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Abstract
Seismological models of upper-mantle structure are providing new con-
straints on the physical and chemical properties that differentiate the litho-
sphere from the asthenosphere. A wide variety of studies are consistent with
an oceanic lithosphere that corresponds to a dry, chemically depleted layer
over a hydrated, fertile asthenosphere. At the lithosphere-asthenosphere
boundary beneath oceans and many Phanerozoic continental regions, ob-
served seismic velocity gradients require a contrast in mantle hydration, fer-
tility, and/or melt content, perhaps in combination with a vertical gradient in
velocity anisotropy. Beneath cratons, evidence is growing for a deeper—but
globally ubiquitous—asthenosphere. Some studies conclude that the cra-
tonic lithosphere-asthenosphere boundary is gradual enough to be matched
by a purely thermal gradient, whereas others indicate a more rapid transition
and a contrast in composition or perhaps melt content.
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WHAT MAKES THE LITHOSPHERE PLATE-LIKE?
The concept of a strong lithosphere that translates as a relatively coherent layer over a weak as-
thenosphere (Figure 1a) is fundamental to a modern understanding of plate motions, tectonics,
and mantle convection. However, much remains to be learned about the physical and chemi-
cal properties that create the rheological differences between the lithosphere and asthenosphere.
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Figure 1
Schematic models of lithosphere-asthenosphere boundary (LAB) properties. (a) Depth profile through the
lithosphere and asthenosphere. Arrows show the motion of a coherent lithospheric layer over a deforming
asthenosphere. (b) Temperature as a function of depth. In the absence of other factors, the lithosphere would
correspond to the cold thermal boundary layer represented by subadiabatic temperatures. (c) Mantle
viscosity for three cases. Blue: the geotherm in panel b. Brown: the geotherm superimposed on a
compositional difference at the LAB (dry lithosphere over hydrated asthenosphere). Orange: the latter case
plus partial melt in the asthenosphere. (d ) Isotropic shear velocity corresponding to the three cases in
panel c. The black line schematically illustrates the velocity increase from the crust to the mantle.
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LAB: lithosphere-
asthenosphere
boundary

Uncertainty surrounds even basic information such as the depth of the lithosphere-asthenosphere
boundary (LAB), the magnitude of the rheological contrast between lithosphere and astheno-
sphere, and the depth range over which this contrast is distributed.

Colder temperatures at shallow depth in Earth undoubtedly play a role in making the litho-
sphere strong. A common definition of the lithosphere is that it represents the thermal boundary
layer at Earth’s surface where temperatures lie below the mantle adiabat defined by the poten-
tial temperature of the convecting mantle. A more precise definition is that the rigid lithosphere
corresponds to the portion of the thermal boundary layer in which heat transport is purely con-
ductive, and that the base of the thermal boundary layer represents a rheological boundary be-
tween the lithosphere and the convecting mantle (e.g., Sleep 2005) (Figure 1b). Where mantle
rocks are cold, their viscosity will be higher, producing higher viscosities within the lithosphere
(Figure 1c).

Other factors such as grain size, chemical composition, water content, and extent of partial
melt affect viscosity. In particular, dehydration of mantle minerals as a result of melt extraction
has been hypothesized as a source of increased viscosity in both oceanic (e.g., Hirth & Kohlstedt
1996, Karato & Jung 1998) and continental mantle lithosphere (e.g., Hirth et al. 2000, Lee et al.
2005, Sleep 2005, Lee 2006) (Figure 1c). For example, Hirth & Kohlstedt (1996) proposed that
the oceanic LAB is defined by a compositional boundary between hydrated, fertile peridotite
in the asthenosphere and dry, chemically depleted peridotite in the lithosphere from which the
oceanic crust was extracted by melting beneath mid-ocean ridges. In continental cratons, xenoliths
indicate depleted mantle compositions to depths of roughly 200 km, leading to the hypothesis that
the continents are underlain by high-viscosity mantle layers whose chemical buoyancy counteracts
their cold temperatures (e.g., Jordan 1978, 1988; Boyd 1989; Griffin et al. 1999; Lee 2006), enabling
the mantle layers to remain intact and attached to the overlying cratonic crust over billions of years
(e.g., Pearson et al. 1995, Carlson et al. 1999, Shapiro et al. 1999). This chemically depleted layer
was first described as the continental tectosphere with the assumption that chemical and thermal
buoyancy were equal at all depths ( Jordan 1978, 1988). More recently, differences in xenolith
suites between low-temperature granular peridotites (which are highly melt-depleted) and high-
temperature sheared peridotites (which are more fertile) have been used to argue that a chemically
depleted, high-viscosity layer extends only to depths of 150–175 km, embedded in a thicker thermal
boundary layer (Lee et al. 2005, Lee 2006) (Figure 2). In these latter models, dehydration of the
chemically depleted layer is invoked as a means of increasing its viscosity (Lee et al. 2005, Lee
2006).

The presence of even a small amount of partial melt could significantly reduce mantle viscosity,
especially if the melt is organized as aligned pockets at the grain scale or in shear zones at larger
scales (e.g., Hirth & Kohlstedt 1995a,b; Mei et al. 2002; Takei 2002; Zimmerman & Kohlstedt
2004; Kohlstedt & Holtzman 2009; Takei & Holtzman 2009). Some studies have suggested that
the asthenosphere contains a small amount of partial melt, either globally or at least on a widespread
basis beneath oceans and continents (Anderson & Sammis 1970, Hirano et al. 2006, Mierdel et al.
2007). However, this topic is still the subject of considerable debate.

GEOPHYSICAL SIGNATURES OF LITHOSPHERE-ASTHENOSPHERE
BOUNDARY PROPERTIES
The thickness of the lithosphere and the rheological contrasts between the lithosphere and as-
thenosphere are expressed in a variety of geophysical observables, including seismic velocities,
heat flow, electrical conductivity, and apparent elastic plate thickness. For example, off-axis of
the East Pacific Rise, Baba et al. (2006) found a 60-km-thick layer of high-resistivity lithosphere
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Figure 2
Xenolith thermobarometry data from different cratons combined with conductive geotherms inferred from
surface heat flow. Blue symbols represent low-temperature granular peridotites; red symbols represent
high-temperature sheared peridotites. The field of high-temperature sheared peridotites has been roughly
outlined in yellow. Purple lines are conductive geotherms corresponding to different values of surface heat
flow. Gray region outlines a range of mantle adiabats. From Lee (2006). Copyright 2006 American
Geophysical Union. Reproduced/modified by permission of American Geophysical Union.

over more conductive asthenosphere. The lack of variation in the thickness of this layer (despite
significant differences in plate age and cooling across the study region), coupled with anisotropy in
asthenospheric conductivity, was interpreted as evidence that the mantle lithosphere corresponds
to the layer that was depleted and dehydrated because of melting (Evans et al. 2005, Baba et al.
2006). Similarly, Hirth et al. (2000) concluded that both cratonic and ocean conductivity profiles
were best explained by a dry lithosphere over a hydrated asthenosphere. Eaton et al. (2009) provide
an excellent review of magnetotelluric studies and their implications for the LAB in cratons.

This paper focuses on the implications of seismological studies for models of the LAB. For
purely thermal models, a gradual transition from cold lithosphere to warm asthenosphere pro-
duces a similarly gradual decrease in velocity (Figure 1d ) and an increase in attenuation unless
another factor, such as olivine grain size in the mantle, is varied ( Jackson et al. 2002, Faul &
Jackson 2005). In mid-plate oceanic regions and beneath continents where mantle flow lacks a
strong component of upwelling, temperature will increase over many tens of kilometers, and the
vertical temperature gradient at any given depth is relatively small. For example, in numerical
models that contain thick cratonic and thinner marginal lithosphere, if mantle viscosity depends
on temperature but is not affected by composition or melt content, temperature rises gradually
over the entire thickness of the lithosphere (Cooper et al. 2004) and temperature gradients are
typically on the order of 5◦C km−1 (King & Ritsema 2000, Cooper et al. 2004). However, in some
models where the thick, cratonic lithosphere is assumed to be of intrinsically higher viscosity than
adjacent, thinner lithosphere, upwelling beneath regions of thin (∼100-km) lithosphere produces
temperature gradients of ∼15◦C km−1 (Korenaga & Jordan 2002).

LAB velocity gradients can be distributed over a smaller depth interval if they are strongly
influenced by a rapid vertical change in composition, such as the transition from a dry, depleted
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LPO: lattice-
preferred orientation

lithosphere to a hydrated, fertile asthenosphere (Figure 1d ). The variation in shear velocity re-
sulting from depletion effects is debated; it ranges from less than a percent (Schutt & Lesher
2006) to 2.5% (Lee 2003). The velocity variation associated with the degree of hydration strongly
depends on the form of the volatiles—water in nominally anhydrous minerals such as olivine ver-
sus serpentine, for example—but the former case would typically be expected at asthenospheric
temperatures. Direct experimental constraints on the effects of water in olivine at seismic frequen-
cies are at an early stage (Aizawa et al. 2008). However, olivine rheology from creep experiments
suggests that a sharp LAB dehydration boundary could produce a rapid (<10 km) and significant
LAB velocity drop (Karato & Jung 1998, Karato 2004). Because water in olivine will also increase
shear attenuation, reasonable limits on asthenospheric attenuation can be used to bound water
effects on shear velocity. Based on typical asthenospheric attenuation values (Dalton & Ekström
2006), Rychert et al. (2007) indicate that the magnitude of this effect in shear velocity would be
on the order of 4% or less.

The presence of a small amount of partial melt in the asthenosphere could also dramatically
reduce its shear velocity relative to a comparatively melt-free lithosphere, and the transition would
be rapid if the LAB represented the mantle solidus or an abrupt change in permeability. Although
the magnitude of the effect of melt on shear velocity strongly depends on the melt-distribution
geometry (e.g., Hammond & Humphreys 2000, Takei 2002, Kawakatsu et al. 2009, Takei &
Holtzman 2009), it is potentially very large (Figure 1d ). For example, a percent of partial melt
could produce a velocity drop of 8% or more (Hammond & Humphreys 2000, Kawakatsu et al.
2009), although other models predict smaller velocity contrasts (Takei & Holtzman 2009).

Finally, because the LAB represents a reduction in viscosity with depth, the magnitude of
strain related to present-day plate motion will increase below the boundary, likely producing
lattice-preferred orientation (LPO) of olivine and orthopyroxene in the asthenosphere that reflects
recent deformation. In contrast, the lower strain rates in the lithosphere would allow olivine and
orthopyroxene LPO from past tectonic events to be preserved over longer timescales. Thus, in
general, vertical variations in velocity anisotropy that reflect mantle LPO are expected across the
LAB, and they could create sharp and significant mantle velocity gradients (e.g., Gaherty et al.
1999, Levin & Park 2000). Similarly, asthenospheric melt fabrics created by deformation would
also produce anisotropy (Takei & Holtzman 2009) that could contrast with the lithosphere.

SEISMOLOGICAL CONSTRAINTS ON THE
LITHOSPHERE-ASTHENOSPHERE BOUNDARY

Tools for Imaging the Lithosphere-Asthenosphere Boundary

A wide range of seismic phases and analysis methods can be used to constrain the depth of the
LAB and its associated isotropic and/or anisotropic velocity gradients. Surface-wave tomography
can provide robust constraints on three-dimensional, absolute shear-wave velocity structure at
lithospheric and asthenospheric depths at both regional and global scales. Global surface-wave
tomography (in some cases, including body-wave phases) has revealed systematic variations in
apparent lithospheric thickness (defined as a lid of relatively fast velocities over a slower as-
thenospheric layer) between different tectonic environments (Cammarano & Romanowicz 2007,
Kustowski et al. 2008, Lebedev & van der Hilst 2008, Nettles & Dziewonski 2008, Dalton et al.
2009, Romanowicz 2009). Similar results have been obtained in regional studies. In Figure 3 the
results of two different absolute shear-wave velocity models (Cammarano & Romanowicz 2007,
Kustowski et al. 2008) indicate relatively thin lithosphere beneath young oceanic crust and much
thicker and higher-velocity lithosphere beneath continental cratons. Definitions of LAB depth,
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Figure 3
Shear velocity as a function of depth in the upper mantle from Cammarano & Romanowicz (2007) and Kustowski et al. (2008).
(a) Regions sampled in the profiles are indicated by different colors for cratons (solid blocks) and oceans (dashed lines). (b) Shear velocity
model of Kustowski et al. (2008). (c) Shear velocity model of Cammarano & Romanowicz (2007). The black lines in panels b and c
indicate global averages of shear velocity. From Romanowicz (2009). Reprinted with permission from AAAS.

which often vary between surface-wave studies, include the depth of the maximum negative ve-
locity gradient below the fast lid, the depth to a certain absolute velocity or velocity anomaly
contour, and the depth where lateral velocity variations cease (see Eaton et al. 2009 for a detailed
review). In addition, vertical variations in velocity anisotropy from surface-wave tomography have
also been used to define the LAB, including changes in the strength and orientation of both radial
and azimuthal anisotropy (Gaherty & Jordan 1995, Gaherty et al. 1999, Debayle & Kennett 2000,
Simons et al. 2002, Gung et al. 2003, Gaherty 2004, Debayle et al. 2005, Sebai et al. 2006, Marone
& Romanowicz 2007, Marone et al. 2007, Yuan & Romanowicz 2010). Global (e.g., Dalton et al.
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Radial anisotropy:
a directional
dependence in seismic
wave velocity such that
waves traveling in the
horizontal plane with
different vibration
directions
(horizontally versus
vertically polarized)
have different
velocities

Azimuthal
anisotropy:
a directional
dependence in seismic
wave velocity such that
waves propagating or
vibrating at different
azimuths in the
horizontal plane have
different velocities

ScS: a shear (S) body
wave that reflects off
the core-mantle
boundary

Ps: a compressional
(P) body wave that
converts to an S wave
at a discontinuity or
rapid gradient in
velocity

Sp: an S wave that
converts to a P wave at
a discontinuity or rapid
gradient in velocity

2009) and regional (e.g., Yang et al. 2007) inversions of surface-wave data for attenuation structure
are also beginning to yield constraints on LAB properties.

One limitation of surface-wave tomography is that surface waves alone cannot distinguish a
change in mantle velocity that occurs instantaneously in depth from a change in velocity that
occurs over tens of kilometers. For example, Eaton et al. (2009) showed that typical fundamental-
mode surface data sets are equally well fit by a step-like drop in velocity at 160 km and a decrease
in velocity of comparable amplitude that occurs from 125 to 225 km in depth. In addition, the
starting model employed in the tomographic inversion will affect the final shear velocity model,
as is evident in the profiles in Figure 3 (Romanowicz 2009). Finally, whereas a low-velocity
asthenospheric layer is widely observed beneath oceans and regions of relatively thin continental
lithosphere, resolution of an asthenospheric layer beneath cratons is still debated (e.g., Gaherty
& Jordan 1995, Gaherty et al. 1999, van der Lee 2002, Li & Burke 2006, Pedersen et al. 2009).

Body-wave tomography has also been used to estimate lithospheric thickness. However, with
the relatively vertical direct-wave paths often used in regional body-wave tomography, lack of
vertical resolution typically results in large uncertainties in LAB depth. In contrast, modeling
of multiply reflected body-wave phases and triplicated arrivals yields robust constraints on the
transition from fast lithospheric lid to low-velocity asthenosphere, although trade-offs between
lid thickness and absolute velocity produce uncertainties on the order of 20 km in LAB depth (e.g.,
Grand & Helmberger 1984a,b; Tan & Helmberger 2007).

ScS reverberations that reflect off the LAB and arrivals such as Ps and Sp that convert at
the LAB provide powerful complementary constraints on the depth of the LAB and its velocity
gradient. All of these phases are primarily sensitive to changes in shear-wave structure (either shear-
wave velocity or impedance). ScS reverberations from an LAB-like discontinuity have clearly been
observed in oceanic regions (Revenaugh & Jordan 1991, Bagley & Revenaugh 2008), and numerous
Ps and Sp studies have been used to infer LAB properties in both oceanic and continental regions
(Sacks et al. 1979; Bostock 1998; Li et al. 2000; Collins et al. 2002; Oreshin et al. 2002; Li et al.
2004; Kumar et al. 2005a,b; Rychert et al. 2005, 2007; Vinnik et al. 2005; Chen et al. 2006; Mohsen
et al. 2006; Sodoudi et al. 2006a,b; Wolbern et al. 2006; Hansen et al. 2007; Heit et al. 2007; Kumar
et al. 2007; Li et al. 2007; Wittlinger & Farra 2007; Ozacar et al. 2008; Savage & Silver 2008;
Snyder 2008; Chen 2009; Ford et al. 2009; Hansen et al. 2009; Kawakatsu et al. 2009; Rychert &
Shearer 2009; Abt et al. 2010; Rychert et al. 2010). These phases provide better resolution of the
LAB velocity gradient than is typical of surface-wave inversions alone. For example, incorporation
of ScS reverberations with turning S waves and surface waves in the inversions of Gaherty et al.
(1999) led to the conclusion that the LAB velocity gradient beneath old oceanic lithosphere occurs
over 30 km or less. In another example, Rychert et al. (2007) inverted both Ps and Sp waveforms
for LAB properties in eastern North America and found that the 5–8% velocity drop at the LAB
occurs over 11 km or less. However, to use ScS reverberations and converted phases to infer the
depths of mantle discontinuities, the data must be migrated to depth, which requires independent
information on mantle structure above the discontinuity of interest. In addition, constraints on
volumetric heterogeneity in the mantle are also helpful for interpreting apparent discontinuities.
In many Sp and Ps studies, resulting discontinuities are compared with shear-wave velocity models
from surface-wave tomography or some combination of surface-wave and body-wave tomography
(e.g., Rychert et al. 2005, 2007; Savage & Silver 2008; Ford et al. 2009; Hansen et al. 2009; Rychert
& Shearer 2009; Abt et al. 2010). Joint inversions—such as the inversion of ScS reverberations,
turning S waves, and surface waves in Gaherty et al. (1999)—directly exploit the complementary
information of the different data types.

Finally, discontinuities associated with a transition from a fast seismic lid to a deeper, slower,
low-velocity zone have been observed at depths of 50 to 220 km by reflection and refraction
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experiments (Ryberg et al. 1996; MONA LISA Working Group 1997; Thybo & Perchuc 1997;
Steer et al. 1998a,b; Morozova et al. 1999; Pavlenkova et al. 2002; Thybo 2006). Although more
limited in geographic extent than is typical of passive-source studies, active-source methods offer
higher spatial resolution of the details of lithospheric structure.

The interpretation of oceanic and continental LAB properties later in this paper focuses on a
comparison of results from surface waves, ScS reverberation, converted phase (Sp and Ps) analyses,
and multiply reflected S phases and triplicated arrivals. All these methods are primarily sensitive to
shear-wave velocity structure, and surface-wave tomography typically has better vertical resolution
than direct-phase body-wave tomography. Other constraints, such as active-source imaging, are
also drawn into the discussion.

Classic Mantle Discontinuities
A variety of classic mantle velocity discontinuities exist in the seismological literature, including the
Gutenberg, Lehmann, and Hales discontinuities (Gutenberg 1948; Lehmann 1959, 1961; Hales
1969). Over time, these names have been assigned to discontinuities at a variety of depths, some-
times with positive or negative isotropic velocity contrasts and/or vertical variations in anisotropy.
The original definition of the Hales discontinuity was as an increase in isotropic velocity with depth
(Hales 1969). Since then it has commonly been interpreted as a discontinuity within the litho-
sphere (Revenaugh & Jordan 1991) sometimes associated with anisotropy (Fuchs 1983, Bostock
1998, Levin & Park 2000, Mercier et al. 2008). Some studies interpret the Gutenberg discontinuity
as the base of the seismically fast lithospheric lid in oceanic regions and the Lehmann disconti-
nuity as a boundary within the continental lithosphere (Revenaugh & Jordan 1991, Gaherty &
Jordan 1995, Bostock 1998, Gaherty et al. 1999). Other studies attribute both the Lehmann and
Gutenberg discontinuities to the LAB, with the latter representing a transition in anisotropy at
the LAB beneath oceans and the former representing the transition at the LAB beneath continents
(Gung et al. 2003). In the Preliminary Reference Earth Model, the Lehmann discontinuity was
represented as the lower limit of a global low-velocity zone at a depth of 220 km (Dziewonski &
Anderson 1981). For simplicity, the names of these classic discontinuities are not widely used in
this paper.

A Global View
Evidence is growing for a widespread, perhaps global, reduction in velocities at depths of 50 to
130 km. Thybo & Perchuc (1997) introduced the idea of the 8◦ discontinuity, a low-velocity layer
(both P and S velocity) in the continental lithosphere with its top at a depth of ∼100 km. Thybo
(2006) contains an excellent review of the presence of this feature in long-range, active-source
seismic profiles. A significant body of Sp and Ps receiver-function studies have found evidence
for discontinuities characterized by a significant negative velocity contrast in the depth range of
50 to 130 km. These studies span oceanic regions (Li et al. 2000, Collins et al. 2002, Li et al. 2004,
Kumar et al. 2005a, Vinnik et al. 2005, Wolbern et al. 2006, Heit et al. 2007, Kumar et al. 2007,
Kawakatsu et al. 2009, Rychert & Shearer 2009), regions of relatively thin (<130 km) continental
lithosphere (Oreshin et al. 2002; Kumar et al. 2005b; Rychert et al. 2005, 2007; Angus et al.
2006; Chen et al. 2006; Mohsen et al. 2006; Sodoudi et al. 2006a,b; Hansen et al. 2007; Heit
et al. 2007; Kumar et al. 2007; Li et al. 2007; Ozacar et al. 2008; Chen 2009; Ford et al. 2009;
Rychert & Shearer 2009; Abt et al. 2010; Rychert et al. 2010), and continental regions with thicker
cratonic-style lithosphere (Ford et al. 2009, Rychert & Shearer 2009, Abt et al. 2010, Rychert et al.
2010). For example, Rychert & Shearer (2009) carried out a global study of Ps receiver functions
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Figure 4
Comparison of LAB properties [depth and velocity drop (percent Vs)] from Ps receiver functions (Rychert &
Shearer 2009) with a global Vs model from surface-wave tomography (Nettles & Dziewonski 2008) for four
types of tectonic regions. Surface-wave results are shown both as averages for the tectonic regions from the
entire global model (dashed lines) and beneath the stations with Ps receiver-function results (solid curved lines).
Ps results are shown as tectonic region averages by horizontal lines. Short vertical lines are standard errors in
Ps depths. Separation between horizontal lines and vertical bars indicates uncertainty in the LAB velocity
drop. Vs percentages are calculated with respect to the average surface-wave Vs at the Ps conversion depth in
each region. From Rychert & Shearer (2009). Reprinted with permission from AAAS.

and found a shear velocity drop at an average depth of 70 ± 4 km beneath oceans, 81 ± 2 km
beneath Phanerozoic orogens and magmatic belts, and 95 ± 4 km beneath Precambrian shields
and platforms (Figure 4).

The widespread prevalence of a negative discontinuity in the 50–130-km depth range might
be taken as evidence for a global discontinuity with a single origin, such as a global LAB. In fact,
when Rychert & Shearer (2009) compared their average Ps negative-discontinuity depths with
average absolute shear-wave velocity profiles for the same tectonic regions, the discontinuities
appeared to fall within the transition from the maximum shear-wave velocity (which presumably
lies within the lithosphere) to the minimum shear-wave velocity (which should lie within the
asthenosphere). Based on this comparison of averaged results, it might be tempting to interpret
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all of these discontinuity sightings as the LAB. However, this interpretation would be a mistake
because a number of the negative discontinuities found by Rychert & Shearer (2009) and at similar
depths in other studies (Ford et al. 2009, Abt et al. 2010) lie in cratonic regions where surface-
wave tomography near the station clearly shows a fast lithospheric layer that extends to depths of
150 km or more (Figure 5). At these stations, the negative discontinuity lies within the lithosphere
and cannot be interpreted as the LAB. Rather, it represents an intralithospheric reduction in
velocity, similar to the dip in absolute shear velocity at depths of approximately 100 km seen in the
cratonic profiles from the surface-wave tomography model of Cammarano & Romanowicz (2007)
(Figure 3c). Further evidence for this line of reasoning comes from cratonic xenolith data. The
idea of an LAB at depths of roughly 100 km in cratons is incompatible with the xenolith evidence
that a layer of cold, depleted mantle extending to at least 150 km (Figure 2) has remained coupled
to the overlying crust for billions of years ( Jordan 1978, 1988; Boyd 1989; Pearson et al. 1995;
Carlson et al. 1999; Griffin et al. 1999; Lee 2006).

Sp receiver-function results from station ULM (part of the Canadian National Seismic
Network) in the Canadian shield provide a good example of a cratonic station with a negative
discontinuity internal to the lithosphere (Figures 5 and 6) (Abt et al. 2010). At ULM, Sp receiver
functions contain a negative arrival that corresponds to a drop in velocity at a depth of 101 ±
14 km (Figure 6d,e). Absolute shear-wave velocity from surface-wave tomography beneath ULM
indicates fast lithospheric velocities to at least 150 km and a gradual gradient to a minimum as-
thenospheric velocity at 220 km (Figure 6f ). Thus, the potential LAB depth range lies between
220 km and 150 km, indicating that the negative Sp arrival corresponds to a conversion from a
negative discontinuity within the lithosphere. In contrast, at station VTV (part of the Caltech Re-
gional Seismic Network) near the San Andreas Fault in southern California, a strong negative Sp
phase (Figure 6a,b) falls within the transition from asthenosphere to lithosphere in absolute shear
velocity (120-km to 45-km depth), indicating that this discontinuity can be interpreted as the LAB.

In addition to the negative discontinuities at depths of 50–130 km described above, Ps and
Sp studies have also found negative discontinuities in the 130–300-km depth range, sometimes
interpreting them as the LAB (Sacks et al. 1979; Kumar et al. 2005b, 2006, 2007; Mohsen et al.
2006; Sodoudi et al. 2006a; Heit et al. 2007; Wittlinger & Farra 2007; Snyder 2008; Hansen et al.
2009) and sometimes not (Bostock 1998, Savage & Silver 2008). Rychert et al. (2010) contains a
comprehensive review of both Ps and Sp studies, including ones not referenced here that modeled
phases with anisotropic discontinuities that are not obviously negative in an isotropic sense.

A global map of Sp studies that found a negative phase at depths of less than 300 km and
interpreted it as the LAB is shown in Figure 7. Sp receiver functions are sometimes consid-
ered a more reliable indicator of mantle discontinuities from the Moho to depths of roughly
300 km because Ps receiver functions contain reverberations from crustal reverberations that may

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 5
Mantle-discontinuity depths estimated from Sp receiver functions in North America by Abt et al. (2010)
(a) and in Australia by Ford et al. (2009) (b). The dots, colored for discontinuity depth, represent Sp piercing
points that have been interpolated onto a fine grid and smoothed with a circular filter with a 30-km radius.
(a) North America. Black inverted triangles indicate stations where the negative Sp phase is interpreted as
the lithosphere-asthenosphere boundary (LAB), white inverted triangles are stations where the phase is
interpreted as a mid-lithospheric discontinuity (MLD), and gray stations indicate ambiguity in the
interpretation of the negative Sp phase. (b) Australia. Negative Sp phases at stations in Phanerozoic eastern
Australia (COEN and stations to its east) and at two sites just within the eastern margin of the Proterozoic
craton (BBOO and STKA) are interpreted as the LAB. Negative Sp phases at most stations in the Proterozoic
and Archean craton (WRAB and the stations to its west) are interpreted as mid-lithospheric discontinuities.
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Figure 6
Sp receiver functions and absolute shear-wave velocity profiles at two stations in North America from Abt et al. (2010): VTV in
southern California (a–c) and ULM in the Superior Craton in Canada (d–f ). (a, d ) Mean single-station receiver functions (RFs) from
bootstrap testing (thick gray lines) ± 2σ (thin gray lines). (b, e) Sp receiver functions binned by epicentral distance (not bootstrapped).
Blue indicates positive amplitude (a velocity increase with increasing depth) and red indicates negative amplitude (a velocity decrease
with increasing depth). In panels a and d, the portions colored red and blue represent the minimum amplitude of the receiver function,
accounting for the 2σ uncertainties. The large positive phase corresponds to the crust-mantle boundary (the Moho or Mohorovičić
discontinuity). The most prominent negative phase following the Moho is marked with the magenta line, and 2σ errors are given by the
dashed magenta lines. (c, f ) Thick red line shows mantle shear-velocity profiles at VTV and ULM averaged from a 3D surface-wave
model, from a University of California, Berkeley (UCB) study by Yuan & Romanowicz (2010). Dashed red line shows the AK135
velocity model (Kennett et al. 1995) for reference.

overprint mantle signals. However, when care is taken to interpret Ps phases only when they
appear to be unbiased from crustal phases (e.g., Rychert & Shearer 2009), robust constraints on
LAB and intralithospheric discontinuities may be obtained. For example, of the 21 stations where
a negative discontinuity was identified from both Ps data (Rychert & Shearer 2009) and Sp data
(Ford et al. 2009, Abt et al. 2010), 14 of the depths estimated from the Ps analysis fall within the
Sp depth error bars and 19 fall within 10 km of the Sp error bars.
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Figure 7
Compilation of Sp studies that interpret a negative phase as the LAB. Colored backgrounds correspond to
the depths reported by the numbered studies. Whereas the color scale ends at a depth of 150 km, some
studies see Sp arrivals and interpret them as the LAB at depths of as much as 300 km. 1: Li et al. (2004). 2:
Heit et al. (2007). 3: Li et al. (2007). 4: Rychert et al. (2007). 5: Kumar et al. (2005a). 6: Vinnik et al. (2005).
7: Sodoudi et al. (2006a). 8: Angus et al. (2006). 9: Mohsen et al. (2006). 10: Hansen et al. (2007). 11: Kumar
et al. (2007). 12: Wittlinger & Farra (2007). 13: Hansen et al. (2009). 14: Sodoudi et al. (2009). 15: Kumar
et al. (2005b). 16: Oreshin et al. (2002). 17: Kumar et al. (2006). 18: Chen et al. (2008). 19: Chen (2009). 20:
Sodoudi et al. (2006b). 21: Kawakatsu et al. (2009).

The Oceanic Lithosphere-Asthenosphere Boundary
The oceanic lithosphere provides a well-controlled environment in which to test competing mod-
els for the origin of the LAB. Because plate age and cooling increase systematically from mid-
ocean ridges, models in which the lithosphere-to-asthenosphere transition is primarily controlled
by temperature would predict an increase in LAB depth with plate age. In contrast, if the oceanic
lithosphere represents a layer of dry and depleted mantle created by melt extraction at the ridge,
its thickness would not be expected to appreciably change as a function of plate age. In addition,
an LAB that reflects only temperature would appear as a velocity drop distributed over tens of
kilometers. Gradients in mantle water or melt content could be similarly gradual. However, if the
chemical boundary between the lithosphere and the more hydrated, fertile asthenosphere repre-
sents the peridotite solidus, it would likely have been created as a relatively sharp discontinuity
(Figure 1d ). Furthermore, even accounting for the diffusion of hydrogen in olivine, its width
would increase by less than 5 km over a typical 150-Ma lifespan for oceanic lithosphere (Hirth &
Kohlstedt 1996). If the LAB velocity gradient is too large to be explained by contrasts in depletion
and hydration, it could represent a transition from a melt-free lithosphere to an asthenosphere that
contains partial melt (Figure 1d ); in this case, the LAB could correspond to either the peridotite
solidus or a boundary in permeability.

Surface-wave inversions in oceanic regions typically show an increase in the apparent thickness
of the oceanic lithosphere as defined by fast isotropic velocities with plate age (Nishimura &
Forsyth 1989, Nettles & Dziewonski 2008) (Figure 8b,d ). Alone, this result could be taken as
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evidence that the thickness of the oceanic lithosphere is largely controlled by a cooling geotherm.
However, when radial anisotropy is considered, a different picture emerges in which wave velocities
for SH motion (horizontal vibration normal to the wave path) are systematically higher than
velocities for SV motion (vibration polarized in the vertical plane containing the path) in a layer
at depths of ∼80–220 km (Ekström & Dziewonski 1998, Gung et al. 2003, Nettles & Dziewonski
2008) (Figure 8c,e). This geometry of anisotropy would be developed if olivine a-axes were
systematically aligned by strain in this layer and then sampled over a wide range of azimuths by
the surface waves used in the inversion. The top of this layer beneath the Pacific lies at depths of
80–100 km (Nettles & Dziewonski 2008) (Figure 8c), suggesting a relatively uniform-thickness
lithosphere over a deforming asthenosphere, even beneath the East Pacific Rise where plate-
cooling models predict a lithosphere of negligible thickness.

Waveform modeling of multiply bouncing S phases and triplicated arrivals (Tan & Helmberger
2007) considered together with inversion of surface waves, turning S waves, and ScS reverberations
(Gaherty et al. 1999) also argue for a lack of age dependence in the thickness of the oceanic
lithosphere. The latter study samples old oceanic lithosphere from Tonga to Hawaii and the
former study samples lithosphere with a younger average age from Tonga to southern California,
yet both found fast seismic lids with a thickness of approximately 60 km. In addition, the ScS
reverberations in Gaherty et al. (1999) indicate that the negative velocity gradient at 60 km along
the older path must occur over 30 km or less. More recent analysis of ScS reverberations on a
wide variety of paths from Hawaii to circum-Pacific stations yielded fast-lid thicknesses of 72 km
to 108 or 112 km. Although some of this variation appears to be significant at the 95% confidence
level, no clear correlation of lid thickness and average lithospheric age exists. Modeling indicated
that the transition from lid to low-velocity layer on these paths also occurs over 30 km or less.

Sp and Ps studies have also sampled the oceanic lithosphere. Reported depths of negative
discontinuities at and near oceanic islands are highly variable, ranging from 40 km to 140 km (Li
et al. 2000, Collins et al. 2002, Li et al. 2004, Kumar et al. 2005a, Vinnik et al. 2005, Wolbern et al.
2006, Heit et al. 2007, Kumar et al. 2007, Rychert & Shearer 2009). A significant amount of this
variability is not correlated with plate age. For example, among Sp measurements at island stations
in the Pacific (Figure 7), LAB depth estimates are 50–60 km at Kauai and 100–110 km at Hawaii,
both on middle-aged oceanic lithosphere (Li et al. 2004), and 70 km beneath the Galapagos and
50 km at Easter Island, both on younger oceanic lithosphere (Heit et al. 2007). At island stations
where Rychert & Shearer (2009) analyzed Ps receiver functions, LAB depth estimates at individual
stations vary from 48 km to 98 km about the oceanic mean of 70 ± 4 km, and again do not correlate
with plate age. However, because the lithosphere beneath ocean island stations may have been
perturbed by hotspot-related processes, these locations are not ideal to test for an age-dependent
trend in lithospheric thickness.

In contrast, Kawakatsu et al. (2009) analyzed Ps and Sp receiver functions at borehole stations
on relatively unperturbed oceanic lithosphere and did observe a correlation between LAB depth
and plate age. In the Philippine Sea Plate, 25 Ma–old lithosphere appeared to be 55 km thick, and
49 Ma–old lithosphere was 76 ± 1.8 km. In the Pacific Plate, receiver functions were noisier, but
129 Ma–old lithosphere yielded a thickness of 82 ± 4.4 km, a value that matches the apparent
thickness of the plate subducting beneath Japan. Kawakatsu et al. (2009) conclude that these LAB
depths can be modeled with a cooling-plate model in which the asymptotic plate thickness is
104 km and the temperature at the base of the plate is 1358◦C.

The existence of Sp and Ps phases from an oceanic LAB argues that the LAB velocity gradient
is relatively sharp, although waveform modeling at the particular Sp and Ps frequencies employed
in each study is necessary to accurately bound the velocity drop and depth range. For example,
the waveform modeling by Kawakatsu et al. (2009) indicated a velocity drop of 7–8% over less
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than 10–15 km, which they attributed to horizontal melt-rich layers in the asthenosphere. Other
modeling at oceanic stations obtained velocity drops of 10–20%, assuming a velocity change that
is a step function in depth (Li et al. 2000, Collins et al. 2002). However, even in the absence of
direct modeling of a particular data set, approximate bounds on LAB velocity gradients may be
inferred from other modeling studies. If a velocity drop occurs as a step function in depth and the
amplitude of the resulting Sp phase is A, then if the same drop in velocity occurs over a depth
range of H, where the incident wavelength of the S phase at the discontinuity is 1/2 H, the Sp
amplitude will be ∼70% of A; as H increases further with respect to wavelength, Sp amplitude
will continue to decrease (Rychert et al. 2007, 2010). [Rychert et al. (2010) figure 3 illustrates this
effect and is a corrected version of Rychert et al. (2007) figure 7.] Assuming a 7% velocity drop
at the oceanic LAB (Gaherty et al. 1999), a roughly 10-s Sp period, and typical signal-to-noise
levels, velocity gradients distributed over 30 km or less should produce clear Sp phases, but Sp
amplitudes from gradients over 40 km or more will be difficult to observe. The smaller periods
often used in Ps studies result in still tighter constraints.

To summarize, radial anisotropy in surface-wave tomography (Ekström & Dziewonski 1998,
Gung et al. 2003, Nettles & Dziewonski 2008), the relatively constant fast seismic lid thickness
beneath the Pacific (Gaherty et al. 1999, Tan & Helmberger 2007), and the lack of age dependence
in the depth of the base of the lid from ScS reverberations (Bagley & Revenaugh 2008) are all
consistent with a model in which the oceanic lithosphere corresponds to a dry, chemically depleted
layer over a hydrated, fertile, and possibly partially molten asthenosphere. This model also explains
the constant depth to the top of the high-conductivity layer observed near the East Pacific Rise
(Evans et al. 2005, Baba et al. 2006). Assuming this model, the apparent increase in depth of a
fast layer of isotropic velocities away from ridges (Figure 8b,d ) and the deepening of the lower
boundary of the radially anisotropic layer (Figure 8c,e) could represent gradual cooling of the
oceanic mantle below the base of the compositionally defined oceanic lithosphere. In contrast,
Kawakatsu et al. (2009) interpret the correlation of plate age and apparent LAB depth at the
boundary of the Pacific and Philippine Sea plates as an example of plate thickness controlled by
cooling temperatures alone, although they invoke melt below the LAB to produce the observed
Sp and Ps phases. However, the apparent LAB seen in this study could correspond to a dehydrated
lithosphere that varies in thickness. In yet another alternative, the discontinuity at 55-km depth
for 25 Ma in Kawakatsu et al. (2009) could correspond to the base of a compositionally defined
lithosphere, whereas the greater discontinuity depths at larger ages could represent the growth of
a thermal boundary layer beyond the base of the dehydrated layer. In this latter case, the absence
of converted phases from the base of the dehydrated layer at older ages might be explained by
a decrease in the impact of water on olivine rheology and mantle shear velocity as temperatures
cool (Faul & Jackson 2005; G. Hirth, personal communication).

Regardless of the factors that control the thickness of the oceanic lithosphere, the relatively
rapid velocity gradients required at its base by ScS reverberations and Sp and Ps receiver functions
indicate that the LAB cannot be explained by thermal gradients alone. Some studies have concluded
that temperature, or a combination of temperature and grain size, can largely explain the shear-
velocity structure of the oceanic upper mantle imaged by surface waves (e.g., Faul & Jackson
2005, Stixrude & Lithgow-Bertelloni 2005, Priestley & McKenzie 2006). However, whereas the
relatively gradual velocity gradients predicted for old oceanic geotherms can match much of the
broad LAB velocity gradient typical of surface-wave models, they fail to predict the LAB velocity
gradients of 5% or more over depth ranges of 30 km or less indicated by ScS reverberations
and converted phases. Thus, a contrast in hydration, fertility, and/or melt is required at the
LAB. Vertical differences in anisotropy or grain size across the LAB may contribute to observed
velocity gradients, but creating a contrast in viscosity sharp enough to produce a sufficiently
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rapid anisotropic gradient would still require a variation in water or melt content at the LAB.
Furthermore, Behn et al. (2009) conclude on the basis of grain size modeling that the oceanic
asthenosphere must be hydrated for asthenospheric anisotropy to exist.

The Phanerozoic Continental Lithosphere-Asthenosphere Boundary
In continental regions, the longer, more complex, and less well-understood thermal history of the
lithosphere does not predict a simple correlation of lithospheric age and thickness. However, the
LAB velocity gradient is still a useful diagnostic of whether the LAB may be explained by purely
thermal models versus a contrast in composition or melt content, although some assumptions about
mantle flow are typically required. For example, in models where mantle flow does not contain a
strong upwelling component and mantle viscosity is not affected by a variation in composition or
melt content, positive temperature gradients will in general be distributed from shallow depths in
the lithosphere into the asthenosphere. In models appropriate for many Phanerozoic continental
regions, where a decrease in lithospheric thickness from the craton to the origin drives moderate
small-scale convection, temperature gradients at LAB depths are typically on the order of 5◦C km−1

(King & Ritsema 2000, Cooper et al. 2004). In some models, upwelling beneath regions of thin
(∼100-km) lithosphere produces temperature gradients of ∼15◦C km−1 (Korenaga & Jordan
2002), but in these cases the gradient still occurs over many tens of kilometers (more than 50–
70 km). This type of thermal structure, on its own, would not be capable of generating a clear Sp
or Ps arrival at a distinct depth (Ford et al. 2009). In regions of active upwelling or complicated
flow, more localized LAB thermal gradients cannot be ruled out.

Numerous studies of Sp (Figures 5 and 7) and Ps receiver functions provide evidence for a
relatively sharp and isolated LAB velocity gradient in Phanerozoic continental regions (Oreshin
et al. 2002; Kumar et al. 2005b; Rychert et al. 2005, 2007; Chen et al. 2006; Mohsen et al. 2006;
Sodoudi et al. 2006a,b; Hansen et al. 2007; Heit et al. 2007; Kumar et al. 2007; Li et al. 2007; Ozacar
et al. 2008; Chen 2009; Ford et al. 2009; Rychert & Shearer 2009; Abt et al. 2010; Rychert et al.
2010). In the northeastern United States, where the lithosphere has not experienced significant
tectonic activity since the early Mesozoic, Rychert et al. (2007) jointly modeled Sp and Ps arrivals
and determined that the LAB velocity drop was 5–10% over 5–11 km at depths of 87–105 km.
Using the relationship of shear-wave velocity to temperature developed by Faul & Jackson (2005)
based on experimental data, thermal gradients exceeding 20◦C km−1 are required to explain the
observed velocity gradients, and they must be concentrated in a layer less than 11 km thick. This
result is clearly incompatible with the gradual thermal gradients expected for this type of tectonic
environment (e.g., King & Ritsema 2000, Korenaga & Jordan 2002, Cooper et al. 2004). However,
the gradient can be matched with a contrast in chemical depletion and hydration across the LAB
or with the presence of a small fraction of partial melt in the asthenosphere, both possibly in
combination with vertical variations in anisotropy. Analysis of data at a larger number of North
American stations revealed that similar Sp arrivals exist widely in the Phanerozoic eastern United
States (Abt et al. 2010), although they are interpretable as the LAB only in certain areas. [Thick
lithosphere appears to extend from the craton across portions of the Appalachians (Figure 5). At
these stations, the observed Sp phase is best interpreted as an intralithospheric discontinuity; in
some cases, it is left uninterpreted.] Strong Sp arrivals have also been documented in Phanerozoic
regions of eastern Australia (Kumar et al. 2007, Ford et al. 2009) (Figure 5). For the 10–11-s Sp
dominant periods in Ford et al. (2009), typical velocity gradients in eastern Australia range from
a 5% drop over 0 km to a 10% drop over 30 km or less. Gradients over more than 40 km can be
ruled out based on the Sp modeling in Australia, if velocity drops are limited to no more than 10%,
a value greater than the isotropic shear-velocity drop from lithosphere to asthenosphere seen in
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surface wave models (Gaherty et al. 1999, Nettles & Dziewonski 2008, Romanowicz 2009, Yuan
& Romanowicz 2010). Although Sp phases alone do not constrain the depth range of the LAB
velocity gradient as tightly as when they are combined with Ps, an LAB gradient that is confined
to no more than 30 km in depth is still too localized to be matched by typical thermal models. The
widespread observation of distinct Sp and Ps phases from potential LAB depths in Phanerozoic
continental regions suggests that a relatively sharp velocity gradient (<30 km) is a common feature
of thinner (<130-km) lithosphere.

Some of the largest-amplitude Sp phases from LAB depths occur in the tectonically active
western United States (Li et al. 2007, Abt et al. 2010) (Figure 5). For example, at station VTV
in southern California, a strong negative Sp arrival and a slow asthenospheric low-velocity zone
are observed (Figure 6). Compared with LAB Sp arrivals in the eastern United States, LAB
phase amplitudes in the western United States are systematically larger, indicating a greater LAB
velocity gradient (Abt et al. 2010). This observation is consistent with surface-wave and body-wave
tomography that indicate unusually slow velocities in the asthenosphere of the western United
States (Grand 1994, Humphreys & Dueker 1994, van der Lee & Nolet 1997, van der Lee 2002,
Godey et al. 2004, Marone et al. 2007, Li et al. 2008, Nettles & Dziewonski 2008, Roth et al. 2008,
Yuan & Romanowicz 2010). The large amplitudes of these phases suggest that the asthenosphere
contains partial melt on a widespread basis, consistent with recent and active magmatism in the
region. However, detailed modeling of actual LAB velocity gradients is required to verify this
hypothesis relative to the possibility that the asthenosphere is hydrated. Finally, very steep LAB
temperature gradients resulting from small-scale convection and strong localized upwelling may
play a significant role at some stations, although it seems unlikely that this type of asthenospheric
flow would be consistent enough to ubiquitously explain strong LAB velocity gradients.

The Cratonic Lithosphere-Asthenosphere Boundary
Thick layers of isotropically fast velocity are a common feature of cratonic lithosphere (e.g.,
Figure 3), and recently global correlations of shear velocity and shear attenuation have provided
supporting evidence for a chemically distinct layer at depths of less than 225 km in continents
(compared with depths of less than 125 km beneath oceans) (Dalton et al. 2009). Several surface-
wave inversions have also shown that even the thickest continental lithosphere is underlain by a
layer of radial anisotropy with the same geometry that is observed in the shallower layer of radial
anisotropy observed in the oceanic asthenosphere (SH fast versus SV) (Gung et al. 2003, Marone
et al. 2007, Nettles & Dziewonski 2008). This result suggests that an asthenospheric shear zone
persists beneath cratons. (These studies also show that the shallow cratonic lithosphere is radially
anisotropic, but this anisotropy is typically interpreted as fossil fabric created by Proterozoic
or Archean deformation.) Some studies also indicate a transition in the direction of azimuthal
anisotropy across the cratonic LAB (Debayle & Kennett 2000, Simons et al. 2002, Sebai et al. 2006,
Marone & Romanowicz 2007, Yuan & Romanowicz 2010) or a transition from radial anisotropy in
the lithosphere to azimuthal anisotropy in the asthenosphere (Gaherty 2004). However, Debayle
et al. (2005) suggest that Australia is the only continent beneath which azimuthal anisotropy
indicates asthenospheric flow parallel to plate motion.

Whereas the above studies are broadly consistent with the presence of an asthenospheric
shear zone beneath cratons, the sharpness of the velocity gradient beneath cratons is more am-
biguous. Studies that observe a deep (>150-km) negative Sp or Ps phase and interpret it as the
LAB include work done in the Kalahari Craton (Kumar et al. 2007, Wittlinger & Farra 2007,
Hansen et al. 2009), the Slave Craton (Snyder 2008), the Baltic Shield (Sacks et al. 1979), Australia
(Kumar et al. 2007), and the Arabian Shield (Mohsen et al. 2006, Hansen et al. 2007). In contrast,
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other studies find no evidence for negative discontinuities at these depths in the Superior Craton
and Proterozoic terranes of the central United States (Abt et al. 2010; also see station ULM in
Figure 6) or in Australia (Ford et al. 2009). Authors of yet other studies observe a deep phase but
do not interpret it as the LAB (Savage & Silver 2008).

The situation beneath the Kalahari Craton is particularly confusing. Savage & Silver (2008) and
Hansen et al. (2009) observe Sp phases at comparable depths (150 km and 160 km) but interpret
them differently—as a discontinuity internal to the lithosphere versus the LAB, respectively. A
discontinuity in this depth range would correspond to the base of the most chemically depleted
layer indicated by xenoliths (Figure 2; also see Lee 2006). However, Kumar et al. (2007) and
Wittlinger & Farra (2007) argue for negative LAB Sp phases at 200–300 km and 300 km, respec-
tively. The two sets of Sp receiver functions bear little resemblance to each other and are not
easily reconciled.

In Australia, Kumar et al. (2007) and Ford et al. (2009) analyzed Sp receiver functions at three
common cratonic stations (WRAB, NWAO, and STKA). However, whereas Kumar et al. (2007)
observed the largest negative Sp arrivals at depths of 164, 180, and 207 km, Ford et al. (2009) saw
no significant negative Sp phases at these depths but instead observed clear negative Sp arrivals
at depths of 72 ± 9 km, 81 ± 14 km, and 104 ± 9 km. Ford et al. (2009) obtained similar
results at other cratonic stations and interpreted all but two of the cratonic Sp phases as the
top of an intralithospheric, low-velocity zone (Figure 5b). (The two exceptions were at stations
STKA and BBOO, located near the eastern margin of the craton, whose Sp phases followed trends
observed in Phanerozoic eastern Australia.) Abt et al. (2010) found a comparable intralithospheric
discontinuity in the North American craton at depths of 60–115 km (Figure 5a). The origin of
this feature is uncertain. It might be a relict of cratonic mantle formation, such as the base of an
original dehydrated, depleted lithospheric layer below which the thicker cratonic lithosphere grew
(Yuan & Romanowicz 2010). Alternatively, it could reflect alteration of the cratonic lithosphere
by melt migration and metasomatism; for example, it might be the top of a melt cumulate layer.

An absence of significant converted phases from the base of the cratonic lithosphere would
indicate that the LAB velocity gradient is gradual. For example, the results of Ford et al. (2009)
in the Australian craton and Abt et al. (2010) in the North American craton are consistent with
LAB velocity gradients that are distributed over more than 70 km in depth, and thus they may
be explained by an LAB that is controlled by temperature alone. In this case, the properties that
govern the LAB in cratons could fundamentally differ from those in more recently deformed
continental terranes and oceans. However, if strong converted phases at periods of ∼10 s or less
are generated at the cratonic LAB, then the asthenosphere could be hydrated or contain partial
melt on a global basis. If LAB phases were observed in some cratonic regions but not others, it
would be reasonable to conclude that cratonic LAB properties were simply variable. However, the
lack of agreement among studies at overlapping stations indicates that further work is required to
resolve this issue. A careful analysis of the dominant periods used in each study and their respective
constraints on LAB velocity gradients would be especially helpful.

CONCLUSIONS
A variety of seismic studies indicate a seismically fast oceanic lithosphere of roughly constant
thickness above a layer of radial anisotropy. These results, together with the conductivity structure
near the East Pacific Rise, favor a model in which the oceanic lithosphere corresponds to a dry,
chemically depleted layer over a hydrated, fertile asthenosphere. At the boundary of the Pacific
and Philippine Sea plates, apparent LAB depth correlates with plate age and has been interpreted
as evidence for thermal control of oceanic-lithospheric thickness, but these results do not preclude
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the presence of a compositionally distinct oceanic lithosphere. Regardless of the processes that
control lithospheric thickness, the relatively steep velocity gradients required at the base of the
lithosphere by ScS reverberations and Sp and Ps receiver functions (<30 km in depth) indicate that
the LAB cannot be explained by thermal gradients alone. Rather, a contrast in mantle hydration,
fertility, and/or melt is required at the LAB, perhaps in combination with a vertical gradient in
velocity anisotropy.

In many Phanerozoic continental regions, Sp and Ps receiver functions require LAB velocity
gradients that occur over 30 km or less (in some cases, less than 15 km). Where likely mantle-
flow fields lack complexity and strong upwelling, these LAB velocity gradients are too large and
localized in depth to be matched by models without a contrast in hydration, fertility, and/or melt
at the LAB.

Beneath cratons, the persistence of radial anisotropy at depths below the LAB and rotation of
azimuthal anisotropy across the LAB argue for a global asthenosphere. Sp and Ps analyses reach
divergent conclusions on the sharpness of subcratonic LAB velocity gradients. In some studies,
no converted phases were observed at potential LAB depths, arguing for a gradual LAB velocity
gradient that could be explained by a purely thermal variation from lithosphere to asthenosphere.
Other studies obtained significant converted phases in the LAB depth range, suggesting sharper
velocity gradients and possibly contrasts in composition or melt content at the cratonic LAB.
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