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EOSC 579 - Chapter 2 - Internal Waves. Lecture 3:

Moving in a Nonuniform Environment

3.1 Learning Goals

As the end of this lecture you will be able to:

• Describe how internal waves change as they propagate into a region of stronger (or
weaker) stratification

• Describe how internal waves are generated as lee waves

• Describe how internal waves break

3.2 Speeds

It is useful to have the full equations for the phase velocity and group velocity.

c⃗phase =
(N2k2 + f 2m2)1/2

(k2 +m2)3/2
(k,m) (1)

(2)

c⃗group =
(
N2 − f 2

) mk

ω(k2 +m2)2
(m,−k) (3)

3.3 Changing N

The dispersion relation for internal waves is:

tan2 θ =
ω2 − f 2

N2 − ω2
(4)

and

tan θ =
k

m
(5)

Thus if an internal wave propagates into a region of higher stratification (N increases)

• θ decreases, k/m decreases, the wave phase propagation becomes more vertical

• As k cannot change at horizontal changes, the vertical wave number m increases
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• As the wave phase velocity becomes more vertical, the group velocity becomes more

horizontal

Generally ocean stratification decreases with depth, so wave beams (or rays) are more

horizontal near the surface and become more vertical at depth.

Figure 3.1: Wave beams approaching a shore in a typical, strong stratification near surface, case.

Barbara Aulicion as shown in Cacchione and Pratson 2004.1

Figure 3.2: Numerical model results showing wave beams generated at the Hawaiian Ridge. Hol-

loway and Merrifield 2003 as shown in Cacchione and Pratson 2004.1.

If internal waves propagate toward a region where N is lower than their ω, they will

reflect. The group velocity will become vertical and slower. In the region where N is lower

than ω, the wave cannot propagate. It will be evanescent, decaying away from the reflection.

3.4 Internal, Lee, Wave Generation over Corrugations

We discussed how internal waves can be generated where tidal flow goes over topography

that is at the critical slope for that frequency. That is where the angle of the topography

1https://www.americanscientist.org/article/internal-tides-and-the-continental-slope
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satisfies

tan2 θ =
ω2 − f 2

N2 − ω2
(6)

A tractable and illuminating example of internal wave generation is to consider a steady

flow over a sinusoidal topography. Following Cushman-Roisin 1994, we consider the analo-

gous case of a fluid at rest, with a sinusoidal topography moving at a steady rate −U below

it (Figure 3.3)

Figure 3.3: Set up for waves above a moving, corrugated surface. From Cushman-Roisin 1992.

Note he uses ℓ for −κ.

So if the topography is given by h = H cosκx, it will generate oscillations at its wavenum-

ber κ and a frequency ω = |κ|U The bottom will move as:

z = h(x+ Ut) = H cos [κ(x+ Ut)] (7)

= H cos [−κx− ωt] (8)

Note that as our convention is for ω to be positive, our wavenumber is negative −κ.

The basic boundary condition, no flow through the bottom, means that the vertical and

horizontal velocity at the bottom must linked through:

w =
∂h

∂t
+ u

∂h

∂x
(9)

at z = h. Assuming small topography (so we can have small, linear, waves), h is small and
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u is small, we get the linear version (at z = 0 the bottom)

w =
∂h

∂t
(10)

= Hω sin(−κx− ωt) (11)

Then we can find an internal wave solution that satisfies this bottom boundary condition:

w = κUH sin(−κx+mz − ωt) (12)

u = mUH sin(−κx+mz − ωt) (13)

p
′

= −ρomU2H sin(−κx+mz − ωt) (14)

ρ
′

=
ρoN

2H

g
cos(−κx+mz − ωt) (15)

(16)

The angle of the wave vector is set by the frequency and thus, ignoring f , the vertical

wave number is given by

m2 =
N2

U2
− κ2 (17)

There are two choices. If N/U is larger than |κ|, then the vertical wavenumber is real

and we have propagating waves. if N/U is smaller than |κ| then we have trapped waves, or

waves decaying in the vertical from the boundary.

Propagating Case

m = ±
(
N2

U2
− κ2

)1/2

(18)

where we must chose m < 0 so that the group velocity is upwards, away from the boundary.

Our k is negative, thus the phase velocity is down and to the left, meaning our group velocity

is up and to the left (relative group velocity in Figure 3.4). That is the group velocity is

away from the boundary and propagating in the direction the bottom is moving.
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Figure 3.4: Result for propagating waves. From Cushman-Roisin 1992. Note he uses ℓ for −κ and

n for m.

Trapped Case In this case we find the vertical wave number is imaginary.

m = ±ia = ±i

(
κ2 − N2

U2

)1/2

(19)

and we need to chose the sign of m to give us decreasing exponentials away from the ground.

Thus

w = κUH exp(−az) sin(−kappax− ωt) (20)

u = aUH exp(−az) cos(−kappax− ωt) (21)

p
′

= −ρoaU
2H exp(−az) cos(−kappax− ωt) (22)

ρ
′

=
ρoN

2H

g
exp(−az) cos(−kappax− ωt) (23)

(24)

The solution is locked to the topography, with no phase propagation with height. The

waves “damp” as we more upwards (Figure 3.5)

3.5 Breaking Internal Waves

Based on notes originally written by Stephanie Waterman.

In the stratified ocean interior, turbulent mixing is most often generated by the breaking
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Figure 3.5: Result for trapped waves. From Cushman-Roisin 1992.

of internal waves. Internal waves do not break at their“crests” but rather where the shear

is largest. That is internal waves break by shear instabilities.

Low frequency, long period, near-inertial internal wave motions have relatively small

vertical wavelengths of 10-100 m in the open ocean (and only 1-10 m in shallow seas). These

small length scales cause the currents associated with the wave motion to vary rapidly in

the vertical, creating large vertical shear.

Instability can result if the shear becomes large. When internal wave shear becomes large

enough to overcome the stabilizing effect of the density stratification, it generates a primary

instability that we call the Kelvin-Helmholtz (KH) type. The tendency for this instability to

grow despite the damping action of stable stratification is quantified using a non-dimensional

number (the so-called gradient Richardson number, Ri, ) given by the ratio of the squared

buoyancy frequency N (a measure of the strength of the density stratification) to the squared

vertical shear of the horizontal flow. When the internal wave shear is strong enough (or

stratification weak enough) to bring Ri below a critical value, instability is possible.

Visual evidence for KH instability frequently can be seen at the top of the atmospheric

boundary layer in late afternoon and evening, where it appears as patches of banded clouds

(Figure 3.6c). Seen from the side, such clouds often take shapes similar to those of surface

waves breaking on a beach (Figure 3.6a and b). A daring scientific diver also took photos
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Figure 3.6: Kelvin-Helmholtz billows revealed by clouds. (a) Side view (from www-

frd.fsl.noaa.gov/mab/scatcat; photo by Brooks Martner). (b) Kelvin- Helmholtz billows made visible

by a fog layer on the shore of Nares Strait in the Canadian arctic (courtesy of Scott McAuliffe, Ore-

gon State University). (c) Ground view of billow clouds (www.weathervortex.com/sky-ribbons.htm),

showing large-scale knot instabilities (Thorpe, 2002) and thin striations consistent with convection

rolls (Klaassen and Peltier, 1991).

of dye streaks which show clear observations of the presence and structure of KH billows in

the ocean (Figure 3.7).

The “roll-up” of so-called KH billows (formed by the primary instability) (see Figure 3.8

for a nice image of this in the lab) is only the first step: the shear of the billows leads to

a secondary instability which forms and destroys the billow structures. Eventually the flow

develops into so-called fully-developed 3-dimensional turbulence (Figure 3.9), and the wave

has “broken”.

The shear layer of the wave (Figure 3.9 upper left) ‘rolls up’ due to the K-H instability

(Figure 3.9 upper right). The K-H instability leads to density overturns, which cause mixing

(Figure 3.9 middle) leading to turbulence and a thickening of the shear layer and density

gradient (Figure 3.9 lower).

We are still learning about the internal wave breaking process and its implications for

the ocean’s mixing rate: the topic is currently an area of active research. We pursue this

research with very high resolution numerical simulations of wave breaking (e.g. Figure 3.9).

Recently, increasingly specialized, ultra-high resolution observations of the ocean also give

us a view of wave breaking in the real world (see Figures 3.10 and 3.11).
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Figure 3.7: Underwater snapshots made by divers from laboriously executed dye release experiments

in the Mediterranean thermocline. From: Woods, J.D. 1968. Wave-induced shear instability in the

summer thermocline. Journal of Fluid Mechanics 32: 791-800.

Figure 3.8: Tilting tank laboratory experiment in which a dense (here, dark) layer of fluid underlies

a lighter fluid initially at rest. When the tank is tilted, buoyant forces accelerate the denser fluid

down and the lighter fluid up the slope, thereby creating a velocity gradient across the interface and

subsequent billow formation. From: Thorpe, S.A. 1971. Experiments on the instability of stratified

shear flows: Miscible fluids. Journal of Fluid Mechanics 46: 299 - 319.
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Figure 3.9: Direct numerical simulations of the density field at successive times in the life cycle

of a Kelvin-Helmholtz billow train. Colours show density in the transition layer; upper and lower

homogeneous layers are rendered transparent. (a) The initial state is a two-layer flow, with a lower

(dense) layer flowing to the left and an upper layer to the right. a small perturbation is applied.

(b) Two wavelengths of the primary Kelvin-Helmholtz instability. (c) Kelvin-Helmholtz billows are

beginning to pair. Secondary instability is visible in a cutaway at upper right, taking the form of

shear-aligned convection rolls. (d) Secondary shear instability forms on the braids. (e) The fully

turbulent state. (f) Turbulence decays to form sharp layers and random small-scale waves. From:

Smyth, W.D., and J.N. Moum. 2012. Ocean mixing by Kelvin-Helmholtz instability. Oceanography

25(2): 140-149.
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Figure 3.10: Example acoustical snapshot of a nonlinear internal gravity wave approaching the

Oregon coast. The wave propagates from left to right at speed Cw in this image. The velocity in

the upper layer is in the direction of Cw, and the resultant current shear defines the direction of

the rollups in the billows. The bright acoustic scattering layers result from reflections by density

microstructure caused by turbulence. The signal reveals a train of Kelvin-Helmholtz billows. From:

Mashayek, A., and W.R. Peltier. 2011. Shear-induced mixing in geophysical flows: does the route

to turbulence matter to its efficiency? J. of Fluid Mech. 725: 216-261.

Figure 3.11: A large backward-breaking internal wave is depicted in this time-depth image whose

axes are 14 minutes horizontally and 50 m vertically. This wave was observed using 101 high-

sampling rate temperature sensors between 0.5 and 50 m above the bottom at 550 m depth near

the top of Great Meteor seamount in the North Atlantic Ocean. Temperature ranges from 12.3oC

(blue) to 14.1oC (red). Contour intervals are every 0.1oC (black). From: van Haren, H., and L.

Gostiaux. 2012. Energy release through internal wave breaking. Oceanography 25(2):124-131.
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