
EOSC 450 HW#3
More experience with Fourier Transforms…
Due in class for discussion Weds 10/19

1) Download the file called geosatd.dat from the course website.  Also download the .m file that is
meant to help you get started.  This dataset has 6 columns: time, latitude, longitude, geoid height
(meters), free-air gravity anomaly (milligals), and the uncertainty in the gravity anomaly.  We
have not talked about the geoid yet explicitly.  The geoid is an equipotential surface (for real!)
with a datum that is sea level.  Anomalies are measured in terms of height (i.e changes in
gravitational potential energy) relative to sea level.  On a map, locate where this profile has been
taken.  Make 2 plots on one page that show gravity anomaly and geoid anomaly as a function of
latitude.

2) Take the derivative of the geoid anomaly using the first difference algorithm in Matlab (use help
<diff> if you need it at the command line) and the definition of the derivative. Plot the result as a
function of latitude. The Fourier transform of the derivative of a function is i2πk times the Fourier
transform of the original function (property 5 in the review notes).  k is the linear wavenumber
(units of 1/wavelength).  Show that this relationship also holds for a discrete time series.  Compute
and plot on the same page the derivative by multiplication in the Fourier domain.  Apply a phase
shift to the FFT so it will be aligned with the first difference derivative. In a third plot on the same
page show the difference between the two calculated derivatives.  Discuss your results.

3) Our work so far has shown that a gravitational field can be represented as being proportional to
grad(φ), where φ=1/r  and r2 = x2 + y2 +z2. Find the 2D Fourier Transform of φ. Leave your result
in the wave number domain, φ(k,z).   Let’s assume that the Geosat spacecraft measured gravity at
an altitude of 800 km. What would the power spectrum for the gravity anomaly look like if the
data were measured 200 km above the Earth’s surface (i.e. from 600 km altitude)?  How about
1000 km below the Earth’s surface?

4) An important problem in understanding the geodynamics of the Earth and other planets are the
support mechanisms for topographically interesting features (e.g. mountains, volcanoes,
trenches….).  One issue is the extent to which such features are supported as a result of the elastic
properties of planetary lithospheres. One way to analyze this problem is to look at the deformation
around the feature.  That is, the wavelength of the bending in the lithosphere can be diagnostic of
the thickness of the elastic part of the lithosphere.  We will look at this in some detail quite soon.
As an appetizer, consider the load of a seamount on the Pacific plate. The simplest description of
the problem is the deflection, w(x), of an infinitely long rigid “beam” of lithosphere with elastic
thickness, d, in response to a point load, q(x).  The elastic thickness is less than the total oceanic
lithospheric thickness h.  Why is this (recall the “brittle ductile transition” you likely heard about
in a class somewhere…)?  Why is it ok to assume an infinite length and a point load here?
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The Model :
Dwiv (x) + Δρgw = q(x)
 with the given approximations becomes :
Dwiv (x) + (ρmantle − ρwater )gw(x) = Voδ (x)
where 
the 1st term is the resistance to bending
the 2nd is the stabilizing buoyancy force (restoring force)
the 3rd term is the point force.
D is the flexural rigidity (∝ E, elastic modulus (1010  Pa),  and ∝  d3) [N m]
Vo is an applied stress [N/m2 ]



Let’s simplify the equation a bit further to bring out the physics of what is going on.  Divide through by Vo.
Next, let’s take advantage of an approximately constant lithospheric thickness h = 200 km.  This way we
can scale all our deflections to this thickness.  To do this, let w’ = w/h and x’=x/h, where the primed
variables are dimensionless (scaled) lengths.  Substitute these expressions for w and x and apply the chain
rule to get a new 4th order ode:
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This procedure is called non-dimensionalization and scaling.  Notice that a consequence of what we have
done is the terms in parentheses indicate explicit relationships between a driving and a retarding stress:
(Flexural strength / Imposed stress) and (Restoring buoyancy / imposed stress).  This procedure allows you
to relate the main driving/retarding forces to individual terms in the ode.  The main thing to pay attention to
is whether (D / Voh3) is large or small compared to (Δρgh / Vo).

Take the Fourier transform of both sides of this equation and find the transfer function relating the
deflection response to the input force as a function of wavenumber.  Plot the magnitude or modulus of the
transfer function as a function of wavenumber (kh) for arbitrary (Vo), (Δρgh) and (D/h3 ≈ Ed3/h3),
conditions. Note that d is usually less than or equal to about 1/2h. Δρ is around 3000.  Now vary d between,
say, 1 km, 10 km, 50 km and 100 km.  What do you learn? Is the amplitude of the flexural response the
same for all wavelengths as you increase or decrease d?  Asked differently, describe the amplitude filtering
characteristics of your solutions for different d.  For each d, for example, describe the situation when the
wavelength of the deflection is much smaller than, comparable to, or larger than h.


