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TRANSVERSE ISOTROPY OF THE UPPER MANTLE IN THE VICINITY
OF PACIFIC FRACTURE ZONES

By ROBERT S. CROSSON AND .l'\IKOLAS 1. CHRISTENSEN

ABS'l'RACT

Several recent investigations suggest that portions of the Earth's upper mantle
behave anisotropically to seismic wave propagation. Since several types of anisot-
ropy can produce azimuthal variations in Pn velocities, it is of particular geophysical

interest to provide a framework for the recognition of the form or forms of anisot-
ropy most likely to be manifest in the upper mantle. In this paper upper mantle

material is assumed to possess the elastic properties of transversely isotropic
media. Equations are presented which relate azimuthal variations in Pn velocities
to the direction and angle of tilt of the symmetry axis of a transversely isotropic
upper mantle. It is shown that the velocity data of Raitt and Shor taken near the

Mendocino and Molokai fracture zones can be adequately explained by the
assumption of transverse isotropy with a nearly horizontal symmetry axis.

INTRODUCTION

In the most general anisotropic elastic solid 21 independent constants are required
to describe the equations of motion. Examples of materials with this type of behavior
are crystals possessing triclinic symmetry. For many materials the existence of sym-
metry elements in the elastic properties leads to the vanishing of some elastic constants
along with simple algebraic relations between others. In the limiting case of an iso-
tropic solid only two independent constants are required for a complete description of
elastic behavior. Isotropic elasticity, for which '\'ave velocities are independent of
propagation direction, is generally assumed for simplicity in seismological investiga-
tions of the Earth's interior. This assumption is reasonable if the material under in-
vestigation possesses no crystalline structure, or if it consists of an aggregate of crystals
in which the anisotropic properties of each crystal are averaged out over sufficiently
large volumes.

A number of recent papers (e.g., Hess, 1964; Backus, 1965; Cleary and Hales, 1966;
Bolt and Nuttli, 1966; Cleary, 1967) have reported azimuthal variations in Pn veloci-
ties or apparent source terms from nuclear explosions and seismic refraction studies.
It is possible that, at least in part, these azimuthal variations are related to anisotropic
elastic properties of rock of the upper mantle.

Laboratory investigations have shown that many rocks are highly anisotropic to
ultrasonic wave propagation. Birch (1960, 1961) found that compressional wave veloci-
ties vary ,,,ith propagation direction in dunites and he related this anisotropy to pre-
ferred olivine orientation using the elastic properties of single crystal olivine measured
by Verma (1960). Later Hess (1964) postulated that variations with azimuth of Pn

velocities supplied by Raitt (196:3) and Shor (1964) for the ::'IIendocino and :VIaui areas
of the Pacific were due to preferred olivine orientation.

Backus (1965) developed the theory for Pn and Sn propagation in the most general
type of anisotropic upper mantle. He concluded that Pn velocity data of Raitt and

Shor for the :\lendocino and ::'Ilolokai fracture zones of the Pacific (presented in both
the Hess and Backus papers) are most readily explained by small anisotropy of the
upper mantle. Using these data, Backus evaluated ;) of the 21 elastic tensor coeffi-
cients for the upper mantle in the vicinity of the fracture zones.
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A number of authors have suggested that the upper mantle as well as possibly some
regions of the crust may be transversely isotropic (e.g., Stoneley, 1949; Anderson,
1961; Helbig, 1966). Transversely isotropic media possess an axis of symmetry such
that all planes containing the axis are equivalent. This type of anisotropy is perhaps
the simplest of all forms owing to the axis of symmetry. Love (1944) and .Musgrave
(1954, 19;j9) among others have treated the theory of wave propagation in materials
with transversely isotropic symmetry.

Transverse isotropy may result from the geometry of layering alone (Backus, 19(2)
or it may be an intrinsic rock property arising from preferred crystal orientation. Other
structural characteristics can also be conceived which would produce transverse
isotropy. Preferred crystal orientation which is usually thought to be a function of
existing or previous stress or strain conditions may be directly related to layering as
is the case with sediments which have been compacted under axial stress normal to
layering. Most authors postulate transverse isotropy with a vertical symmetry axis,
expressing or implying either a direct connection between crystal orientation and hori-
zontallayering or assuming that the geometry of horizontal layering alone is responsi-
ble for transverse isotropy. The assumption of a vertical symmetry axis for transverse
isotropy results in considerable mathematical simplification of the problem but it is
obvious that azimuthal variation of seismic velocities cannot be explained by this
type of model. Hmyever, Christensen and Crosson (1968) find evidence from both

laboratory velocity measurements and petrofabric studies that transverse isotropy
may be an intrinsic mode of elastic behavior for olivine-rich rocks, possibly reflecting

the elastic properties of upper mantle rocks of similar composition. Thus the anisotropy
(transverse isotropy) of the upper mantle need not be related to layering or other
spherically symmetric earth properties. In a laterally inhomogeneous upper mantle,
changes in anisotropy from region to region might be expected due to changes in ori-
entation as suggested by Christensen and Crosson. It is therefore desirable to examine
the implications of transverse isotropy in a more general framework which allows for a
non-vertical symmetry axis.

In this paper the theory of Backus (1965) is adapted to the case where the mantle is
transversely isotropic with unrestricted orientation of the symmetry axis. We show how
certain parameters of the system such as the direction and angle of tilt of the sym-
metry axis can be estimated from the observed velocity distribution if reasonable
assumptions are made regarding the symmetry axis velocity. Furthermore for certain
cases, limits can be placed on these parameters without making prior assumptions. We
find that the P n velocity data of Raitt and Shor can be satisfactorily interpreted as
being due to a transversely isotropic upper mantle. Some sample values are calculated
for the angle of tilt of the symmetry axis for 1\yo different models corresponding to the
symmetry axis as slmy and fast propagations directions respectively. The data of
Raitt and Shor are found to be consistent with the transversely isotropic model of the
upper mantle presented by Christensen and Crosson.

THEORY

Using a perturbation technique, Backus developed a first order theory for Pn velocity

as a function of azimuth over a general anisotropic upper mantle. If the stress-strain
relationship for a general elastic medium is (using summation convention)

(1)

.
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(generalized Hook's Law) where Tij and (Jij are the stress and strain tensors respec-
tively, p is the density, and r ijkl is the elastic tensor in cartesian coordinates, the prob-
lem of plane wave propagation may be reduced to the solution of the eigenvalue prob-
lem (Backus, 1965)

(2)

Bil = r ijkl VjVk , V2is the squared-phase velocity and Si is the particle motion vector.
Vj is a unit vector in the direction of the wave vector kj, hence Vj = kj/l kj I. The
three eigenvalues of equation (2) represent the squared phase velocities of the three
principle modes of propagation for any given propagation direction specified by Vj .
The associated eigenvectors represent the particle motion for each mode.

r ijkl has 21 independent coefficients for the most general type of anisotropic elastic
body. As the symmetry of the material increases the number of independent coeffi-
cients diminishes correspondingly.

The essential part of Backus' theory is representation of the anisotropic elastic ten-
sor, r ijkl , as the sum of an isotropic tensor, dn, , and a small anisotropic perturbation
tensor,

'Y ijkl ,

r ijkl = dnl + 'Y ijkl . (3)

Substituting equation (3) into equation (2) and expanding the eigenvalues and eigen-
vectors of (2) into isotropic terms plus higher order anisotropic correction factors,
Backus showed that correct to first order in the anisotropy, the deviation of the
squared phase velocity for P waves, Vp2,from the square of an assumed isotropic veloc-
ity, c/, is 'YijklViVjVkVlso that

(4)

For a cartesian coordinate system in which the xlx2-plane is horizontal with X3 verti-
cally downward the expansion of equation (4), when Vj lies in the horizontal plane at
an angle cJ>from the Xl axis (refraction shooting), results after some manipulation in

V1'2(cJ» = C1'2 + A + C cos 2cJ>+ D sin 2cJ>+ E cos 4cJ>+ F sin4cJ>. (5)

The coefficients A, C, D, E, and F are given in terms of the elements of 'Yijkl byequa-
tions (22) of Backus.

The criterion of validity of this first order theory is that the anisotropy shall be
sufficiently small so that the group and phase velocities are approximately equal, i.e.,
the direction of energy propagation is essentially normal to the "\yave fronts". The
observed velocity variatiom; of 10 per cent or less are \\"ithin the validity of the theory.

Suppose now that the medium is transversely isotropic, possessing an axis of sym-
metry about \yhich the wave velocities are independent of direction. Since for a trans-
versely isotropic medium the coefficients of t he elastic tensor are most conveniently
expressed in a material oriented coordinate system, we define a primed coordinate
system with the x/ axis parallel to the axis of material symmetry. Then P waves
propagating in the Xl'X2'-plane are pure mode with constant velocity. The perturbation
elastic tensor expressed in the primed coordinate system is designated 'Y;jkl and the
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nOli-zero elements are readily identified from the well-known theory of transversely
isotropic solids (e.g., Anderson, 19(1). Only five elements of -Y;Jkl are independent.
Table 1 gives the relationships between the possible permutations of the non-zero
elements of -Y:jkl and the commonly used dual index notation for the elastic constants
(Cij) .

Figure 1 shows the specified relationship between the primed and unprimed co-

TABLE 1
COlmEsPoNDENCE O~' ELASTIC COEFFICIE:\fTS

I
112l'
I

')'2112
I

)'1221
I

12121

-~._- ~-~

v

(SYMMETRY AXIS)

FIG. 1. Coordinatc axes with relationships between material oricnted system (primed), earth
oriented system (unprimed), and the propagation vector;;.

ordinate systems. The direction of the :CIaxis is the direction of the vertical plane con-
taining the symmetry axis. The XI and X2 axes lie in a horizontal plane which is assumed
parallel to the Moho beneath the oceans. The propagation vector Vj for P n waves is in
the :cI:L'2-plane and lies at an angle <pfrom the XI axis. The symmetry axis is tilted ()

from the vertical. For this geometry, "/ijkl is expressed in terms of -Y:jkl through the
tensor transformatioll,

I
-yijkl = airnajnakoalp"/rnnop , (6)

where aij is the coordinate transformation given by

aXi
aij=ax"

J
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From Figure 1 it is clear that

[
cos 8 0

aij = 0 1
- sin 8 0

sin 8

]
o .

eos 8

(7)

Substituting equation (6) into (4) we may write

/

= aimajnakooZp'YmnQPViVjVkVZ . (8)

Referring again to Figure 1 it is clear that the components of the unit vector in the
direction of propagation, Vj , are

Vj = (cos C/>, sin c/>,0). (9)

Equation (8) may be expanded out in a straightforward but somewhat lengthy opera-
tion. Using equations (7) and (9) in addition to the relationships of the coefficients
summarized in Table 1,

+ Cl3 {2 cos2 8 sin2 8 cos4 c/>+ 2 sin2 8 sin2 c/>cos2 8}

+ C33 I sin4 8 cos4 c/>! + C44 [4 sin2 8 sin2 c/>cos2 c/> + 4 cos2 8 sin2 8 cos4 c/>}

(10)

which upon rearranging may be written

(lla)

where

(llb)

(llc)

(lld)

Expansion of the cosine and sine terms in equation (lla) yields the further reduction
to a truncated even Fourier series,

Q(c/» = Do + D2 cos '2c/>+ ])4 cos 4c/>, (12a)

where

(12b)
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(12c)

(12d)

The ::;quare of the P-\mve velocity as a function of azimuth is then \\Titten in the
particularly simple form

(13)

Equation (13) is a special case of the function derived by Backus (equation (.5». The
coefficients Do , D2 , D4 , which can be obtained numerically by fitting (1:3) to the ob-
servational data, are related directly through equations (12b, c, and d) to the elastic
constants of the sy"tem and the angle of tilt of the symmetry axis, (J. Kote that only
four of the five elastic con"tants appear in equations (12).

Investigation of Q(4)). Since (2(4» has period 7rwe need only investigate Q(4)) over the
range 0 ~ 4>~ 7r/2. (;11governs the velocity of propagation normal to the axis of sym-
metry and may be calculated immediately from equation" (12b, c, and d).

C11= Do - D2 + D4 = Q(::I::7r/2). (14)

Equation (14) expre"ses the physical consideration that for a transversely isotropic
solid, a distribution of velocities in any given plane will always include the velocity
normal to the symmetry axi".

i\Iultiplying equation (12c) by sin2 (J and combining with equation (12d) we obtain
the quadratic equation in sin2 (J,

(15)

which has the solution

(16)

In equation (16), (;:,:\i" the only unknown parameter. By assigning a value to C33,
which i" equivalent to estimating the velocity along the "ymmetry axis, we may calcu-
late "in" (Jand hence (J.For physically pos"ible values of (Jit is apparent that

(17a)

and

o ~ - (D2 - 4D4) ::I: [(D2__-:-4D4)2 - 8D4((;11 - c:J3)f2
~ 1.- (Cn - c:J:;)

(17b)

In addition if (J = 7r/2 it is clear that (2(0) - Q(7r) - C33 = Do + D2 + D4 ; the sym-
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metry axis velocity is observed directly in the distribution of velocities. Thus Cll -
C33= - 2D2 and (16) becomes

1 =
- (D2 - 4D4) ::!:: [(D2 - 4D4)2 + 16D2Dll2

-2D2

-
- (D2 - 4D4) ::!:: ID2 + 4D41

-2D-'
(17c)

Equations (17) are used to determine the appropriate sign in equation (16) and also
to limit the range of possible values for C33 .

For convenience in the ensuing discussion we first examine the extrema of the func-
tion Q(if». dQ/dif> vanishes at if>= 0, if>= 1r/2, and if>defined implicitly by

-D2
cos 2if> = -

D
,I 4D41 > I D21 ;

4 4
(18)

thus these points represent either maxima or minima. The sign of (12Q/dif>2at these
points indicates the following characteristics for these extrema: (a) if> = 0 (or 1r),
maximum if D2 + 4D4 > 0, othenyise minimum; (b) if> = 1r/2, maximum if D2 -
4D4 < 0, otherwise minimum; (c) extrema defined by equation (18), maximum if
D4 < 0, otherwise minimum.

The difference between the extreme values at if> = 1r/2 and if> = 0 is

Q (~) - Q(O) = -2D2. (19)

Similarly by straightforward substitution into equation (12a) the difference between
the extreme value defined by equation (18) and the value at if>= 0 is

(20)

and the difference between the extreme value at if>= 1r/2 and the value defined by
equation (18) is

(21)

For selecting C33in evaluating equation (16) there are two choices of practical inter-
est, C33< Clland C33> Cll . The selection of one or the other of these alternatives will
be coupled with the original selection of the plane containing the symmetry axis in
fitting (13) to the observed data. There is no information in the observational data to
indicate which choice of models is correct.

Model I. (C33 < Cll) For this model we assume the symmetry axis is the slow velocity
direction and Q(O) < Q(1r/2). From (19) we see that D2 < 0; however D4 may be >
or < O.

If D4 < 0, equation (17a) is satisfied and the radical in (16) is never imaginary. In
order that () = 1r/2 when (Cll - C33) = -2D2, we see from equation (17c) that the
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positive sign must be chosen in (16). Furthermore in order that (17b) be satisfied with
the positive sign selection,

or

(22)

The inequality (22) means physically that the observed difference in velocity between
the symmetry axis azimuth and the azimuth normal to the symmetry axis is less than
or equal to the true difference in velocity between the symmetry axis and the normal
to the symmetry axis. The discrepancy is a function of the angle of tilt of the sym-
metry axis. It is of interest to determine if a lower limit exists for O. Since sin20 is
uniformly decreasing with increasing (Cn - C33), (Cn - C33)has no a priori maximum
value. In the limit as (Cn - C33)~ 00, sin2 0 ~ 0, hence 0 ;:;:;0 ;:;:;1r/2. Note that
there always exists a sign ambiguity on 0, corresponding to the fact that the symmetry
axis tipped in the positive direction is indistinguishable from the axis tipped an equal
amount in the negative direction.

'faking no,v the case D4 > 0, the quantity (Cll - CZ3) must be restricted in magni-
tude to avoid imaginary values of the radical in equation (16).

(23)

If 14D4 I < ID2 I, the positive sign must be adopted in equation (16) in order that
(17c) is satisfied when (Cn - C33) = - 2D2 . For this choice of sign, equation (17b)
implies that

(24)

Since 1/(8D4)(D2 - 4D4)2 ~ -2D2, we see that combining (23) and (24) results in

(25)

Sin20 assumes a minimum value, 8D4/1 D2 - 4D4 /, at the upper limit of (Cn - C33).
Thus

.' -1 [ I8D41
J

1/2
< (j < "!.

.
sm

ID2 - 4D41 = =:2'
(26)

If 14D41 > ID2 I then (17c) requires that the negative sign be selected in (16). A
secondary minimum defined by equation (18) now exists. Equation (17b) with the
negative choice of sign implies that

(27)

and the minimum value of sin2 0 is 4D4/1 D2 - 4D4 /, obtained by evaluating (16) in
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the limiting case as (Cn - cd ---+O. Hence

[ I I
J

I12

"

-I 4D4 '< <
7r

sm
ID2 - 4D41 =

()
= 2'

(28)

For certain values of the coefficients D2 and D4 we are restricted in our choice of
Cn. Furthermore the angle of tilt of the symmetry axis may be restricted to a range of
values strictly on the basis of observed data. All of these considerations have reason-

TABLE 2
SUMMARY OF RESULTS FOR COMP1:TING TILT ANGLE FIWM VELOCITY FlJNCTIONS

ell - C33 14D.I:ID'1 Sign
I

Limits on (Cll - (33) Limits on (J

I4D4 ! < I D2 I
~I

+
I

(Cn - C33) ~ -2D2 o ~ 0 ~ 1r/2

>0 <0 <0 i
14D4I > ID21 ~I (cn - C33) ~ -2D2

I

I. ( 13D,I 1112
14D, I < ID2 I +

1-2D~ ~ tn - C33) Ism-'ll D2 -4D-:I) ~ 0 ~ 1r/2

= 3D,
(D2 - 4D4)1

I

isin-,
[

_~:4.Q41 .11I2:s;
0 :s; 1r/2

-=-
(Cn - c~~ -2D2 ID2 - 4D,IJ --

~ 2. . -I( I 3D, I 1112
< < '14D,I < ID2 I - 3D,

(D2 - 4D4) Ism II D2 - 4D,IJ =
0

= 1r/2

!~ (cn - (33) :s; -2DJ- I
i. ( 14D4 [11/2

14D, I > [D2 [ + (Cn - Ca,) ~ -2D2 ISIll-lll D2 ~- 4D-:-IJ ~ 0 ~ 1r/2

~ -2D2 I

I

I

--

(Model
I)

<0 >0

I_~D'I > [D2!

<0 >0 <0

-----.-

(Model
II)

I4D, I < 1 D2 1 - I (Cn - C33)

>01>0
14D41 > [D2! I-I

(Cn - C3')

able physical interpretations in terms of the geometry of the velocity surface for a
transversely isotropic medium.

Model II. (Cn < C33) The symmetry axis is the fast velocity direction. This model is
associated with D2 > 0, the horizontal projection of the symmetry axis is a fast velocity
direction. Again depending on the sign and magnitude of the coefficient D4 , several
alternative cases arise. Applying the same reasoning as outlined for model I, a similar
set of restrictions is derived. These are summarized, along with those for model I, in
Table 2.

Comparison with Observation. The observational data of Raitt and Shor on directional
dependence of P n velocities from near the :\Iendocino fracture zone and :\Iaui were
fitted by Backus (1965) to the following truncated Fourier series, :\Iendocino
vp2(if;) = 67.722 + ~.336 sin 2if; - 3.806 cos 2if; - 2.163 sin 4if; + 0.492 cos 4if;; 2Vlaui
vp2(if;) = 67.900 + 1.698 sin 2if; - 4.786 cos 2if; - 0.876 sin 4if; + 3.130 cos 4if;; and
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Mendocino combined with Maui vp2(if;) = 67.663 + 2.100 sin 2if; - 3.796 cos 2if; -
1.677 sin 4if; + 1.205 cos 4if;. if; is the azimuth measured from north, vp is in km/sec
and Backus assumes Cp2 = 67.750 km2/sec2.

Letting cjJ= if; - ~ in equation (13), we may find an ~, DQ, D2, and D4 , for each
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FIG. 2. Comparison between Backus' fit of :\lendocino data, shifted 17.5 degrees (dashed line),
and transversely isotropic model: vp' = 67.722 - 4.414 cos '2JJ+ 2.218 cos 4/1.
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Comparison between Backus' fit of Maui data, shifted by 6.8 degrees (dashed line), and
transversely isotropic model: vp' = 67.90 - 4.898 cos '2JJ+ 3.258 cos 4/1.

of these three cases which makes equation (13) a very close fit to the functions given
above. Thus there exists a change of coordinates which reduces the antisymmetric
coefficients in Backus' curves to relatively small values. Alternatively, equation (13)
could have been fitted directly to the original data by ordinary least squares procedures.
In this event, ~ should be made an additional parameter in minimizing the sums of
the squared error. The velocity functions resulting from matching Backus' curves are
given for the Mendocino, .\laui, and combined cases in Figures 2, 3, and 4 respec-
tively, and compared to the original curves. The shift of coordinates, ~, required to
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---~
j\1endocino Mendocino ::\Iaui Maui Combined Combined

Model I Model II Model I Model II Model I Model II

--.---.---

Direction of symmetry axis 17.5°W 72.5°E G.8°W 83.2°E 14.00W 7G.OOE
from X orth

Do -0.028 -0.028 0.150 0.150 -0.087 -0.087
D, -4.414 4.414 - 4 .898 4.898 - 4 .307 4.307
D4 2.218 2.218 3.258 3.258 2.052 2.052
Cn G.604 -2.224 8.306 -1.490 6.272 -2.342

Limits on 0 55° ;£ 0 0° ;£ 0 58° ;£ 0 0° ;£ 0 54° ;£ 0 0° ;£ 0
;£ 90° ;£ 90° ;£ 90° ;£ 90° ;£ 90° ;£ 90°

Assumed value of C33 -1. G27 7.653 0.075 8.387 - 1. 95!J 7.535
Calculated 0 7Go 79° 74° 87° 78° 78°

~------ --

TRANSVERSE ISOTROPY OF THE UPPEH MAXTLE 69

achieve a fit is indicated in each case. The new coefficients Do , Dz and D4 , assuming
cpz = 67.7.5 in each case, are presented in Table 3. Figures 2, 3, and 4 are appropriate
only for model I of the previous discussion since the symmetry axis direction (cf> = 0)
is a slow velocity direction. The curves for model II are obtained by merely translating
the abscissae of these diagrams through 90 degrees such that the maximum velocity

- TRANSVERSE ISOTROPY

8.6 - - - - GENERAL ANISOTROPY
u
~

.....
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.><
>-,8.4
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U
o
~ 8.2
>

8.0

30° 60° 90° 120° 150°
AZIMUTH FROM SYMMETRY AXIS

FIG. 4. Comparison between Backus' fit of Mendocino and :VIaui data combined, shifted by 14.0
degrees (dashed line), and transversely isotropic model: Vp2 = 67.G63- 4.::107cos 20 + 2.052 cos 40.

TABLE 3

NUMERICAL PARAMETERS AND RESULTS FOR VARIOUS AREAS

falls at cf>= O.This coordinate shift results only in changing the sign of D2 in equation
(13).

From the derived coefficients Do ,D2 , and D, \\"emay proceed immediately to evalu-
ate the range of coefficients and tilt angle, e, using the considerations developed in
the previous section and summarized in Table 2. For model I, in each case we have
Dz < 0, D4 > 0, and 14D41 > ID21, hence (ClJ - C33) ~ -2D2 and the negative sign
must be adopted in equation (16). Accordingly the angle of tilt, e, must have a range
of possible values lying between about 55 and 90 degrees for all cases. Figure 5 is a
plot of e as a function of (Cll - C33) for the three cases considered. In each case the 90
degree tilt is reached when (Cll - C33)is equal to the observed difference in squared
velocities. X ear the maximum angle of tilt the calculated angle is of course extremely
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sensitive to the selection of C33. Assuming a reasonable value of C33in each case, such
that for the examples considered the difference between maximum and minimum veloci-
ties is 0.5 km/sec, we arrive at the angles of tilt listed in Table 3.

Turning to model II, Dz > 0 and we see from Table 2 that ICn - C33 I ~ 12D21
and no restrictive limits can be placed on the angle of tilt, e. Again the results have
been tabulated in Table 3 and tilt angles have been calculated by choosing C33such
that the difference between maximum and minimum velocities (i.e., propagation nor-
mal to the symmetry axis and parallel to the symmetry axis) is approximately 0.6
km/sec. These assumptions for both models result in tilt angles approximately 80
degrees from vertical.

Note that model II gives us more freedom in selecting the symmetry axis velocity.
However if model I is correct we have valuable constraints on the selection of C33and
corre:,>ponding limits on the angle of tilt. With this exception, the choice of model:'>and

o -1 0
("-(33

8 10

FIG. 5. Calculated valueH of Hymmetry axis tilt as a function of choice of Cn - C33using model 1.

selection of a reasonable compre:'>sional '\"ave velocity for propagation parallel to the
symmetry axis must to a large extent rely on laboratory measurements of elastic wave
velocities and related petrofabric studies. This velocity will be dependent upon the
degree of orientation of olivine axes as ""ell as which axis concentrates in the direction
of the transverse isotropic :'>ymmetry axis. :Vleasurements by Christensen (1966) of
compressional wave velocities for a dunite from Addie, N. C. show a low velocity for
propagation parallel to the symmetry axis (type I transverse isotropy) and a maximum
velocity difference of 0.5 km/sec at ;) kb. Reported petrofabric analyses also suggest
that type I transverse isotropy may be the most important for olivine-rich rocks
(Christensen and Cro:,>son,1968).

DISCUSSIO.'\ AXD COXCLUSIO.'\S

We await further data and more extensive analysis before attempting to adequately
correlate orientation data with geotectonic parameter:'> of an area. However it is signifi-
cant that the symmetry axis is nearly horizontal in the vicinity of the fracture zones
(see Hess, 1964, for locations of the profiles). This is in accord with the postulates of
Christensen and Crosson (1968) and earlier by Hess (1964) that fracture zones repre-
sent anomalously stre:'>sed area:,> which may result in orienting or reorienting the ma-
terial of the upper mantle.
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Several conclusions may be drawn at this stage:
(a) The data of Raitt and Shor as presented by Hess (1964) and Backus (1965) is

adequately explained by a "tilted" transversely isotropic model such as postulated by
Christensen and Crosson (1968). However within this framework, sub-models are pos-
sible.

(b) Under the assumption of transverse isotropy, the data of Raitt and Shor indi-
cate a nearly horizontal symmetry axis.

(c) The transversely isotropic model is comparatively simple, with only 5 parameters
as contrasted to 21 for the completely general case. Consequently where the model is
valid we may obtain more complete knowledge of the elasticity from limited observa-
tional data than is possible for more complex models.

(d) For some sub-models the observational data is sufficient to place valuable re-
straints on the range of axis tilt and symmetry axis velocity under the assumption of
transverse isotropy.

(e) Much additional field and laboratory data is necessary to determine the validity
of a transversely isotropic model of the upper mantle and to distinguish between the
various alternative sub-models.
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