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A Seismic Velocity-confining Pressure Relation,

With Applications
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INTRODUCTION

In a rock specimen, the constituent minerals and micro-
cracks dictate the sample’s response to stress. This
behaviour is reflected in the compressional and shear
velocities measured as a function of confining pressure
in the laboratory, and thus laboratory velocities have
been employed to solve important geologic problems. To
further this usage, an empirical equation relating velocity
to confining pressure is proposed. This equation is used
to curve-fit ¥, and ¥, data for a range of samples and
is shown to give excellent results with well-constrained
parameters. Expressing a complete V—P data set is
reduced to reporting four constants, since data inter-
polation and extrapolation are accurately performed
using this equation. Once the data are curve-fit, pressure
derivatives, velocity anisotropies and elastic constants as
functions of pressure are simply determined.

A VELOCITY-CONFINING
PRESSURE EQUATION

Compressional velocities measured as a function of
confining pressure for a Connecticut gneiss are shown in
Fig. 1. Velocities were determined using the pulse trans-
mission method of Birch [1] and described in detail by
Christensen [2]. The effect of pressure is large below
200 MPa when cracks are being closed under increasing
pressure and re-opened when the pressure is decreased
[3]- Velocity hysteresis is clearly evident in this region,
and this behaviour is generally ascribed to cracks being
more easily closed than re-opened. At high pressures,
where the influence of cracks is greatly diminished, the
slope is small. A transition between a steep and shallow
slope usually occurs between 60 and 200 MPa, and this
is calied the knee region.

The proposed empirical formula is:
V(P)= A(P/100 MPa)’ + B(1 —e~%"), 1)

where P is the confining pressure in MPa, V is the
velocity (V, or V) and A4, a, B and b are four adjustable
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Fig. 1. ¥, -Confining pressure data for a Connecticut gneiss. In this and

all subsequent figures, the circles and pulses are velocities measured

while the pressure was being increased and decreased, respectively.

Crack closure governs velocities below 200 MPa, and velocity hys-

teresis is also evident in this region.

T

parameters. This equation was obtained solely from
mathematical considerations (i.e. the shape of each
function). Figure 2 shows the effect of varying each
model parameter. The solid line is the curve generated
using typical values for each of the four parameters:
A = Skm/sec, a =0.025, B =0.60 km/sec, b =0.025/
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Fig. 2. Parametric analysis of equation (1). The solid curve is given by

the equation and represents the following typical values: 4 = 5 km/sec,

a =0.025, B = 0.6 km/sec, b = 0.025/MPa. B, b and a are individually
varied as indicated while leaving the others unchanged.
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MPa. While the other three are held constant, a, B and
b are individually raised and lowered to their typical
maximum and minimum values to produce the six
dashed curves. A is not varied because it is primarily a
“DC offset.” Inspection of this plot shows in which
pressure region each variable dominates. The parameter
a controls the high-pressure slope (when b is not too
small), B determines the magnitude of the velocity
increase between 0 and 200 MPa and b defines the shape
of the knee.

Examples of the success obtained using equation (1)
are given in Fig. 3, and the propagation directions,
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parameter values, estimated standard deviations, sum of
squared residuals (SSR), total number of data points,
r.m.s. error and calculated slopes are given in Table 1.
Figure 3 provides support of the ability of equation (1)
to fit a variety of data, both ¥, and V; in fact, over 6000
data sets from a range of rock types have been success-
fully curve-fit using this equation. The four variables are
well constrained, with uncertainties in the range of 1%
for A, 5-10% for a and 5-25% for B and b (determined
from the covariance matrix). Some of the data were
curve-fit using a reduced form of equation (1),
V(P)= A(P/100 MPa)?, and these are listed in Table 1.
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Fig. 3. Equation (1) curve fits various rocks: (A) igneous V,,; (B) igneous ¥,; (C) metamorphic V,; (D) metamorphic V;; (E)
sedimentary V,; (F) sedimentary V.
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Table 1. Curve-fit parameters and estimated standard deviations, sum of squared data residual (SSR) in (km/sec)?, number of data points (n),

r.m.s. error in +km/sec, and calculated slopes for all curved fits. For foliated samples, the Z direction is perpendicular to the foliation, Y is

parallel to foliation and lineation, and X is parallel to foliation and perpendicular to lineation. [Z] (¥) indicates propagation in the Z direction
and particle motion in the Y direction

dv/dpP (km/sec/GPa)

Figure No. r.m.s.
and sample A (km/sec) a B (km/sec) b (1/MPa) SSR »n Error 20MPa 100 MPa 500 MPa
3A, Igneous, ¥,

Dunite 7.16 +0.02 0.012 £0.002 0.21 £0.04 0.0054 +£0.0007 0.023 27 0.03 5.0 1.48 0.24

Pillow basalt 5.29 +0.03 0.026 £0.002 0424004 0.013+0.001 0.041 22 0.05 109 2.86 0.29

Andesite 4.21 +£0.02 0.035+0.001 1.25+0.03 0.0075+0.0002 0.483 22 0.16 15.0 5.89 0.54
3B, Igneous, V,

Granite 3.45+0.05 0.0073 £0.0009 0.42+0.05 0.0324+0.004 0.010 27 0.02 8.3 0.81 0.05

Basalt 3.06 +0.03 0.012 +£0.001 0.56 £0.03 0.0107 £ 0.0007 0.021 20 0.04 6.6 2.42 0.10

Diabase 2.988 +0.005 0.048 + 0.001 — — 0.014 21 0.03 6.7 1.79 0.31
3C, Metamorphic, v,

Amphibolite 557+0.06 0.0231 +£0.0008 1.46+0.06 0.087+0.004 0079 23 0.06 28.4 1.31 0.27

Greenstone 6.31 +0.02 0.016 £ 0.002 0.28 £0.04 0.0069 +0.0009 0.031 20 0.04 6.7 2.00 0.27

Gneiss 5.66 + 0.02 0.020 £ 0.001 0.24+0.03 0.008 +0.001 0.019 27 0.03 7.2 2.01 0.27
3D, Metamorphic, v,

Hornblendite 3.67+0.03 0.027£0.002 0274004 0.018+0.003 0.027 21 0.04 8.2 1.80 0.21

Schist 3.00 +0.03 0.025+0.001 0.12+0.03 0.018+0.004 0.005 27 0.02 5.0 1.10 0.15

Phyllite 2.26 + 0.04 0.025+0.001 0.49+0.04 0.024+0.002 0.011 33 0.02 9.9 1.62 0.12
3E, Sedimentary, V,

Dolomite 5.44 +0.05 0.017£0.001 1.05+0.05 0.0254+0.001 0.139 21 0.09 20.5 3.04 0.19

Shale 6.074 +£0.005 0.0159 + 0.0007 — — 0.009 18 0.02 4.7 0.96 0.20

Sandstone 3.76 + 0.04 0.072 £0.002 1.64 £0.04 0.0198 +0.0006 0.303 22 0.13 339 7.20 0.61
3F, Sedimentary, V,

Sandstone 2.61 +0.04 0.071 £ 0.002  1.06 £0.04 0.0210+0.0009 0.134 22 0.09 22.8 4.57 0.41

Dolomite 3.58 +£0.04 0.011£0.001 0.16+0.04 0.028+0.005 0.007 22 0.02 4.6 0.68 0.08

Limestone 3.174+0.03 0.011 £0.002 0.171+0.04 0.0194+0.004 0.004 22 0.02 4.0 0.84 0.07
4 Metagreywacke

Ist run 5.04 £0.05 0.0267 +0.0007 091 +£0.05 0.036+0.002 0.731 33 0.16 22.4 2.25 0.28

2nd run 5.41+£0.05 0.0240 +0.0007 0.55+0.05 0.037+0.004 0.095 31 0.06 16.1 1.81 0.27
6 Phyllite

[Z] 3.877 £0.003 0.1240 + 0.0005 — — 0.140 33 007 19.7 4.81 1.17

(Y} 6.890 + 0.004 0.0224 1 0.0003 — — 0.053 32 0.04 7.5 1.55 0.32

2.4 5.87 +£0.02 0.026 £ 0.001  0.55+£0.02 0.0103+0.0006 0.113 34 0.06 11.9 3.54 0.35
7 Gneiss

[Z] 4.08 +0.03 0.047 £0.001 146 +£0.03 0.0127 +0.0003 0.384 35 0.11 234 7.15 045

r1 5.25+0.02 0.037+0.001 0.86+0.03 0.0101 +0.0004 0.267 28 0.11 16.2 5.09 0.47

[X] 5.03 +£0.02 0.016 £0.002 1.09 £0.03 0.0080 +0.0002 0.227 28 0.10 11.3 4.73 0.32

[ZXY) 2.71 +£0.03 0.034 £ 0.002 0.84 £0.03 0.0168 +0.0008 0.016 30 0.03 14.5 357 0.20

[Y)(X) 3.17 £ 0.02 0.021 £0.002 0.59+0.03 0.0119 +£0.0007 0.033 32 0.04 8.8 2.80 0.16

[YI(Z) 2.56 +0.03 0.023 £0.002 0.931+0.03 0.0140+0.0006 0.051 30 0.04 12.7 3.79 0.13

V, averaged 4811+£0.02 0.03371+£0.0006 1.10+0.02 0.01034+0.0003 0.000 46 0.00 16.9 5.67 0.41

V, averaged 2.81+0.03 0.0267 £0.0008 0.78 +0.03 0.0144 +0.0006 0.000 46 0.00 12.0 341 0.16
10 Granulite

Pts to 1000 MPa 5.69+£0.04 0.0251 +£0.0006 0.74 £0.04 0.0124+0.001 0244 21 0.12 16.6 3.53 0.30

Pts to 600 MPa 5.66 +0.04 0.020+£0.002 0.81 £0.04 0.017+0.001 0285 21 0.13 15.2 3.69 0.24

All points were included in the curve-fits, thereby
roughly bisecting the hysteresis section. This is equival-
ent to the bisection used by Brown and Scholz [4] on
their stress—strain hysteresis loops of Birch [2] for vel-
ocity data. Support for this approach is provided by
further analysis of velocity behaviour below 200 MPa.
The effect of previous pressurizations on the sub-
sequently observed velocities is great for the first few
runs of a sample, with the largest change occurring
between the first and second runs. This is illustrated in
Fig. 4 for an Alaskan metagreywacke. Five minutes
transpired between the two runs and the sample assem-
bly was left undisturbed in the pressure vessel during this
time. Clearly the up-going pressure velocities have sig-
nificantly increased from the first to the second run,
while the down-going pressure velocities are virtually
coincident for the two runs. The reduced hysteresis of the
second run reflects the reduced influence of cracks, a

behaviour that is more representative of rocks at in situ
pressures and temperatures (the cause of hysteresis are
discussed more fully below). In particular, the up-going
velocities of the second run are probably the best
estimate of the rock’s behaviour at depth. Bisecting the
hysteresis region with a curve-fit of all of the first
run data is therefore appropriate because it closely
approximates the up-going velocities of the second run,
and obviously this avoids the need for two or more
pressurizations.

ADDITIONAL APPLICATIONS

Pressure derivatives and pore pressure

Since the data are expressed analytically using
equation (1), pressure derivatives of velocities are simple
to calculate. Table 1 lists some of these at selected
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pressures. The derivatives at high pressures can be used
in the critical geothermal gradient equation:

dv _(oV)\ dp " v\ dT
dz \oP).dz \oT)pdz
[5] or in the Adams~Williamson equation [6]. Derivatives

are also used in the determination of the parameter n
from the effective pressure relation:

P.=P.—nP,

[7], where P, is the effective pressure, P, is the confining
pressure and P, is the pore pressure; n is less than or
equal to one. The value of n is determined using the
equation:

n=1- (aV/@}>,:)1§,/(5V/apd)lr’p

[8] where Py is the differential pressure, Py = P.— P,.
Figure 5 gives the velocities for a Juan de Fuca Ridge
basalt at varying pore pressure. The slope at constant
differential pressure is easily determined using standard
linear regression. By substituting P, for P,, equation (1)
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Fig. 5. V, Pore pressure (P,) data from a Juan de Fuca Ridge basalt.

Dashed lines are equation (1) constant P, curve fits, and constant

differential pressure (P,) linear regression fits are solid. The P, and P,

slopes give the parameter n from the effective pressure relation. The
data are from Christensen [8).
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Fig. 6. (A) V, Data for an anisotropic phyllite from North Carolina

(see Table 1 for propagation descriptions). (B) ¥, Anisotropy as a

function of pressure calculated from the three curve fits. The decrease
in anisotropy with pressure is due to crack closure.

is generalized to include velocities determined at con-
stant pore pressure:

V(P,) = A(P,/100 MPa)* + B(1 — e~*7d).

Three curve-fits using this formula are indicated by solid
lines in Fig. 5. Derivatives of these curves give the
otherwise difficult to obtain slopes at constant pore
pressures.

Velocity anisotropy

Figure 6 shows three compressional velocities
measured in orthogonal directions on a phyllite. The
equation (1) curve-fits enable a straightforward calcu-
lation of velocity anisotropy as a function of pressure
using;

Vmax - Vmin
V—> x 100,

avg

% anisotropy = (

where V., Viin and V,,, are the maximum, minimum
and average velocities, respectively, at a given pressure.
The anisotropy as a function of pressure for the phyllite
is also shown in Fig. 6. Clearly the V, anisotropy
decreases with increasing confining pressure. This is due
to crack closure, the same conclusion drawn by Brace [9]
for compressibility anisotropy and by Wissler and
Simmons [10] for strain anisotropy.
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Elastic constants

Calculating equivalent isotropic elastic constants of
rocks from velocities and densities is likewise a simple
procedure. As shown by Christensen and Ramananan-
toandro [11], the isotropic elastic constants of an
anisotropic rock are closely approximated by those
derived using the average of the compressional and shear
velocities measured in the three principal directions. This
is the meaning of the term “equivalent” isotropic elastic
constants. Figure 7A shows the ¥, and V| curve-fits
obtained for a Connecticut gneiss. The dashed lines are
the average V, and V, curves generated from the three
curve-fits for each wave type, and these curves are used
to determine the isotropic elastic constants. The calcu-
lated Poisson’s ratios and shear moduli as functions of
confining pressure are shown in Fig. 7B. The dip in
Poisson’s ratio at 100 MPa is an intriguing feature
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Fig. 7. (A) Equation (1) curve-fits (solid lines) and average ¥, and ¥,

curves (dashed) for a Connecticut gneiss. Table 1 gives propagation

descriptions. (B) Equivalent isotropic elastic constants determined

from the average curves in (A). Note the dip in Poisson’s ratio at
100 MPa, a feature which may be crack related.
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Fig. 8. New York granulite V', data. The solid curve was calculated

using all of the data, the dashed curve used only the points to 600 MPa.

The high-pressure velocities extrapolated by the dashed curve are well
within the experimental error of the measured velocities.

observed in more than a few samples. Its significance is
uncertain, but it may be crack related (a different
response of V to crack closure than V). curve fits using
equation (1) could also be used to calculate more
complicated elastic constants, e.g. if the five appropriate
velocity—pressure data sets were available for a trans-
versely isotropic sample, the five elastic constants could
be calculated as functions of pressure.

Interpolation and extrapolation

Interpolation and extrapolation of velocities is a sig-
nificant advantage of employing a velocity—pressure
curve-fit. Adequate interpolation using equation (1) is
clear from all of the curve-fits given above. These plots
also show the smoothing of data variations by curve-
fitting. Accurate data extrapolation using equation (1) is
illustrated in Fig. 8. The solid curve was determined
using all of the data points. Only the velocities at
pressures to 600 MPa were used to calculate the dashed
curve, yet this adequately approximates the velocities at
higher pressures. At 1000 MPa, the difference between
the dashed curve and the measured velocity is less than
0.5%, which is well within the experimental error of 1%.
Thus equation (1) can be employed to extrapolate
velocities at higher pressures, but only when enough
high-pressure data are available to constrain the
curve.

Velocity hysteresis

Finally, velocity hysteresis can be quantitatively eval-
uated using equation (1). The sum of squared residuals
(SSR) determined with each curve-fit primarily reflects
velocity variations at pressures below 200 MPa, thereby
giving an indication of the amount of hysteresis. Using
the data given in Fig. 4, the SSR for the first run is
0.731 (km/sec)* while that for the second is only
0.095 (km/sec)®. The SSR therefore states numerically
what is visually obvious from Fig. 4, namely that the
velocity hysteresis decreases significantly from the first to
the second run.
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CONCLUSIONS
The velocity—confining pressure relation:
V(P)= A(P/100 MPa)* + B(1 —e~*F),

is employed to curve-fit laboratory ¥, and ¥V, data from
a variety of rocks. The four adjustable parameters, A4, q,
B and b are well-constrained and robust to poor quality
data. Velocity interpolation and extrapolation are
quickly and accurately performed, and thus the four
parameters from the equation briefly render a complete
description of a velocity—pressure data set. Brevity is
particularly important when one considers the quantity
of data generated for most studies with modern labora-
tory equipment.

Once the data are expressed analytically, a number of
calculations are simplified. Velocity pressure derivatives,
such as those required in the critical geothermal gradient
equation or for the effective pore pressure relation, are
easily calculated using the V—P equation. Determining
the velocity anisotropy as a function of pressure for
a sample is also straightforward. The decrease in
anisotropy with increasing pressure is attributed to
microcrack closure and may reflect any preferred crack
orientation. Elastic constants are likewise simple to
determine. For some samples, a drop in Poisson’s ratio
is found at about 100 MPa. Its origin is unknown, but
it may be crack related.

The response of velocities to confining pressure can be
qualitatively described in terms of crack closure based on
the SEM work of Batzle et al. [13]. At pressures below
200 MPa, the closure is characterized by the crack wall
separation and topography. Above this pressure, the
crack wall roughness alone dictates further closure.
Velocity hysteresis is caused by the cracks sticking shut
when subjected to high pressures. The parameters in the
velocity—pressure equation may be related to this crack
behaviour. If so, B is associated with the crack wall
separation at low pressures (below 200 MPa), b with the
crack wall mismatch at low pressures, and a with the
crack wall topography at pressures above 200 MPa. The
parameter A is related to the zero pressure velocity.
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