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Abstract. The velocities of two Devonian-Mississippian shales have been measured to confining
pressures of 200 MPa in a laboratory study of anisotropy and wave propagation. Both samples
were found to be transversely isotropic at elevated pressures with the main symmetry axis per-
pendicular to bedding. The elastic constants of the shales were used to calculate phase and group
velocity surfaces as a function of angle to the bedding normal. Multiple velocity measurements
in non-symmetry directions, not undertaken in previously published studies of shales, have been
used to confirm features observed on calculated vclocity surfaces. It is demonstrated that velocities
measured in non-symmetry directions are phase velocities. Group velocities were found to be sig-
nificantly lower than the corresponding phase velocities of the shales due to their high anisotropies.
Shear wave splitting was found to be negligible for propagation directions within approximately
30° of the bedding normals.
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1. Introduction

~:,

Recent studies, including shear and compressional reflection profiling, refrac-
tion profiling, and seismic tomography, have found that velocity anisotropy is
an important crustal property (e.g., Banik, 1984; Crampin, 1985; Justice, 1986;
Winterstein, 1986, 1990; Thomsen, 1986, 1988; Carrion etal., 1992). Pervasive
velocity anisotropy in the upper crust due to both mineral alignment and aligned
vertical cracks has been documented in many field experiments (e.g., White
et al., 1983; McCormack et al., 1984; Lynn and Thomsen, 1990; Brocher and
Christensen, 1990) emphasizing the need for further investigations of anisotropy.
Laboratory studies under controlled conditions can provide important informa-
tion regarding the origin, symmetry, and magnitude of anisotropy vital to the
interpretation of the field data. In this study, the ultrasonic velocities of two
highly anisotropic shales were measured to pressures of 200 MPa and used to
calculate elastic constants, phase velocity surfaces, and group velocity surfaces
of the samples. Multiple velocity measurements in non-symmetry directions, not
undertaken in previous studies of shales, have allowed verification of calculated
phase and group velocity surfaces.

2. Previous Studies

Seismic wave propagation in anisotropic rock forming minerals has been studied
for many years (e.g., Verma, 1960; Alexandrov and Ryzhova, 1961; Kumazawa,
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1969; Weidner et al., 1975; Pacal.o et al., 1992). Studies .ofwave propagati.on have
a1s.obeen undertaken in anis.otropic crystalline rocks such as dunites, perid.otites,
an.orth.osites, and bronzitites (e.g., Christensen, 1966; Babuska, 1972; Baker and
Carter, 1972; Christensen and Ramananant.oandro, 1971; Crossan and Un, 1971;
Christensen, 1984; Seront et al., 1993). Because .of interest in upper mantle
anis.otropy (Hess, 1964), mast .of these 1ab.orat.ory studies have inv.o1ved .olivine
and .or pyroxene rich rocks p.ossessing hexag.onal .or .orth.orh.ombic symmetry.

Lab.orat.ory studies .of anis.otropy and wave propagati.on in fine grained rocks
are unc.omm.on since mineral .orientati.on inf.ormati.on in these rocks can .only be
.obtained by X-ray techniques. Janes and Wang (1981) measured the vel.ocities
.of tw.o Cretace.ous shales from the Willist.on basin. They f.ound that the samples
behaved as transversely is.otropic s.olids with the main symmetry axis perpen-
dicular t.o bedding. La et al. (1986) calculated the elastic c.onstants .of several
racks, including a Chic.opee shale sample. Sana et al. (1992) measured ultras.onic
vel.ocities .of several granites which p.ossessed .orth.og.onal symmetry caused by
.orth.og.onal sets .of micra fractures. Phase vel.ocity surfaces were calculated using
the elastic c.onstants .of the samples which sh.owed fairly g.o.od agreement with
vel.ocities measured at various angles t.o the symmetry axes (Sana et al., 1992).
Vernik and Nur (1992) measured the vel.ocities .of a suite .of ker.ogen rich shales,
calculating elastic c.onstants and phase vel.ocity surfaces. They f.ound the sam-
ples t.o be transversely is.otropic with the main symmetry axis perpendicular t.o
bedding.

3. Experimental Technique

The tw.o shale samples examined in this study were taken fr.om the Millb.or.o
member .of the Dev.onian-Mississippian Chattan.o.oga f.ormati.on, exp.osed in the
Th.orn Hill sedimentary secti.on .of eastern Tennessee (Walker, 1985). Bath sam-
ples are well indurated and fresh, with p.orosities .of 1.0% .or less (J.ohnst.on and
Christensen, 1992). The shales are fairly h.om.ogen.ous in c.omp.ositi.on and display
very fine laminati.on due t.o clay minerals aligned parallel t.o bedding, qualities
which make them ideal far a laborat.ory-scale study .of anis.otr.opy and wave
propagati.on.

In the lab.orat.ory multiple 2.54 cm diameter cares were taken parallel and
perpendicular t.o bedding fr.om each rack. Cares were als.o taken at 45° t.o bedding
and at a range .of .other angles, when p.ossible. The cares were then trimmed and
p.olished int.o right circular cylinders between 2.0-4.0 cm l.ong with ends flat
and parallel t.o within 0.005 cm. The lengths, diameters, and weights .of the
cares were measured bef.ore jacketing the cares with capper t.o is.olate them fr.om
pressure fluid. Vel.ocities were then measured t.o hydrostatic c.onfining pressures
.of 200 MPa using the pulse transmissi.on technique (Birch, 1960) and shear and
c.ompressi.onal wave transducers .of 1.0 MHz res.onant frequency as s.ources and
receivers. Vel.ocities measured. using this meth.od are believed t.o be accurate t.o
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within 1.0% (Christensen, 1985). Velocities were measured under dry conditions
primarily because of the low sample porosities.

Velocities of the shales as a function of confining pressure are given in Table
I for selected propagation directions. At elevated pressures, both samples are
transversely isotropic with the main symmetry axis perpendicular to bedding.
Extreme anisotropy in both compressional and shear wave velocities is present
and can be attributed to clay mineral alignment parallel to bedding. For both
samples, the five independent elastic constants characteristic of a transversely
isotropic solid are presented in Table I. These were calculated using the velocity-
stiffness relations given in Musgrave (1970).

4. Phase Velocity Surfaces

The calculation of phase velocity surfaces (Musgrave, 1970) as a function of
angle to the bedding normal for both shales is useful for visualizing three-
dimensional wave propagation. Three velocity surfaces are found in rocks exhibit-
ing transverse isotropy caused by mineral alignment parallel to bedding: a quasi-
compressional wave surface (Vp), a quasi-shear wave surface for shear waves
vibrating in the plane perpendicular to bedding (Vsv), and a surface for shear
waves vibrating parallel to bedding (Vsh). Note that for propagation directions
parallel and perpendicular to bedding all waves are "pure" modes. The equations

. for these surfaces, taken from Auld (1990), are as follows:

Vp=
Cll sin20 + C33 Cos2 0 + C44 + V[(Cl1 - C44) sin2 0 + (C44 - C33) COS2Of + (C13 + C44)2 sin2 20

2p

Vsv = Cll sin2 0 + C33 cos2 0 + C44 - V[(Cn - C44) sin2 0 + (C44 - C33) COs2Of + (C13 + C44)2 sin2 20

2p

Vsh=
!(Cl1 - Cl2) sin2 0 + C44 cos2 0

P

In these formulas, e is the angle between bedding normal and wavefront
normal and p is sample density in g/cm3. The calculated velocity surfaces are
dependent upon the shear and compressional velocities measured parallel and
perpendicular to bedding, and also upon the compressional wave velocity mea-
sured at 45°, which is used to determine the C13 constant. Calculation of these
curves is straightforward, with the only difficulty being the measurement of a
representative 45° compressional wave phase velocity as the C13 constant, and
hence the Vp and Vsv phase velocity surfaces, are sensitive to this value.

Usil1g the equations presented above, shear and compressional velocity sur-
faces for TH-26 and TH-51 at 100 MPa confining pressure were calculated and
are shown in Figures I and 2. Velocities measured along the axes of symme-
try of the samples, at 45° to bedding, and at other angles to bedding are also
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Fig. 1. Calculated (lines) and observed (symbols) phase velocities as a function of angle to
bedding nonnal for TH-26. Average differences between observed and calculated Vp, Vsv, and Vsh
velocities are 1.8%, 2.9%, and 0.8%, respectively.
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Fig. 2. Calculated and observed phase velocities for TH-51. Average differences between observed
and calculated Vp, Vsv, and Vsh velocities are 1.7%, 2.4%, and 2.5%, respectively.
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displayed. Unequal angular coverage of measured velocities is due to breakage
of cores during preparation and limited sample sizes. The independently mea-
sured velocities agree well with the calculated velocity surfaces for both shales.
For TH-26 (Figure 1) the match between the calculated Vsh and measured Vsh
velocities is excellent, with an average difference (relative to measured velocity)
of 0.8%. Slightly larger differences exist between the calculated and observed
velocities for the Vp and Vsv surfaces, but overall agreement is good. For shale
TH-5l (Figure 2), good agreement is seen between observed and calculated Vp
and Vsv surfaces. The calculated Vsh surface consistently slightly underestimates
the observed velocities, but follows the same overall trend.
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Fig. 3. Calculated and observed phase velocities for TH-26 using new C13 constant (see text).
Average differences between observed and calculated Vp and Vsv velocities are 1.0% and 2.4%.
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Variations between the observed and calculated surfaces for TH-26 and TH-51
can be attributed to slight compositional variations from core to core, and also
to the phase velocity assumption (discussed below). Compositional variation can
usually be identified by sample density, which can be used as a rough indicator
of whether a given core is representative of the rock as a whole. Small pyrite
nodules are found in these shales which have a large effect on density, but little
effect on velocity. Thus, density is only a rough constraint. However, the standard
deviations of the densities given in Table I for TH-26 and TH-51 are 0.029
g/cm3 and 0.057 g/cm3, respectively, indicating that both of these rocks are very
homogenous. Figure 1 indicates that the 45° core of TH-26 exhibits somewhat
high velocities (hence a high C13 constant) relative to the other cores. This may
result in systematic errors between observed and calculated velocities for the Vp
and Vsv velocity surfaces. To investigate this possibility, a least squares line was
fit through the observed Vp measurements to estimate a 45° compressional wave
velocity and hence a new C13 constant. In Figure 3, velocity surfaces calculated
using the new, slightly lower C 13 value are shown. Overall, the match between
observed and calculated Vp and Vsv is improved, resulting in average differences
of 1.0% and 2.4%, respectively.

Several interesting features can be seen on the phase velocity surfaces of
Figures 1-3 which are worth further discussion. The calculated Vsh velocity sur-
faces indicate that a smooth increase in Vsh velocity should be seen in going from
propagation perpendicular to bedding to propagation in the bedding plane. This
is confirmed in a convincing manner for both TH-26 and TH-5l by the observed
Vsh velocities. The Vp phase velocity surfaces also indicate that a smooth increase
in compressional wave velocity should be seen in going from normal incidence
to propagation in the bedding plane. Observed compressional wave velocities
roughly confirm this trend, but exhibit scatter caused by compositional variation.
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k

Phase Velocity Sulface

Source

Fig. 4. Relationship between phase and group velocity surfaces showing phase velocity vector
(Vp), group velocity vector (Vg), and angle between wavefront normal and group velocity direction
('IjJ).Modified from Auld (1990).

The most interesting features can be found on the Vsv phase velocity surfaces.
Peaks in velocity are observed in the calculated curves for propagation at roughly
30-450 to the bedding normal. Measured Vsv velocities in the same interval are
often 0.3--0.4 km/s faster than the velocities of the normal incidence shear wave
(or the velocity of the Vsv wave propagating in the bedding plane), thus the cal-
culated peaks are confirmed, although not perfectly, by the measured velocities.
Interestingly, in the range 0-300 from bedding normal, observed Vsv velocities
are equal to if not slightly greater than the observed Vsh velocities. This finding
is predicted by the calculated velocity curves for both TH-26 and TH-51.

5. Phase or Group Velocity?

We have assumed that phase velocities are measured in non-symmetry directions
for the calculation of the curves in Figures 1-3. For cores taken in symmetry
axes directions, phase velocity is equivalent to group velocity (Musgrave, 1970).
In non-symmetry directions, the raypath (group velocity) direction is, in gener-
al, not the same as the wavefront normal (phase velocity) direction (e.g., Auld,
1990; Cheadle et al., 1991) (Figure 4). Group velocity implies point sources and
receivers, and that we are measuring the traveltime of an "envelope" of plane
waves as it travels through the sample core (Hearmon, 1961). Phase velocity
implies planar sources and receivers which generate plane waves, and that we
essentially measure the velocity of a wavefront advancing from source to receiver
(Thomsen, 1986). The question of which velocity the pulse transmission tech-
nique obtains in non-symmetry directions has been the subject of controversy,
with some believing that a group velocity is measured and others believing that
the velocity measured is more closely approximated as a phase velocity (e.g.,
Crosson and Lin, 1971; Harder, 1985; Dellinger and Vemik, 1992; Vernik and
Nur, 1992).
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Fig. 5. Group velocity surfaces for TH-26 calculated assuming group velocities are measured in
non-symmetry directions. Average differences between observed and calculated Vp, Vsv, and Vsh
velocities are 1.4%, 15.0%, and 5.7%, respectively.
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Fig. 6. Group velocity surfaces for TH-5l calculated assuming group velocities are measured in
non-symmetry directions. Average differences between observed and calculated Vp, Vsv, and Vsh
velocities are 1.1%, 25.6%, and 7.6%, respectively.

Cheadle et al. (1991) present equations for orthorhombic symmetry solids
which can be easily modified (e.g., Eaton, 1993) to calculate the Cl3 constant
of a transversely isotropic solid assuming group velocity is measured at 45°.
Figures 5 and 6 show group velocity surfaces for TH-26 and TH-5l (Musgrave,
1970) calculated under this assumption. Again, measured velocities are shown
which now show very poor agreement with the calculated values. Thus it appears
that the velocities measured in non-symmetry directions using the pulse trans-
mission technique are much more closely approximated as phase velocities, the
same conclusion as that of Vernik and Nur (1992). Additional arguments for
the phase velocity assumption include that the transducer diameters used in the
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Fig. 7. Group velocity surfaces for TH-26. Measured phase velocities shown for reference. Note
cusp on Vsv surface.
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Fig. 8. Group velocity surfaces for TH-51. Measured phase velocities shown for reference.

measurements are the same as the sample diameters (2.54 em), and the length of
non-symmetry direction samples rarely exceeded 3.0 em.

6. Group Velocity Surfaces

In Figures 7 and 8, "true" group velocity surfaces derived from the phase velocity
surfaces of Figures 2 and 3 are shown for TH-26 and TH-51 at 100 MPa confin-
ing pressure. The equations in Hearmon (1961) and Musgrave (1970) were used
to convert phase velocity vectors to corresponding group velocity vectors. Over-
all, a significant decrease in calculated velocities can be seen in non-symmetry
directions, as group velocity is usually less than phase velocity for these propa-
gation paths (Musgrave, 1970). The difference between phase and group velocity
is significant for these shales due to their high anisotropy (Table II). The peaks
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of the calculated Vsv phase velocity surfaces of TH-26 and TH-51 result in small
"cusps" (obscured) in the corresponding Vsv group velocity curves. Very large
cusps are possible for a given solid depending on the shape of the corresponding
phase velocity surface (e.g., Musgrave, 1970).

7. Conclusions

This paper represents the preliminary results of an ongoing investigation of
anisotropy and wave propagation in rocks. Future efforts will include exami-
nation of additional samples and more detailed analysis of wave propagation.
Several important conclusions can be drawn from this study regarding highly
anisotropic shales:

1) A comparison of the velocity data of Table I with previously published
shale velocity data (Table ill) emphasizes the highly anisotropic nature of
the shales examined in this paper. TH-26 and TH-51 provide important
examples of strong transverse isotropy caused by mineral alignment.

2) Multiple velocity measurements in non-symmetry directions provide impor-
tant constraints on calculated elastic constants and velocity surfaces.

3) The velocities measured in non-symmetry directions appear to be more
closely approximated as phase velocities.

4) Vp and Vsh phase velocities increase in going from normal incidence to
propagation directions in the bedding plane, with the greatest rate of increase
in the interval 20-70° from bedding normal.

5) Calculated and observed Vsv phase velocities achieve peak values approxi-
mately 30-45° from the bedding normal.

6) At near-normal incidence, approximately 0-30° from the bedding normal,
Vsv is approximately equal to Vsh. Thus, conventional common depth point
seismic data collected over highly anisotropic shales could be interpreted
assuming isotropic lithologies due to the lack of shear wave splitting at
near-normal incidence.

7) Due to the highly anisotropic nature of the shales, group velocities are
significantly lower than phase velocities.

In typical field seismic investigations, subsurface lithologies are often assumed
to be isotropic when in reality they are not. Depending on the relative anisotropy
of the given formations, this assumption can lead to significant errors in estimat-
ing depths to reflectors (e.g., Banik, 1984; Thomsen, 1986). The effects of even
mild anisotropy cannot be ignored in cross-borehole seismic tomography where
the assumption of isotropy in a transversely isotropic formation can lead to sig-
nificant imaging problems (Carrion et 01., 1992). The velocity surfaces presented
here provide details of wave propagation in anisotropic shales and serve as a
reminder of the extreme anisotropy possible in sedimentary sequences.
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Anisotropy (%) Pressure
Authors Fonnation Sample Vp Vs (MPa)
This study Chattanooga TH-26 30 35 100

TH-51 33 36 100
Jones and Wang (1981) Pierre 3200 ft. 7 23 100

Greenhorn 5000 ft. 16 24 100
Lo et aI., (1986) Chicopee Shale shale 6 5 100
Vernik and Nur (1992) Bakken 7570 ft. 21 18 70

8634 27 30
9831 18 10
10,164 19 18
10,487 24 23
10,495 17 16
10,575 25 19
10,733 23 24
10,734 21 26
10,931 30 32
10,932 22 23
11,230 15 13

II 11,246 15 13
11,280 19 14

492 JOEL E. JOHNSTON AND NIKOLAS I. CHRISTENSEN

TABLE III

Summary of published laboratory anisotropy data for shales. Anisotropy is defined as (V
max

- Vmin)/V max for a given rock sample.
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