented that K-amphibole is stable to depths of
450 km (~15 GPa) at temperatures below 12C0Additional, alkali-rich hydrous
phases exist at pressures of 10-17 GPa and temperatures up t€ 1850their
importance in mantle assemblages is unclear (Luth 1997, Yang & Konzett 2000).
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The AlL,O;-SiO,-H,0 system is particularly relevant to subducted pelitic sedi-
ments and perhaps peraluminous basalts, and several high-pressure hydrous phase
exist in this system. At low temperatures (below 40 the simple aluminum hy-
droxide diaspore (AIOOH) is stable to pressures near 6 GPa, with an additional
phase “pi” with a stoichiometry of ABi,O,(OH); being stable to comparable pres-
sures at temperatures to 70 Both diaspore and phase pi react with silica near
6 GPa to form fully hydroxylated topaz [4$i0,(OH), (Wunder et al 1993a,b)].

This phase, essentially structurally identical to the low-pressure fluorinated phase,
is stable to pressures as high as 11 GPa at temperatures 6£C100Qnder et al
1993b, Schmidt etal 1998). At higher pressures, OH-topaz reacts with silica to form
a notably thermally stable phase, the so-called phase egg (hamed after Eggleton
et al 1978). This AISIQOH phase has silicon entirely in octahedral coordination:

Its upper pressure-stability limit has not been determined (but it is stable to at
least 18 GPa), and it has been shown to be stable to at least.3D@e crucial
aspect of these phases is simply that with these aluminous phases and phengitic
micas (Domanik & Holloway 1996), ample phases are available to transport water
associated with subducted sediments to depth: The mineral carriers of such water
are, however, markedly different from those within the basaltic crust or subducted
mantle material.

The possible importance of minerals of the humite family for retaining water at
high pressures has long been appreciated (e.g. Akimoto et al 1977). These minerals
have the formulaMg,SiO,-Mg(OH,F),, in whichn values of 2 and 4 correspond
to chondrodite and clinohumite, respectively. These minerals have been demon-
strated to have stability fields belowl3 GPa and temperatures belo@000C in
hydrated model mantle assemblages (e.g. Kawamoto et al 1996). Thus, they may be
important within the portion of the mantle wedge cooled through its juxtaposition
with the subducting slab, or in the subducted oceanic mantle. Additionally, because
of their structural similarity to olivine, a portion of the hydrous defects present
in “nominally anhydrous” olivine may represent intercalations of these phases
(Kitamura et al 1987). The humites have also been proposed to play a role in a
“water line” in Earth’s mantle, a proposed boundary below which volatiles are sta-
bly bound in magnesium silicate assemblages, and above which they are liberated
into a fluid (or partial melt) phase. The original concept was that such a line would
provide a lower depth limit for the low-velocity zone, with the top being defined by
the stability fields of amphiboles or phlogopites (Liu 1987, Ahrens 1989, Liu 1993).
Liu (1993) proposed that the reaction 5)%i0, + H,O = MgSiO; (enstatite 4
MgeSi,O1gH, (clinohumite) could produce a “water line” in the mantle. However,
although the water-line concept might have utility in anomalously cold and wet
regions of mantle, the lack of stability of hydroxyl-clinohumite at the high temper-
atures of ambient mantle make the global presence of such a water line unlikely.

Dense Hydrous Silicates The idea that water might be sequestered in the mantle
within separate hydrous crystalline phases has long had considerable appeal. The
key attributes of such phases are that they must be stable within ultramafic assem-
blages at mantle temperatures and pressures and, in order to be abundant, should
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be composed solely of elements that are present in high concentrations within the
mantle. These two criteria have proved somewhat difficult to satisfy for all but a
few phases. In this section, we focus principally on the so-called alphabet phases,
and the closely related humite family of minerals.

Alphabet phases Three decades of experimental studies of hydrous magnesium
silicates have demonstrated the existence of a number of hydrous phases with
stabilities corresponding to depths much greater than 200 km. Figure 5 shows a
ternary diagram that shows the compaositions of various hydrous magnesium sil-
icates. Proposed dense hydrous magnesium silicates (DHMS) include the 10-
phase (Sclar et al 1965); the 3.85phase (Sclar et al 1967); phases A, B, and

C (Ringwood & Major 1967); phase D (Yamamoto & Akimoto 1974); phase D’
(Liu 1987); phase E (Kanzaki 1989, 1991); phase F (Kanzaki 1991), and anhy-
drous B and superhydrous B (Gasparik 1990, 1993). Crystal structure refinements
have been reported for phases B (and anhydrous B) (Finger et al 1989, 1991).
Apparently, the crystal structures of the AGsr 3.65A phases have not been de-
termined; in fact, only Sclar et al (1967) have reported the existence of the latter

H>O

Brucite

E ' \D (E.G)
AQ gntig

SHyB@@)Chondrod
3 @ ®Ciinohum
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Figure 5 Ternary diagram illustrating compositions of important high-pressure hydrous
phases in the MgO-SigH,0 system. The boxes label&dandD show ranges of compo-

sitions observed for these phases; letters in parentheses indicate additional names that have
been used for these phases.
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phase. The structure of the Z0phase is thought to be similar to that of talc
(see Prewitt & Parise 2000). The “phase B series” structures are related to the hu-
mites (and ultimately olivine) by simple crystallographic shear (Pacalo & Parise
1992). Recent studies of the Fe-bearing system have uncovered related, but new,
structure types; this includes phase H, which is related to phase E (CT Prewitt,
H Yang, in preparation).

There has been considerable confusion over the nomenclature and identification
of these materials because of the multiphase and/or very fine-grained nature of the
samples and problems with interpreting diffraction patterns. For example, recent
work has shown that phase C (Ringwood & Major 1967) is probably identical to
superhydrous B (Pacalo & Parise 1992). Yamamoto & Akimoto (1974) first pro-
posed phase D, but this material turned out to be chondrodite, one of the humite
series. However, the phase D identified and characterized by Liu (1987) was con-
firmed. It has the same crystal structure as that of phase G reported by Kudoh et al
(1997a). Kanzaki (1991) described a putatively new material called phase F, but it
actually appears to be phase D; Kudoh et al (1994) also identified a phase F, but
this turned out to be phase C, now called superhydrous phase B (Kudoh et al
1997b).

Beyond the intrinsic crystal-chemical interest of the variety of hydrated phases
(cf Table 1), the primary geophysical importance of these hydrated phases naturally
lies in whether or not they are actually stable at the pressures, temperatures, and
chemistries present within the mantle. In this regard, it is notable that the vast
majority of studies of DHMS have been conducted in compositionally simple
systems, with most of these being conducted in the MgO-5igD ternary system.
Nevertheless, a number of conclusions can be drawn about the importance of
these separate phases within the mantle. For example, Table 1 shows both materials
whose highest temperature of stability lies bele®000 C, and those with higher
temperature stabilities. Accordingly, most of the hydrous phases discovered to date
have too limited a range of thermal stability to be present within the bulk of the
mantle. Nevertheless, a number of these lower-temperature phases could be stable
within subduction zone environments.

The structural behavior of hydrogen in these phases has been addressed with
the combination of single-crystal X-ray diffraction and vibrational spectroscopy.
The structure of phase E determined under ambient conditions is very unusual
in that it is characterized by long-range disorder but its single-crystal diffraction
pattern shows sharp spots with no evidence of disorder (Kudoh et al 1989, 1993,
Crichton & Ross 2000). Liu et al (1997b) described phase E as the hydrous form
of forsterite. The issue of whether quenched phase E has the same structure as
it does under the original synthesis conditions prompted in situ X-ray diffraction
studies. The powder diffraction pattern of the temperature-quenched sample at
high pressure is identical to the low-pressure structure, which suggests a similar
structure at highP-T conditions (Shieh et al 2000b). However, additional in situ
highP-T measurements are needed to fully examine the possiblity of temperature-
guench effects. The recently proposed phase H appears it Thatability range
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of phase E and seems to be a related structure type, as mentioned above: These
phases have interlinked magnesium octahedra and silica tetrahedra in a layered
arrangement, but with a complex vacancy structure within the layers (Figure 4).
These vacancies produce the nonstoichiometry of this phase, as illustrated by the
bar in Figure 5. One of the key aspects of phase E is that it may have a stability
field that extends to about 1100 at 12—15 GPa (Inoue 1994), indicating that it
could be a host for water in subduction zones at significantly higher temperatures
than such phases as lawsonite.

Phase D is potentially the most important of these materials because it has
the highest pressure stability of any phases observed in the family of dense hy-
drous magnesium silicates and, thus, could represent the major means by which
water is sequestered at depths between 600 and 1250 km in the mantle. The in-
frared reflectance spectrum shows that onlygitRuctural units (near 700 cr
are present, with no evidence for Si@trahedra (expected between 1000 and
1500 cnt?), typical of crustal and upper mantle silicate minerals. This was subse-
quently confirmed by single-crystal X-ray diffraction (Yang et al 1997). Moreover,
the vibrational spectra reveal variable hydrogen bonds, with a low hydroxyl fre-
quency at-2850 cnt?, corresponding to an OHO bond length of 2.6 (Novak
1974), later found in the X-ray structure refinement (Yang et al 1997). The degree
of compression of the short oxygen-oxygen distance in phase D [f({@-H-

2.67 A] is estimated to decrease to 2.84at 30 GPa and to 2.54 at 50 GPa,

which suggests the existence of very anharmonic and possibly diffusive behavior
of the protons at higP-T conditions prior to breakdown. Both the structure and
equation of state of phase D depend on Fe content (Shieh et al 2000a), although
how this may couple with possible nonstoichiometry with respect to the hydro-
gen remains to be explored. Overall, the structure of this phase is notably simple
(Figure 4), with the silicon-bearing layers in the structure similar to those present
within Mg(OH),-brucite (Yang et al 1997).

The phase relations of the high-pressure hydrous silicates have been reviewed
by Frost (1999) (see also Gasparik 1993, Bose & Navrotsky 1998, Angel et al
2001). Combined laser-heating/in situ X-ray diffraction experiments show that like
phase E, superhydrous B and phase D are indeed stable &-flighnditions and
are quenchable to ambient conditions (Shieh et al 2000a). Superhydrous phase B
is stable to pressures at the bottom of the transition zone and top of the lower
mantle (Figure 6), and may be stable to temperatures near those of the geotherm
in the deeper portion of the transition zone (e.g. Gasparik & Drake 1995). The
high pressure-temperature stability of phase D {M8i; sdH» »0¢) has been the
subject of several studies (Ohtani et al 1997; Frost & Fei 1998; Irifune et al 1998;
Shieh et al 1998, 2000a). Phase D has been shown to be stable to lower mantle
conditions (Frost & Fei 1998, Ohtani et al 2000) and reported to coexist with silicate
perovskite and stishovite (Li & Jeanloz 1991). HigHT diffraction experiments
show that the phase decomposes above 50 GPa and 2100 K, releaSireg H
higherP-T conditions (Shieh et al 1998). This indicates that if phase D passes the
“choke” point in slabs (geotherms cool enough to avoid the fre® End melt
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Figure 6 Stability diagram for hydrous phases as a function of pressure and temperature
for a peridotite mineralogy. Lower-pressure region (below 15 GPa) is modified after the data
and compilations of Kawamoto et al (1996) and Kawamoto & Holloway (1997). Higher-
pressure data on superhydrous B and phase D is inferred based on phase equilibria of
serpentine and olivine plus water compositions (after Shieh et al 1998, Frost & Fei 1998).
Par denotes pargasitic amphibole and chl indicates chlorite. Notably, the water retention in
K-amphibole and phlogopite is small, as the modal abundance of these phases is limited
by the potassium content of the mantle {00.1 wt%). Slab geotherms are from Peacock
(1990).

fields in Figure 6), it would persist to a depth ©f1250 km before dewatering,
possibly defining the lower depth limit for stability of stoichiometric dense hydrous
silicates. Thermodynamic calculations based on the recently measured equation
of state indicate that phase D is only marginally denser than the high-temperature
dehydrated assemblage at 30 GPa (Frost & Fei 1999). There is some evidence
for the existence of additional (honquenchable) dense hydrous phases, but further
work is required to characterize them (Shieh et al 2000a).

That phases such as phase B and superhydrous B have Mg/Si ratios greater
than 2 has generated speculations that these phases might not be stable within a
peridotitic mantle assemblage with an Mg/Si ratio near 1.3 (e.g. Smyth 1994).
Yet, it is a trivial observation that phases with elemental ratios that differ from
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the bulk chemistry of a system (as, for example, the Al/Mg ratio in garnets in
peridotite) are stable. The crucial question is whether an assemblage containing
hydrous phases is stable relative to forsterite and water. Indeed, it has been shown
that at temperatures below 12@) phase B and/or superhydrous B can be formed
from materials with Mg/Si ratios in the 1.5-2.0 range (Gasparik 1993, Pacalo &
Parise 1992, Ohtani et al 1995). Similarly, phase E (with an Mg/Si ratio close to 2)
has been shown to form from olivine and water (Inoue 1994, Ohtani et al 1995,
Frost & Fei 1998). Therefore, there appears to be no significant compositional
impediment to the formation of these phases within mantle assemblages.

Role of additional elements in DHMS phase stabilifjhe role of major elements
such as Ca, Al, and Fe in stabilizing or destabilizing hydrous high-pressure phases
is particularly poorly understood; the effect of other minor elements is entirely
unknown. In one of the few detailed studies of the effect of additional components
on hydrous phase stability, Luth (1995) has shown that the stability field of phase
A is decreased relative to the pure MgO-$i,0 system by the presence of
calcium (by 70-120C at 8 GPa), aluminum (by 4680°C), and iron (by~20°C)

and is unaffected by C{Qrontent.

However, as with amphiboles and micas, it appears that the thermal stability
of DHMS phases notably increases with halogen content. The substitution of
fluorine for hydroxyls appears to enhance the stability of superhydrous B and
phase E by over 10C (Gasparik 1993): The fluorinated versions of these phases
have stabilities that approach 15@at 15 GPa, or essentially the conditions of
ambient mantle. The importance of this observation is simply that upper mantle
micas and amphiboles typically have 0.4—1 wt% fluorine (Smith & Dawson 1981),
and comparable levels of halogens would be expected to markedly stabilize hydrous
phases.

Metastability of hydrous phases?The plethora of hydrous phases with subtly dif-
fering (and sometimes variable) chemistries and densities raises the fundamental
guestion of which of these phases are thermodynamically stable. Indeed, the oc-
currence of extensive metastability has been known in the MgO®-A$i0,-H,0

system even at low pressures for decades (e.g. Yoder 1952). Among the phases
of Table 1, the 10A phase, partly because of its comparatively low pressure and
temperature stability range, has been subjected to perhaps the most intense scrutiny
of its (meta)stability. This phase has been proposed to lack any thermodynamic
stability field based upon the fact that it breaks down to form talc in charges of its
precise chemistry at conditions that span its proposed stability field (Wunder &
Schreyer 1992). This conclusion has been questioned by Pawley & Wood (1995),
who observed the reaction of talc with excess water to form thé pbase at
pressures above 5 GPa. The crucial aspect of this discrepancy is simply that the
generation of hydrous phases in excess water-bearing synthetic systems need not
be associated with a thermodynamic stability field of the phase (particularly for
syntheses done at relatively low temperatures): Nucleation of metastable phases
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in such systems is well-known (Yoder 1952). Additionally, the observation of an
(even if stable) hydrous phase in synthetic simple systems certainly does not in-
dicate that it will occur in natural systems. For example, the large stability field
of lawsonite in basaltic compositions plausibly obviates the necessity of invoking
the presence of the 1/3)-phase, phase A, or talc within subducted basaltic crust.
The conclusion that phase A and talc might be relatively unimportant in water
transport in the upper mantle is in accord with experiments on the stability range
of phase A in complex assemblages (Luth 1995) and with field observations and
petrologic constraints on the lack of occurrence of talc in high-pressure ultramafic
assemblages (Liou & Zhang 1995).

There are two other instances in which metastability could be of significant
geologic importance in understanding the behavior of hydrous phases. If a given
subduction zone is sufficiently cold that the kinetic barriers to dehydration are
prohibitive, then nominally unstable hydrous phases might be carried to depths
well beyond their formal thermodynamic stability fields (e.g. Scott & Williams
1999, Daniel et al 2000). Yet few data are available on the kinetics of hydrous
phase decomposition. Serpentine has been examined at high pressures and low
temperatures, demonstrating that it is destabilized on the laboratory timescale at
temperatures above400°C (Irifune et al 1996, Kuroda & Irifune 1998). Many
other hydrous phases persist at 300 K to pressures vastly beyond their nominal
low-pressure stability field (Williams 1992, Scott & Williams 1999), although in
some cases amorphization transitions may intervene (Kruger et al 1989, Meade &
Jeanloz 1991). However, the thermal stability of such amorphous phases is likely
limited (Irifune et al 1996, Kuroda & Irifune 1998), and they may not occur within
the Earth.

An additional aspect of metastability in hydrous systems explains why few, if
any, of the so-called dense hydrous phases are likely to be observed in xenoliths.
Phases A, B, and D have been observed to rapidly decompose or amorphize at
ambient pressure at 440, 300—-400C, and 100C, respectively (Liu et al 1997a,
1998a,b). Accordingly, although these phases could conceivably persist during
ascent or emplacement from depth as a microinclusion within diamond, the likeli-
hood of their being found in a xenolith is minimal. Therefore, the possible existence
of these phases within the interior of the planet is likely to remain inferential.

Elastic properties of DHMS The densities of the hydrous phases are grossly
similarly to those of the phases of the upper mantle and transition zone; most
hydrous phases have bulk moduli that are also generally withid% of that of

the (Mg,Fe)SiO, polymorph with a similar stability field (Figure 7). Some effects

on the elastic properties of hydrous phases (in comparison with their anhydrous
counterparts) are significant. The presence of hydrogen in ringwoodite (estimated
composition of Mg goSip 9704H 33 OF 2.2 wt% water) lowers its elastic moduli

by ~10% and produces compressional and shear wave velocity decreases of 5.3%
and 3.6%, respectively. The material also becomes more elastically anisotropic
(Inoue et al 1998).
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Figure 7 Trends in bulk modulus versus density for hydrous (solid circles) and anhydrous
mantle phases (open circles). Data from Angel et al (2001), Knittle (1995), and Bass (1995).
Amph denotes amphibole and represents values for pargasite and glaucophane, HP-CIEn
indicates the high-pressure clinoenstatite-structured phase of MgSi@n is orthoen-
statite, and pv is perovskite. The vector pointing from brucite describes the possible effect
of substituting fluorine on the elastic properties of hydrous phases: Itindicates the direction
of change in bulk modulus and density on going from Mg(®@t) MgF, (which has a
density and bulk modulus comparable to zoisite). Contours represent isopleths of constant
bulk sound velocity: Clearly, such low-pressure hydrous phases as lawsonite and zoisite will
be seismically resolvable if juxtaposed with an olivine-pyrope dominated mantle. However,
phase D is not readily distinguishable from MgO in the lower mantle, or from wadsleyite
in the deep transition zone.

Few shear moduli of hydrous phases are available. However, the shear moduli
of chondrodite and clinohumite lie within 5% of that of olivine (Fritzel & Bass
1997, Sinogeiken & Bass 1999). Therefore, from the perspective of seismic wave
velocities, discerning the amount of water within the upper mantle or transition
zone would be feasible only if the mantle comprised on the order of tens of per-
cent of a dense hydrous phase (e.g. Faust & Knittle 1994, Fritzel & Bass 1997).
This implies a seismic detection limit ef~2 wt% water in the upper mantle, and
perhaps>~1 wt% in the deep transition zone, if the velocity contrasts associated
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with hydrous ringwoodite persist to high pressure. Given that the MORB source
region has~125 ppm water (0.01 wt%), it appears that seismic probes will be un-
able to resolve the presence of hydrous phases within the bulk of the upper mantle.
Similarly, although phase D does have elastic properties that diverge significantly
from the magnesium silicate perovskite phase that dominates the lower mantle, its
bulk modulus is similar to that of magnesiostite. Therefore, resolving the pres-
ence (or absence) of phase D in the lower mantle is likely to be difficult, unless its
shear modulus markedly differs from that of major lower mantle phases (Figure 7).
Finally, the effects of iron, calcium, aluminum, or halogen content on the elastic
properties of the hydrous phases (as well as the effects on phase equilibria) are
almost completely unexamined, although there are indications that fluorine could
have a significant effect (Figure 7).

Effects of Water on Transport Properties

It has been known for several decades that small quantities of hydrogen (100 ppm
level) can greatly influence the strength and electrical conductivity of minerals
at low-pressure conditions (e.g. Kats 1962, Griggs 1967). As a result, numerous
dielectric and rheological studies of hydrogen-bearing minerals have been carried
out over arange d&®-Tconditions (e.g. Chopra & Paterson 1984, Karato et al 1986,
Mackwell & Kohlstedt 1990, Li & Jeanloz 1991, Weidner et al 1994, Karato 1995,
Hirth & Kohlstedt 1996, Sweeney 1997, Chen et al 1998). These studies point to
the important relationship between chemical environment, defect concentration,
and the nucleation and migration of dislocations that control the dramatic changes
in transport properties induced by the presence of hydrogen.

Fortunately, the transport properties of olivine are among the best studied
of any geologic material. Indeed, for olivine, even samples with approximately
100 hydrogen ions per $®i (~6 ppm water) have been demonstrated to be ap-
proximately a factor of two weaker than “dry” samples (Mackwell et al 1985).
For higher water contents in olivine at 1.7 GPa (50 ppm, or approximately half
the saturation limit of olivine at this pressure, and an amount compatible with 125
ppm water within the MORB source region), the viscosity of granular olivine (or
olivine rock) is more than two orders of magnitude less than that of dry olivine
(see Figure 8) (Hirth & Kohlstedt 1996). Similarly, although no direct measure-
ments exist on the effect of minor amounts of dissolved hydrogen on the electrical
conductivity of olivine, calculations based on the rate of hydrogen diffusion in this
phase indicate that 100-1000 hydrogen ions pé&iSi@toms (6—-60 ppm water)
may elevate the electrical conductivity of the upper mantle by one to three orders of
magnitude (Karato 1990). Such a hydrogen-induced enhancement of conductivity
could explain the relatively high conductivity near the top of the asthenosphere
(depths of~90-150 km) without invoking the presence of partial melt at these
depths (Karato 1990). Indeed, forward modeling indicates that the presence of a
high-conductivity pathway associated with hydrogen diffusion is likely required
throughout the upper mantle to match magnetotelluric sounding results (Farber et al
2000).
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Figure 8 Change in the viscosity and water content on upwelling and partial melting of

subridge mantle (after Hirth & Kohlstedt 1996). The change in viscosity at depths shallower
than~65 km is produced by melting-induced temperature changes within the upwelling
mantle.

The dramatic effect of water on the strength of olivine is probably produced by
larger rates of dislocation climb within hydrogen-bearing samples. This may be
produced by hydrogen within the dislocation core eitlaefihancing the ability
of the dislocation to glide and climb ob) reducing the number of kinks and
jogs associated with dislocations (e.g. Mackwell et al 1985). Not only does the
absolute strength of olivine-dominated rock vary with water content, but the flow
law, the dependence of strain rate on stress as a function of temperature, changes
as well. Accordingly, the extrapolated behavior of wet olivine at conditions of the
mid-upper mantle differs more from the inferred properties of dry olivine than
from those measured at low-pressure conditions. Unfortunately, among mantle
minerals, olivine is unique in having had its rheology closely examined under both
dry and hydrated conditions. Extrapolations of wet flow behavior are thus largely
limited to upper mantle conditions.



Annu. Rev. Earth. Planet. Sci. 2001.29:365-418. Downloaded from arjournals.annualreviews.org
by University of British Columbia Library on 12/19/05. For personal use only

HYDROGEN IN EARTH 393

Beyond its intrinsic material interest, the role of water in drastically lower-
ing the viscosity of silicate rock likely has important geodynamic consequences
as well. Because of the strong partitioning of water into melts, upwelling (and
mildly hydrated) mantle that begins to partially melt on ascent will rapidly and ef-
ficiently have most of its water content stripped into a low-degree partial melt, leav-
ing behind a strong, mostly dehydrated residual solid. This dehydration-induced
strengthening has been invoked as a primary cause of the narrow upwelling zone
beneath ridges, as the dehydrated mantle is sufficiently viscous that it can maintain
lateral corner-flow pressure gradients capable of focusing melt into a narrow ridge
axis (Hirth & Kohlstedt 1996, Braun et al 2000).

There is a notable paucity of studies on the effect of water on the transport
properties of the high-pressure phases of the transition zone and lower mantle.
Electrical conductivity studies on an assemblage of (Mg,Fe)}pEdovskite and
phase D—containing 4 wt%J@ showed an increase of approximately three orders
of magnitude relative to an anhydrous assemblage at pressures of 48-57 GPa (Li &
Jeanloz 1991). In terms of deformation, studies of the yield strength of the higher-
pressure phases of olivine at 10-20 GPa indicate that the drop in yield strength of
hydrated olivine is almost a factor of two larger for the olivine phasglfase)
than for theg andy phases (Chen et al 1998). Although this study was only
conducted to 40CC, a principal conclusion is that the manner in which hydrogen
is incorporated into the crystal structure, rather than just the amount of hydrogen
present, may play animportant role in controlling the weakening of these materials.
Kubo et al (1998) found that the growth rate®phase wadsleyite from olivine is
significantly enhanced byJ®. H,O also increased the rate of dislocation recovery,
and Kubo et al (1998) observed that wadsleyite can be weakened by water contents
as low as 0.05 wt%. On the other hand, Chen et al (1998) found little effect on the
deformation on this material on the basis of X-ray line broadening, albeit at lower
temperatures (60C) and 10 GPa.

Mantle Fluids at High P-T Conditions

Evidence for the existence of hydrous fluid phases in the mantle has been derived
from a broad range of probes. These include the presence of fluid inclusions in a
wide range of xenoliths (Andersen et al 1984, Navon et al 1988, Turner et al 1990,
Schrauder & Navon 1994), geochemical and mineralogic evidence for metasomatic
alteration of mantle materials by hydrous fluid phases (e.g. Agrinier et al 1993,
Dyar et al 1993), the oxygen fugacity of mantle-derived assemblages that may be
buffered by fluid phases (e.g. Wood et al 1990), and seismic evidence for partially
molten zones lying in the 300- to 400-km depth range within the upper mantle
(Revenaugh & Sipkin 1994, Nolet & Zielhuis 1994). Indeed, Thompson (1992)
has emphasized the importance of hydrous silicate melts as a major water reservoir
within the mantle. This is simply a consequence of much of the upper mantle and
transition zone lying above the temperature of the wet solidus, coupled with the
likely neutral buoyancy of silicate melts at deep upper mantle depths (Rigden et al
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1988). Indeed, the few experimental data available suggest that hydrous silicate
melts may access extremely high densities at deep lower mantle conditions as well
(Tyburczy et al 1991). Therefore, small amounts of hydrous melts could have an
effectively infinite residence time within the deep upper mantle, transition zone, or
lower mantle. Moreover, the large solubility of water within silicate melts at deep
upper mantle pressures [well over 10 wt% (Closmann & Williams 1995)] could
lead to low-degree (G- 0.5%) partial melts containing larger net water contents
than can exist within nominally anhydrous phases.

The distinction between a free hydrous fluid phase and hydrated silicate melt
may not be operative at deep mantle conditions. There are indications that hydrated
silicate melts and hydrous fluids may become fully miscible at upper mantle con-
ditions (Shen & Keppler 1997). In any case, the solubility of silica in hydrous
fluids at even deep crustal conditions is above 10 wt% (e.g. Manning 1994). The
role of hydrous melting may also play a role in determining the mineralogy of the
mantle: Melting relations in hydrous primitive mantle compositions (to 6.5 GPa)
indicate that the stability field of orthopyroxene expands relative to that of olivine
(Inoue & Sawamoto 1992, Ohtani et al 1996, Asahara et al 1998). Indeed, Ohtani
etal (1996) proposed that cratonic peridotites formed as residues of partial melting
with variable HO contents at depths of about 200 km.

The deepest depth to which hydrous fluids have been demonstrated to exist
is derived from fluid inclusions within diamonds. Hydrogen is observed in dia-
mond both in its structure (e.g. CH defects) and as a component in macroscopic
inclusions (solid or fluid). Recent infrared studies of cuboid and fibrous diamonds
have been shown to contain® (Schrauder & Navon 1994, Kagi et al 2000).
Moreover, a comparison between temperature-dependent spectra of compressed
H,O and cuboid diamonds indicates that ices VI and VII are present as inclusions
at confining pressures of about 2 GPa (Kagi et al 2000). This may be compared
with the similar observation of pressure-solidified £€ntained in diamond at
room temperature (Schrauder & Navon 1993). Such fluid inclusions within at least
some diamonds provide prima facie evidence for the presence of hydrous fluids
within their source regions, at pressures greater tharGPa (corresponding to
depths of~150 km). The role of hydrous fluids in the formation of the diamonds
themselves remains enigmatic.

Free water (certainly impure) is likely to occur only under exceptional con-
ditions in the mantle: within and directly above dehydrating subducting slabs,
and perhaps at pressures and temperatures that lie above the stability field of
nonalkalic amphibolesx{~3 GPa, or 90 km depth) in subcontinental mantle
(e.g. Watson et al 1990). Indeed, it has even been suggested (Bina & Navrotsky
2000) that ice VII, an unquenchable phase, might be stable in the coolest re-
gions of subducted slab. In the shallow upper mantle, a carbonate gri€?O
fluid containing some water is generally expected from melting peridotite or Iher-
zolite containing small quantities of water and carbonates (Olafsson & Eggler
1983, Wallace & Green 1988). If free water were present, it would be expected to
have a significant magnetotelluric signature. The electrical conductivity of water
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increases dramatically at tie T conditions of the mantle (and core) and is con-
sistent with the presence of proton carriers (Chau et al 1999); the results are close
to theoretical predictions (Cavazzoni et al 1999).

HYDROGEN IN THE CORE

Shortly after the proposal that molecular hydrogen should breakdown to a non-
molecular, metallic modification at very high pressures (Wigner & Huntington
1935), it was suggested that dense hydrogen could be a dominant component of
the Earth’s core and that the core-mantle boundary may coincide with the pressure-
induced dissociation transition (Kronig et al 1946). Birch (1952) showed that a
large hydrogen component was untenable on the basis of its presumed low den-
sity even in the hypothetical metallic state. Dissolution of hydrogen into the core
received renewed consideration some 25 years later (Stevenson 1977), but the pos-
sibility received little attention because of the very limited solubility of hydrogenin
iron at atmospheric pressure (i.e. Stevenson 1981). However, Antonov et al (1980)
showed that the affinity of hydrogen and iron increases significantly with pressure
such that a stoichiometric iron hydride can be formed at high pressure. Thisledto a
third period of interest in hydrogen in the core, including a study of the water-iron
reaction (see below) as a model reaction in the primordial Earth (e.g. Fukai 1984,
Suzuki et al 1984, Sugimoto & Fukai 1992), and the observation of the substantial
freezing point depression of iron in the presence of hydrogen (Suzuki et al 1984).
Subsequent studies of the Fe-H system, including in situ structural investigations
(Somenkov et al 1987, Badding et al 1991) and Higf melting experiments,

were carried out in the following decade (Okuchi 1997, 1998).

Iron Hydride

By pioneering neutron diffraction measurements, Somenkov et al (1987) showed
that stoichiometric FeH forms from hydrogen and iron, crystallizing in the double
hexagonal close packed structure near 3 GPa and remaining stable to at least
35 GPa (at room temperature). Subsequent in situ X-ray diffraction experiments
by Badding et al (1991) revealed that FeH is stable to at least 60 GPa (at room
temperature). Moreover, it becomes more stable relative to Fe sodBadding

etal 1992). There is a 17% expansion of the unit cell in the double hexagonal close
packed structure relative to that of (hep)-e.

High-temperature studies have been restricted to lower pressures and largely to
guenching experiments. The surface tension of molten iron hydride as a function
of temperature (at 5 GPa) is much higher than that of silicates, indicating that
gravitational separation of molten iron occurs when the degree of melting is very
high (Hishinuma et al 1994). Yagi & Hishinuma (1995) carried out in situ Figh
X-ray diffraction measurements on the iron-enstatite-water system over a similar
range and showed that above 2.8 GPa andG5on reacts with water to form
iron hydride. They estimated the composition of the hydride at these conditions
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to be FeH y-FeH, , Comparison with the reaction pressure of 3.5 GPa at room
temperature (Badding et al 1991, 1992) suggests a nedafiMeoundary for the
transformation. The melting temperature of Eeths found to have a minimum
at 3—4 GPa, some 600 below that of pure iron.

Indeed, iron is known to react with water via two primary oxidation reactions.
Depending on the pressure, these are

MgSiO; + Fe + H,O — (Mg,Fe),SiOs + H, Q)
and
3Fe+ H,O — 2FeH+ FeQ 2

Reaction 1 is expected at low pressures and clearly annihilates water, with the resul-
tant hydrogen presumably either escaping from the upper atmosphere or reacting
with other material, such as carbon (Ringwood 1979, Lange & Ahrens 1984). Re-
action 2 occurs at pressures abeve GPa (Suzuki et al 1984): The resultant FeO
may react with silicates or descend with the FeH into the Earth’s core.

The uptake of H in liquid Fe under pressure increases with temperature (Fukai
1993, Okuchi 1997). Okuchi (1997) measured the hydrogen content in molten
iron at 7.5 GPa and determined the hydrogen partitioning between silicate and
iron melt as a function of temperature. According to this study, in a hydrous
magma ocean;95% of the HO should have reacted with Fe to form FeH and
60% of the density deficit of the core can be accounted for with hydrogen as
the light element. The sequestered H in this scenario requires no additional light
elements for matching the density deficit for the core, including that of the in-
ner core (see also Badding et al 1991, 1992). Okuchi (1997) further assumed a
model composition with 2% O (Ringwood 1977), with 95% of the J& con-
sumed at temperatures above the dry solidus800 C). At lower temperature,
the silicate crystallizes and all the H is consumed to form FeH. Thus, the iron
hydride—forming Reaction 2 could effectively help dry out the silicate mantle in
the primordial Earth. Moreover, accreted®dissolved in the magma ocean (and
not volatilized by subsequent impacts) will further dissolve in any ponding at
the base of a magma ocean (Stevenson 1990a). Increasing pressure and temper-
ature further stabilizes FeH (in the above reactions), so the hydrogen in the iron
does not return to the silicate at greater depth (i.e. during descent of the metal
phase).

Hydrogen and Other Light Elements

Okuchi (1997) further examined the role of sulfur and carbon in combination
with hydrogen using Ringwood’s two component composition model (Ringwood
1977). An H/Fe ratio of 0.41 yielded a 5.5% density reduction, with 1.1% due to
sulfur and 2.2%-2.7% due to carbon, for a total density reduction of 9%, which
matches the observed density deficit for the outer core. Moreover, if H/Fe reaches
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0.34, as proposed, this would reconcile about two thirds of the inner core deficit.
This is broadly compatible with analysis of density profiles through the inner core
based on the measured equation of state of FeH core (Badding et al 1991, 1992).
Very recent data on € bear on this issue (Li et al 2000, Scott et al 2001; see
also Jana & Walker 1999).

This analysis ignores the possible presence of oxygen in the core. Moreover, it
was based on measurements conducted at 7.5 GPa; pressure effects are likely to
change these estimates, particularly at the more extreme conditions of the base of a
possible magma ocean 25 GPa) and at core pressuresl85 GPa). It is notable
that such models for core formation assume relatively oxidizing conditions, in
contrast to multistage geochemical models that have Siand S as light elements and
require extremely reducing conditions. In the latter, the core becomes progressively
more oxidized as S is incorporated and iron is oxidized and goes into silicates
(Allegre et al 1995; see also Wood 1997).

One of the most profound effects of the presence of hydrogen is on the thermal
state of the interior. For example, a composition of fgthelts some 600 K below
iron at5 GPa[decreasing atarate of 1.8 (<2)0°K per mol fraction of hydrogen],
for a freezing point depression of over 25%. A portion of the marked effect of
hydrogen on the iron-melting temperature is simply associated with its low atomic
weight: The number of moles of hydrogen that may be present in the outer core far
exceeds those of other possible lighter alloying components (e.g. Williams 1998).
Estimates of temperatures at the top of the core range from 3900-4500 K, with
the temperature drop acros$ @nd the core-mantle boundary beirnd.300 K.
Assuming a range of possible temperature profiles through the mantle (i.e. based
on phase equilibria data), the proposed thermal boundary layer at the base of the
mantle could be reduced from 1300 K to perhaps00 K (i.e. Okuchi 1998,
Williams 1998).

Thermodynamic calculations suggest that the solubility of hydrogen iniron is
only weakly temperature dependent at higher pressures (Sugimoto & Fukai 1992).
The nature of the solid at the highest temperatures, including the crystal structures
and degree of hydrogen incorporation, is not clear; indeed the equilibrium solu-
bility of hydrogen at high temperature and higher pressures is likely to vary. Such
measurements need to be extended to higher pressures.

HISTORY OF HYDROGEN IN EARTH’S INTERIOR

D/H Constraints on the History of Deep-Seated Water

In concept, the D/H ratio (per méiD values) of hydrogen in different reservoirs
could yield first-order constraints on the likely sources of deep-Earth hydrogen,
as well as provide clues to the origin of the hydrosphere. In practice, however,
distinguishing between primordial and recycled water using D/H ratios is difficult,
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particularly as there are fundamental uncertainties about the bulk D/H content
of the planet and the rates through geologic time of mechanisms of loss of H
and extraterrestrial inputs to the hydrosphere. The relative ratio of deuterium to
hydrogen in mantle-derived magmas, xenoliths, and their fluid inclusions is sur-
prisingly uniform: Relative to standard mean ocean water, the D/H ratio of such
materials typically lies betweend40 and—95 (e.g. Kuroda et al 1977, Boettcher &
O’Neil 1980, Kyser & O’Neil 1984, Taylor & Sheppard 1986, Deloule et al 1991).
These values closely reflect the isotopic composition present in the source region,
as fractionation of deuterium from hydrogen at magmatic temperatures is minimal.
Those magmas associated with high (“primordig/*He ratios typically lie near

the lower end of this spectrum, betweeB0 and—85 per mil (Poreda et al 1986,
Taylor & Sheppard 1986). The bulk D/H ratio of the planet is unknown, although a
range of guesses for this value exist, depending on what the relative volume of man-
tle volatiles is assumed to be relative to the hydrosphere (e.g. Lecuyer et al 1998,
Taylor & Sheppard 1986). Obviously, seawater lies@daalue of 0, and the bulk
hydrosphere (including ground water and ice) likely ha®avalue of near10
(Taylor & Sheppard 1986). However, marine sediments and subduction-associated
metasediments have a range3tf values essentially identical to mantle-derived
rocks (e.g. Bebout 1995). For comparison, extraterrestrial inputs have wide D/H
ranges: Values between500 and+9000 per mil have been recorded in mete-
orites (Yang & Epstein 1983), whereas the few constraints on the D/H ratios of
comets indicate that they have heaBvalues [e.g~990 per mil for comet Haley
(Eberhardt et al 1995)]. Accordingly, if the cometary reservoir of watersitas
values similar to that of comet Haley, then to have been derived primarily from
a late cometary veneer, the hydrosphere would have had to undergo extensive
isotopic fractionation. Nevertheles#D values for carbonaceous chondrites do
have an average value of neat00 (approximatelyt 60) per mil (Kerridge 1985,
Lecuyer et al 1998). A fundamental ambiguity in interpreting the D/H ratio of the
mantle thus emerges: Marine sediments, mid-ocean ridge generated basalts, and
carbonaceous chondrites each héReranges that strongly overlap one another.
As a result, distinguishing between primordial (chondritically derived) water and
water recycled into the Earth’s mantle through subduction is difficult. The most
parsimonious picture for the apparent contrast in the D/H content of the hydro-
sphere and interior involves the water currently degassed from Earth’s interior
being derived from an unquantified combination of primordial (chondritic) water
and subduction-recycled water. In contrast, the hydrosphere’s D/H ratio has likely
been altered by some combination of ultraviolet-induced photochemistry (par-
ticularly for past atmospheres with larger water vapor contents), impact-induced
degassing, or cometary inputs, coupled with loss of a light hydrogen component
to ultimately subducted marine sediments. Each of these effects would generate
preferential H-loss/D-augmentation of the proto-hydrosphere. Indeed, it is possi-
ble that the Earth’s hydrosphere has steadily evolved toward heHvigalues

over time from values that more precisely mimic the chondritic average (Taylor
1977, Lecuyer et al 1998).
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Sources and Sinks for Water in the Earliest Earth

The evidence that hydrogen can abundantly dissolve at high pressures in iron-
rich liquids and solids is irrefutable. However, whether it was incorporated in
the core and how that incorporation might have occurred remains uncertain. The
guestion of the manner and degree of hydrogen incorporation is more than casual.
Virtually the entire uncertainty about the planetary complement of H stems from
a lack of knowledge of how much hydrogen is sequestered in the deep Earth,
particularly in the core and lower mantle. The amount of H that resides in these
regions hinges on a range of accretionary and evolutionary processes. Indeed, if
H is the dominant light alloying component in the Earth’s core (e.g. Fukai &
Suzuki 1986, Badding et al 1992), then as much-&88%6 of the planet’s mass is
elemental hydrogen, corresponding to a planetary H contentl6f times that
present in Earth’s hydrosphere. The enigma of the H content of Earth lies in the
large cosmochemical and meteoritic abundances of hydrogen, coupled with the
observation that the uppermost several hundred kilometers of the planet consist of
a mantle with an average water content of only a few hundred parts per million,
a variably (but still modestly) hydrated crust, and the planet’s hydrosphere. The
processes through which hydrogen was sequestered at depth, or lost from (or not
accreted to) Earth, thus exercised a critical control on the ultimate water content of
the planet. The Earth’s primordial water content was governed)ltli¢ chemistry,

size, and temporal distribution of accreting objects;the efficiency with which

the early planet lost water through impact-induced effects or hydrogen escape;
(c) the efficiency of early volcanism (or magma ocean circulation) in degassing
water from the interior of the planet; andi)the degree (and pressures) of chemical
interaction between iron-rich and hydrated material during planetary accretion and
core formation.

The nature of the objects that accreted to form the Earth certainly spanned from
iron-rich fragments of proto-planetary cores to largely icy cometary objects. The
water content of the objects accreting to form the proto-Earth provides the first,
and likely most important, step in determining the history of water on the planet.
The two primary sources of water among accreting objects were likely to have
been chondrites (particularly carbonaceous chondrites) and comets: Comets are
probably 30%—60% water, primitive (Cl-type) carbonaceous chondrites contain
~10 wt% water, and ordinary chondrites often contai@.2% water (e.g. see
Lewis & Prinn 1984). For reference, the current hydrosphere is e0l¥2% of
the mass of Earth. Therefore, the initial complement of planetary water is governed
by the amount of chondrites and comets that accreted to the proto-Earth relative to
achondrites and iron-rich meteorites. A discussion of the uncertainties about the
water content of accreting objects is beyond the scope of this article. We simply
note that the history of conjectures has varied from proposals that the planet was
derived almost solely from CI chondrites to those proposing that the Earth accreted
mostly from achondrites, with the hydrosphere entirely derived from a late veneer
of comets or Cl chondrites (Ringwood 1966, Anders 1968).
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Even at present, there is considerable uncertainty about the rate of cometary
input into the atmosphere/hydrosphere of the planet. These uncertainties are mag-
nified during the early stages of accretion. The concept that a late-accreted hydrous
veneer produced much of Earth’s current hydrosphere has been sporadically pro-
posed (Anders 1968, Turekian & Clark 1969, Frank et al 1986). Clearly, such an
accretionary scenario implies that water presently within the planet has been re-
gassed into the interior from near the surface: a fundamental constraint (and limit)
on the degree of hydration of the planetary interior. However, as discussed above,
derivation of the bulk of the hydrosphere from cometary input may be inconsistent
with recent measurements of the D/H ratios of comets. For the purpose of this
article, the water contents of the earlier accreting objects (on proto-planets with
radii less than about 50% that of Earth) are of primary interest: These objects are
not expected to be fully devolatilized by impact (e.g. Ahrens 1990) and thus are
critical for emplacing water at depth within the nascent planet. As emphasized
by Ringwood (1979), at least the outer portion of Earth is depleted in volatile
elements relative to carbonaceous chondrites. There is a high probability that this
volatilization was produced by pervasive melting and vaporization accompanying
a giant (and possibly lunar forming) impact (e.g. Wetherill 1990, Cameron & Benz
1991). To what degree a giant impact could have removed water retained at depth
in a proto-Earth is unclear, but simulations indicate that as much as 30% of Earth’s
radius could be vaporized in such an event (Cameron & Benz 1991).

The amount of water in the planet’s earliest atmosphere(s) is similarly uncer-
tain. Accretionary models have produced steam atmospheres with vapor pressures
(depending on the water content of impactors) as higl- 4800 bars (Abe &
Matsui 1985, Zahnle et al 1988), corresponding to as many as four hydrospheres
within the proto-atmosphere. The effects of such atmospheres on the chemical and
thermal evolution of the early planet are huge: Through the greenhouse effect,
even atmospheric water vapor contents of 20-30 bars could maintain a completely
molten planetary surface (Zahnle et al 1988). Such water is, however, subject
to loss through both impact erosion of the proto-atmosphere and photochemical
dissociation followed by hydrogen loss. The level at which each of these loss mech-
anisms stripped atmospheric water from the proto-Earth is completely conjectural
except that the former can apparently completely dispose of many proposed early
atmospheres, with impactors of approximately lunar mad$4 Earth mass) com-
pletely removing any extant atmosphere (Chen & Ahrens 1997, Ahrens 1993), and
the latter [using Venus’ essentially dry atmosphere as an illustration (Grinspoon
1993)] can likely remove at least all of the water degassed (aslong asitis vaporized)
from an Earth-sized body. Therefore, it is likely that any early, thick atmospheres
derived from impact-induced volatile loss from (smaller) accreting objects were
lost prior to their playing a role in the evolution of Earth’s internal complement of
water.

If the somewhat controversial premise that the early Earth was largely (and
possibly completely) molten during its latter stages of accretion (Wetherill 1990,
Tonks & Melosh 1993) is accurate, then the circulation pattern and depth depen-
dence of solubility of water within a magma ocean likely controlled the degree of
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degassing of the early Earth. That the solubility of water in silicate melts increases
rapidly from near zero at ambient pressures to in excess of 10 wt% near 1 GPa
(or 30 km depth) has long been appreciated (e.g. Burnham 1979); the solubil-
ity of water in melts at deep mantle conditions (30-42 GPa) is at least this high
(e.g. Closmann & Williams 1995, Sumita & Inoue 1996). Accordingly, the solu-
bility of water in silicate melts is effectively infinite with respect to likely water
contents at mantle depths. This contrasts markedly with the solubility of water
in crystalline silicate assemblages. The ability of a molten planet to retain wa-
ter within its interior thus will depend on the efficiency with which magma is
circulated through the uppermostlO km of a terrestrial magma ocean. In this
regard, the few current models of magma ocean dynamics involve probably turbu-
lent and perhaps stratified convection within these bodies (Tonks & Melosh 1990;
Solomotov & Stevenson 1993a,b; Abe 1997). It is difficult to estimate how effi-
ciently a terrestrial magma ocean would degas, but we note that estimates of the
characteristic mixing length of a convecting magma ocean are on the order of 1
km (Solomotov & Stevenson 1993a), and trapping of melt plausibly occurs near
the base of the solidifying magma ocean (Tonks & Melosh 1990, Solomotov &
Stevenson 1993b). Therefore, it appears that some of the water initially dissolved
within a terrestrial magma ocean will likely be retained at depth in the solidifying
planet. Indirect support for the existence of a hydrous magma ocean has also been
derived from inferences of the pressure and temperature conditions needed to gen-
erate the siderophile trace element signature of the upper mantle during the core
formation process (e.g. Righter & Drake 1999). The conditions inferred for this
equilibration lie in the range of 25 GPa and 2400 K, a sufficiently low temperature
that the system would have to be heavily hydrated to maintain it in a liquid state.

That some primordial water was retained at depth in Earth is also indicated
by observations ofHe degassing from ridges and hot spots. BecdHselacks
sources sufficient to explain its currently observed degassing rate (e.g. Jambon
1994), the observation that this nonradiogenic isotope continues to be degassed
implies that zones containing primordial volatiles continue to contaminate the
source regions sampled by surface volcanism, and/or that the deep planet is in
fact largely undegassed, with the Idide content observed simply reflecting that
this deeper reservoir is (mostly) physically isolated from the shallower mantle
(Kurz et al 1982, Farley et al 1992). Although providing prima facie evidence that
primordial volatile material has been retained in the planet, it is important to note
that the total estimated degassing ratétéé from both ridges and hot spots is
about 500 mollyear, or 1.5 kglyear (Jambon 1994)—an amount so small that it
serves as testimony to the efficiency with which the source region of ridges and
hot spots has been degassed of its primordial helium, and perhaps to the degree of
isolation of primordial volatile-bearing reservoirs as well.

As discussed above, iron and water are known to react with one another under
a wide range of pressures and temperatures. As such, water-rich material will tend
to oxidize metallic iron-bearing materials during accretion. The efficiency of such
oxidation is not known, as it depends on the size (or surface area of contact) of
iron and hydrated material, and the length of time over which they interact prior
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to gravitational segregation. As such, iron-hydride forming reactions (Reaction 2
above) sequester hydrogen within Earth’s core, and the pressures under which iron
and hydrated material interact in the proto-Earth thus controls whether hydrogen is
lost from, or buried within, the planet. Therefore, there exists an interplay between
the process of core formation and the fate of water in the earliest Earth. Ideas about
the process(es) by which iron segregated to the center of the planet and its degree of
chemical equilibration with surrounding silicates remain controversial, butitis no-
table that a range of evolutionary models juxtapose relatively small iron droplets
(on the order of~1 cm) with silicate melt or solid, whereas others juxtapose
iron and silicates until, when the proto-planet has a size between that of Mercury
and Mars, catastrophic core formation occurs (Stevenson 1990, Tonks & Melosh
1992).

Given the enormous range of uncertainties about the sources and sinks of water,
what useful information can be garnered from the sketchy and speculative history of
water in the Hadean? Although a surfeit of water exists in the material that accreted
to formthe planet, the amount that was retained (and where it was retained) remains
obscure. Nevertheless, we believe that the following (by necessity unquantified,
and for the most part not new) statements relevant to water in the deep planet can
be made.

1. An early magma ocean could have retained significant quantities of water
at depth during its solidification.

2. Primordial water exists in Earth’s silicate mantle, but there is not much
and/or it is not particularly accessed by the source regions of surface
volcanism.

3. The current hydrosphere was (mostly) degassed from Earth’s interior.
4. Some hydrogen was incorporated into the core of the planet.

Early Degassing History of the Solid Earth The issue of the rate at which the
early Earth might have degassed is of seminal importance not only for the deve-
lopment of the hydrosphere but also for how the dynamics of Earth’s deep interior
might have shifted over time. In particular, the coupling between the dependence on
water content of the viscosity of the upper mantle and the degassing history of the
planet has been examined using parameterized convection models (McGovern &
Schubert 1989, Franck & Bounama 1995). In effect, much as a temperature-
dependent viscosity can regulate mantle temperatures, with the rate of temperature
change of the mantle and heat flow decreasing as viscosity increases, volatile pre-
sence in the mantle can produce more rapid flow and, thus, more rapid degassing
and cooling. The convective models of Earth’s degassing incorporate a number of
assumptions, which include the followingi)(that the flow laws for wet olivine

rock apply throughout the mantleb)(that the entire mantle is cycled through

the subridge environment; and) ¢that degassing occurs primarily at mid-ocean
ridges, with essentially complete degassing of water from the uppermost 100 km
of mantle in the subridge environment taking place into the basaltic oceanic crust
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or hydrosphere. Although the first two of these assumptions are likely to be inac-
curate, the parameterized convection models do show rapid degassing of the planet
within the first 500 million years of Earth’s history, with between 25% and 45% of
the mantle’s initial complement of water being degassed in this time period. No-
tably, after the first 600 million to 2 billion years of Earth’s history, the regassing of
the planet through subduction closely balances the degassing through mid-ocean
ridge volcanism. Nevertheless, in spite of their considerable uncertainties, these
models produce three useful predictiora:that considerable quantities of water

are retained in the mantle (on the order of 60% of the original mantle complement,
or 1.5 ocean masses of wate)) that the size of the hydrosphere may have re-
mained relatively constant from the Archean to the present; @ritigt much of

the hydrosphere was degassed in the first several hundred million years of Earth’s
history.

Water Cycling During the Archean

The nature of water cycling between Earth’s hydrosphere and deep interior dur-
ing the Archean is considerably better understood than during the Hadean. The
Archean period was likely characterized by rapid growth of continental crust and,
hence, cycling of water into the interior via subduction (e.g. Campbell & Taylor
1983). In particular, the many occurrences of calc-alkaline suites in Archean ter-
ranes directly indicate the presence of hydrous melting at depth. However, the rates
and efficiency with which water was cycled into, or degassed from, the Earth’s
interior during the Archean remain unknown: a lack of knowledge that extends to
the present-day water budget. Higher radiogenic heat flow in the Archean has been
used as an indication that smaller plates (and thus, more plate boundaries) existed
in the Archean (Kroner 1981). This would tend to favor a larger degree of volatile
recycling in this era of Earth history and consequent rapid continental crust gener-
ation. However, the rate of hydrothermal alteration of Archean oceanic crust (and,
indeed, even whether ridges were entirely submerged, and whether the crust was
basaltic or komatiitic) is poorly known: Indeed, little can be said beyond noting
that hydrothermal systems existed in the Archean (e.g. DeRonde et al 1997).
That recycling of water from the surface into the interior took place in the
Archean is clear: The degree to which the Earth’s mantle had degassed at this
juncture is a matter of speculation. Nevertheless, the recent idea that komatiites,
highly magnesian, ultramafic rocks found almost exclusively in Archean terranes,
could be generated by high-temperature hydrous melting of the Archean mantle
provides a possible indication that the early mantle could have had (at least locally)
high water contents (Stone etal 1997, Parman et al 1997, Asahara et al 1998, Inoue
et al 2000). The magmatic water contents of the well-known Archean Barberton
and Abitibi komatiites, as inferred from pyroxene compositions and the pres-
ence of primary igneous amphiboles, are startlingly high: 1%-6 wt%, with erup-
tive temperatures near 140 (Stone et al 1997, Parman et al 1997). Given the
degree of partial melting of komatiites, these magmatic water contents imply that
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the source region of these magmas contain@b%—3% water, amounts far in
excess of that associated with even subduction-related basalts today. Indeed, as
noted by Parman et al (1997), a possible hydrous origin of komatiites may imply
that the water content of the mantle was significantly higher and that dewatering of
the planet was an ongoing phenomenon during the Archean; alternatively, locally
wet, hot, possibly subduction-related environments could have existed within the
Archean mantle. If correct, a hydrous origin of komatiites implies one certainty:
Reasonably normal, peridotitic mantle was exposed to high water contents during
the Archean; the spatial scale and precise mechanism (whether as recycled water
or as primordial water) by which this exposure to water occurred remains obscure.
As such, one of the prototypical Archean rock types may be a direct consequence
of the presence of water at depth within the planet.

CONCLUSIONS

What the amount and processes are through which hydrogen is incorporated within
Earth’s interior remain remarkably uncertain. Nevertheless, some observations do
imply constraints on the processes by which hydrogen was introduced into, and is
sequestered within, Earth. Subduction-related material, mantle-derived hydrogen,
and carbonaceous chondritic meteorites each have D/H ratios that strongly overlap,
implying that the bulk of Earth’s water may have been largely derived from chon-
dritic sources and may have been incorporated within the planet during accretion.
Significant cometary input of water to the planet is not directly compatible with
the observed D/H ratios. The early water content of the planet likely hinged on
how water was retained within an early magma ocean, and the degree to which
accreted water reacted with core material.

There are indications that the upper mantle could have been significantly hy-
drated in the early Earth: Komatiites, an early abundant deeply-derived ultramafic
magma type, may have been produced through hydrous melting of the mantle.
This is in marked contrast to current-day oceanic upper mantle, which appears
largely degassed: On the order of 125 ppm of water is present in the normal mid-
ocean ridge basalt source region. However, more geochemically enriched (and
likely more deeply derived) hot spot—associated upwelling zones have significantly
higher water contents, implying that the degree of hydration of the mantle may
(grossly) increase with depth. Indeed, the degree to which the lower mantle retains
water depends heavily on how efficiently lower mantle material has been cycled
through the upper mantle over the course of Earth’s history. Yet the abundance
of primordial (undegassed) water relative to recycled subducted water within the
mantle remains unknown.

From a materials viewpoint, there are ample mineralogic means by which the
deep Earth could retain comparatively large quantities of hydrogen. Within the
shallow oceanic upper mantle, hydrogen is most likely sequestered at the 100-ppm
level within nominally anhydrous phases, with possible subsidiary amphibole or
mica. The subcontinental lithospheric mantle is likely more hydrated and certainly
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contains amphibole or mica at shallow depths: The hydrogen abundance in subcon-
tinental mantle at deeper depths is unknown. Through subduction, hydrogen can be
retransported into the deep Earth via a variety of hydrous phases, including a range
of phases normally associated with high pressure metamorphic environments. Ul-
timately, dense hydrous magnesium silicate phases may exist in the deep transition
zone and upper portion of the lower mantle. Most hydrous phases of the deep upper
mantle and transition zone are likely confined to cold subduction-related regions:
only phase D, possibly members of the B-family of phases (particularly if partially
fluorinated), and perhaps phase E are stable under normal mantle geotherm con-
ditions. Hydrated, neutrally buoyant partial melts could also be present within the
mantle and may represent an important water reservoir: There are seismic indica-
tions of such partially molten zones in several regions of the deep upper mantle.
With the possible exceptions ¢f- and y-(Mg,Fe)SiO,, nominally anhydrous
phases are unlikely to contribute more that hydrosphere (and perhaps much
less) to the water content of the planet: The importance of such hydration lies
rather in its dramatic effect on rheology and transport properties.

The largest reservoir of hydrogen on the planet potentially lies in the core. Un-
fortunately, it is also the least well-understood reservoir on the planet. The amount
of hydrogen incorporated into the core hinges on the degree of interaction be-
tween iron-rich material and hydrated silicates at pressures abow@Pa during
accretion and planetary differentiation. This oxygen-fugacity—dependent interac-
tion could be better understood through a combination of improved experimental
constraints and geodynamic modeling of the core formation process. The rationale
for such studies is simple: The core’s hydrogen content is of crucial importance for
the bulk hydrogen budget of the planet, as the equivalent of uprteytBospheres
of hydrogen could be sequestered within the iron alloy of the innermost layers of
the planet.
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HYDROUS PHASES IN THE DEEP MANTLE
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Figure 4 Crystal structures of prototype candidate hydrous phases within Earth’s mantle. Struc-
ture of phase A is from Horiuchi et al (1979); lawsonite from Baur (1978); phase B from Finger

et al (1991); superhydrous B is from Pacalo & Parise (1992); phase D from Yang et al (1997);
phase E from Kudoh et al (1993); and phase H from Prewitt & Yang (to be published). Where
their positions are known, hydrogen atom locations are shown by the small pink spheres. Calcium
atoms and the oxygen of the water molecules in lawsonite are shown as blue and red spheres,
respectively.
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