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2 The Continuum Equations

2.1 The conservation of mass

In solid mechanics, a mass of interest is usually trivial to define. For example, if looking at simple orbital motion,
the mass of the moon is fairly unambiguous .

This is not so when describing a continuum!

First, we must consider how to write a statement of mass conservation for a continuous fluid that is analogous to
how we treat mass conservation in the description of the motion of a single solid body.

Outline of a derivation of conservation of mass:

e Consider a fixed, closed, imaginary (arbitrary) surface A drawn in the fluid. It encloses a fixed volume V' (called

the control volume), whose outward normal at each point on the surface is the unit vector # = (7, g, Ng).

The
Surface
'(/l”

- 35>

e The surface of our arbitrary volume is infinitely permeable. That is, fluid flows through the surface with the

fluid velocity at the interface.

e At each time ¢, the mass enclosed in V' by the surface A is:

M(t) = /p av (2.1)

\4

Where fv is an integral over the volume of V' and p is the fluid density — generally a time-dependent function

of position within V' (p = p(Z,1)).
e The mass of a fluid flowing out of V" across its boundary A (the mass flux) is:

Mass flux = /pa' -ndA (2.2)
A
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This is illustrated by a pillbox crossing a surface element of A in a time dt.

A

N ém —
2 ) Th-ahd!

e In each interval of time dt, a small pillbox of mass whose cross-sectional area is dA and whose height

dl = 4 - n dt yields a volume 4 - 1 dt dA leaving V in dt.
e Equation 2.2 gives the rate (volume per unit time) at which the fluid mass leaves the volume.

e To conserve mass, the rate of change of the mass in the fixed volume must be equal to the mass entering or

leaving:

0

n pdV*f/pﬂ“ﬁdA (2.3)

v A
Since the volume is fixed in space, V' has no dependence on time:

/ap dV——/pﬁ-ﬁdA (2.4)

The divergence theory states that for any well behaved vector field Q,

/Q’-ﬁdA:/v-Q’dv (2.5)
A 14
So equation 2.4 can be rewritten,
ap
= 2.
/[&Jrv pu] dV =0 (2.6)
1%

e Recall that the volume V' was selected arbitrarily. It could have been any volume within the fluid. Thus, for
equation 2.6 to always be true, the integrand must vanish everywhere. If there existed any sub-domain in
which it did not vanish, we could choose V to correspond to that sub-domain and would obtain a violation of

mass conservation.

This leaves us with the differential statement of mass conservation, often called the continuity equation:

dp

E—FV-puzO (2.7)
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(Hint: Bozed equations are very important. You will be using this throughout the rest of this course.)

Example 2.1. We are going to repeat this derivation in a more elementary form to emphasize the physical nature
of the result.

Consider an elementary cube with sides dz, dy, and dz,

The net mass flux leaving the cube through the face perpendicular to the z-axis with area dy dz is

o 0
<pu + %(pu) dz) dy dz — pudy dz = %(PU) dx dy dz (2:8)

A similar calculation for the other four faces of the cube yields the net mass flux leaving the cube as:

(5200 + 5 (00) + 5L ) ) dady dz = (V) @V (29)

This is the definition of the divergence of the vector field pi and dV = dz dy d=.
Any net mass flux leaving the cube must be balance by a decrease in the mass within the cube. Since our volume
is fixed in space, %(p dv) = %’t’ dV. Equating these two terms,

Ip

— =—-V.-pu 2.10
T p (2.10)
This elementary derivation using an elementary cube is merely the basis of the proof of the divergence theorem.

Physically, it says that at each point, the local decrease of density compensates for the local diver-

gence of mass flux.

Example 2.2 (Alternative forms of the mass conservation equation). In vector notation,

Op , 9(puy)
TR (2.11)

Or, expanding the derivative using the product rule,

0 . 0P | 0
5 T o, -l—pamj =0 (2.12)
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Note that the first two terms are the total derivative (recall equation ??)). This gives a vector form of the continuity

equation using a total derivative of density.

Dp
= 2.1
5 HVid=0 (2.13)

Equations 2.7 and 2.13 are equivalent, but suggest a slightly different interpretation. In this form, the equation

describes the rate of change of density following a fluid particle and relates it to the local divergence of velocity.

To understand these interpretations:

Let’s again think about our arbitrary control volume. It is still perfectly permeable, but instead of assuming it is
fixed in space, we will assume it is fixed to the fluid so that it deforms and stretches as the fluid composing its
surface moves. At each point on the surface, the outward movement of the fluid leads to a local volume increase.

So the volume increase of the control volume as a whole is:

d
dit/ = / #-n dA Using the divergence theorm
4 (2.14)
= / V.-udV
v
Now consider the limit as the volume under consideration gets very small (V — §V — 0),
4_ VV -d (2.15)
dt '
Substituting V - 4 into equation 2.13,
d
o p d_
dt 6V dt (2.16)
d
~— =0
dt

This states that the total mass (pdV) in the moving volume fixed to the fluid is conserved. As the volume of the
fluid element increases (or decreases) the density must decrease (or increase) to compensate in order to conserve

total mass.

Example 2.3 (Insights from scaling of the mass conservation equation, specifically for conservation of volume/in-
compressibility). It can be insightful to do a scale analysis (as if often the case) of the various terms in the mass
conservation equation to consider the implications.

First, we start with the statement of conservation of mass from equation 2.13. We will label the terms of this

equation @ = % and @ =pV - 4.

We assume:
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dp: Characteristic scale for the density variation or density anomaly

e p: Characteristic value of the density

L: Lengthscale over which the density anomaly changes
e T: Timescale over which the density anomaly changes
e U: Characteristic value of velocity and its variations.
The scales of each term is then:
o@)-[7] ©®-|7]
If, as in many oceanographic and atmospheric situations, the time scale is given by the so-called “advective time”

T = L/U (The time it takes a disturbance to move a distance L moving with the fluid at a rate U). These scales

then become:
opU pU
0 ()= [L} 0(®) = {L}
The relative sizes of term @ to term @ is:
1t
[Dt _ U5,0/L> _ (5;})
[PV - ] O(pU/L © p

If %p is small (it is of the order 1073 in the ocean) then the first @ is small compared to each of the three velocity

divergence terms in @

o §
Thus, to conserve mass, it is necessary (to order O (7")) to also conserve volume.

Further, equation 2.15 implies (given % = 0) that:
V-i=0 (2.17)

We define an incompressible fluid as one that satisfies equation 2.17.

Some implications of this:

e In such cases, the fluid needs to keep the volume of every fluid parcel constant even though the volume will
generally become distorted by the motion. This requirement results in the above condition on the divergence

of the velocity vector field.
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e It is very important to realize that if equation 2.17 is a valid approximation to the full conservation of mass,
it does not follow that % = 0. That is, equation 2.17 does not allow us to extract a second equation
constraining the density (you can’t get two equations from one!). Instead, equation 2.17 implies that the

variation of density, %7 is too small to be a player in the mass budget.
e Another subtle point is that even if %’) is small, there are situations where equation 2.17 is not true.

e For example, if the time scale of the motion is not the advective time scale, but instead some period of
oscillation that is very short compared to the advective scale, the local rate of change of density can be the

same order as the velocity divergence.

e If this is the case, the fluid will not act incompressibly. A good example of this is an underwater acoustic

wave.

e In general, we think of the flow of water as a very nearly incompressible in its dynamics, but underwater

acoustic waves depend on the compressibility of the water and the high frequency of the sound wave.

Incompressibility is therefore an approximation that for any fluid de-

pends on the process and not just the fluid and must be determined

by the nature of the dynamics being considered!

2.2 The momentum equation (Newton’s second law of motion)

The momentum equation is an expression of Newton’s second law of motion, F = ma (force equals mass times
acceleration). Let’s start by considering the representation of the force acting on each fluid element.

Forces on a fluid element

In continuum mechanics, we first suppose that the forces acting on each fluid element can be separated into two
types.

Body forces:

Long range forces that act directly on the mass of the fluid element. These include gravitational and electromagnetic
forces (if the fluid is conducting).

These forces are distributed over the volume of the fluid element. The body force is often given as a force per unit

mass F(Z,t).
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F(Z?)
Body force per unt
rass

The total volume force on a fixed mass of fluid enclosed by the volume V is:

total body force = /pﬁ 1% (2.18)
%

Surface forces:
Short range forces that act only on the surface of the fluid element. Pressure is a common example of a surface
force.
The surface force is often given as a force per unit surface area, ) (not a summation over anything! Yet another
reason to prefer summation notation. M
/7
—
AN 2m4)
5!/"7266 -roa/ce

rer wn )"f
Surtace asen

total surface force = /i dA (2.19)
A
This can be interpreted as the “stress” exerted by the fluid external to V' on the fluid inside V. We call the surface

force per unit area Y the stress. Note! ¥ is not necessarily perpendicular to the surface.

5! is a function of the orientation of the elemental surface dA (the direction of the normal to the surface of the
fluid element at each point 7).

It is defined so that (&, t,7) is the stress exerted by the fluid that is on the side of the area into which the normal

points on the fluid from which the normal points. By Newton’s law of action and reaction, it follows that:

ST, t,0) = —5(T,t, —n) (2.20)

Page 7



EOSC 512

>3>
M,

Therefore, if we write Newton’s second law of motion (ﬁ = md) for a volume with a fixed mass of fluid, we have:

- - d
/pF dV+/ZdA: E/pﬁdv (2.21)
\4 A 14

for a volume with a
fixed mass of fluid
This is an integral statement of momentum conservation!

A couple of observations:

e The obvious next question is whether the second term of the left hand side of this equation can be written
as a volume integral so that we can extract (as we did for mass conservation) a differential statement for
momentum conservation from the integral relation in equation 2.21. (i.e. a statement that applies for an

infinitesimally small parcel of fluid)

e This turns out to be a rather subtle issue. The key difficult in proceeding directly is that as we make the
control volume smaller and smaller, it appears that the surface term would dominate all of the volume terms.
The volume terms would be of order O (l3) while the surface term be of order O (ZQ), and would thus dominate

in the limit I — 0.

e Thankfully, this is not the case! However, it does impose an important constraint on the basic structure of

Y. So before proceeding, we must take a momentary diversion to discuss the stress tensor.

2.3 A momentary diversion: The stress tensor

To calculate the force balance due to surface stresses, consider the tetrahedron shown below.

The outward normal from the slanting face is 72, while the outward normals from the other three faces are —i; for
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~

A
X —6}

j =1,2,3 (note the minus sign!). These are the (negative) unit vectors in the x1, x2, and x3 directions.
We will assume that the tetrahedron is small, so each linear dimension is O(l) and we will examine the limit { — 0.

The total surface force on the tetrahedron, §, is:

S = 5 (7) dA +5 (=) dAr+ 5 (=) dda + 5 (—is) ddy (2.22)
————

Surface force per unit surface

area acting on the slanted face

surface forces acting on the three faces
aligned with the 1 — z2, z2 — z3, and 3 — x1 planes

A little geometry and trigonometry shows that
dA; =n-1; dA (2.23)

Where dA; is the area of the triangle perpendicular to the 4t coordinate axis. We also know, from Newton’s

second law,

8 (=) - -5 (1)) (2.24)

—— ———
Stress exerted by the fluid Stress exerted by the fluid
on the outside of the volume — | on the inside of the volume
on the fluid inside the volume on the fluid outside

Using these, equation 2.24 becomes:

dA (i (7) — % (21) - % (22) fiy — 5 (zg) ﬁg) -

»y

(2.25)

Where @ = (n1,n2,n3) = n; where j = 1,2,3. Now, as we discussed, as | — 0, the size of the surface force is of
order dA (O(I?)), while all the body forces are of order dV (O(I®)). So in the limit of small I, volume forces are
negligible compared to surface force. Thus, to lowest order, to preserve the force balance for each fluid element,

S must vanish! Setting equation 2.25 equal to zero and rearranging,
$() =3 (i) i + 5 (i) iz + 5 (i) g (2.26)
Or, in component form:

() = % <21> A+ (22) A + 5 (13) fi = S (2.27)
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Here, ¥;; = Ei(ij) is the stress (force per unit area) in the 7" direction on the surface perpendicular to the ;" axis.
Equation 2.27 shows us that we can write the stress on the surface with any orientation (with arbitrary outward
normal (7)) in terms of the stress tensor ¥;; and the normal vector to that surface (71, ng, f13).
In continuum mechanics, the stress tensor is usually written with the notation

011 012 013 Ogx Ozy Ogzxz

0= 1021 022 023 = |0y Oyy 0y (2.28)

o031 032 033 Owz Ozy Oaz

In the notation of the derivation, o;; = X;; = ;(i;), so that ¥;(72) = o;;7;. A helpful geometrical picture to keep

in mind is shown below.

>Z,

|r
z

This picture should always be in your head when thinking of elements of the stress tensor. o;; is the force per unit

area in the i*" direction on the face perpendicular to the j* axis.

Example 2.4 (Two dimensional stress tensor). To get a feeling for the relationship between the elements of the

stress tensors and the forces on fluid elements, consider a simple 2D example. Consider the following stress tensor:

011 012
Uij =

021 022
and the surface projected in the x — y plane as shown below.

The components of the unit vectors # and ¢ are:

7t = (cos 0,sin0)

t = (—sinf, cosf)
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= is a 2D yerson 070)‘4 surface
element whose normal is 1, and vith
‘fanjm} vector 4, N makes afyle Buith 2,

The stress on a surface with arbitrary outward normal 7 is:

Li(n) = oijn,

= 0;1 cos 6 + ;2 sin 6

Thus, the stress in the direction of the normal is (note: You can read X;(72) - 71 as “stress on a surface with arbitrary

outward normal 7 dotted with the unit vector defining the direction you want to know the stress in initially):

cosf
Ez(ﬁ) SN = (01‘1 cosf + 09 SiIl@)

sin 6

cosf
= (011 cos0 + 012806, 091 cos 0 + 022 sin 6)
sin 0
= 711082 0 + 012 8in 0 cos 0 + o1 cos 0sin 6 + ooy sin? 6 remembering that sin 2z = 2sinz cos
. 012 +021 .
= 01100820 + o9 8in? 6 + —=——= gin 26

Following a similar procedure, you can show that the stress in the direction of the tangent vector ¢ is:

Yi(h)-n= w sin 20 + o9 cos® 0 — oo sin® 6

2.4 The momentum equation in differential form

We are now (almost!) in a position to turn the integral statement of momentum conservation into a more useful

differential statement (one that applies to an infinitesimally small parcel of fluid).
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First, we note that if we consider any integral of the form:

1 pp dV (2.29)

T dt
\%4

where V is a volume enclosing a fixed mass of fluid. and ¢ is any scalar (for example, could be a component of
velocity). We can think of V' as consisting of an infinite number of small, fixed mass-volumes, each with mass p dV.
When mass is conserved following the fluid motion (remember that % = 0), it follows that we can rewrite the

integral as:

de
I=[p=2av 2.30
/pdt (2.30)
14

We can then write Newton’s second law in integral form. Taking equation 2.21 and using equation 2.30 to rewrite

fpl*:” dV and writing the surface stress in terms of the stress tensor (i = 0yn;):
v

Du;
/pFi dv+/aijnj dA= [p Di av (2.31)

14 A |4

Where o;; applies for each velocity component u;, ¢ = 1,2, 3.

Noting that the area integral, [ o;;n; dA can be written as a volume integral for the divergence of the vector (for
A

each i), 0(;); dotted with the normal vector n;, we can use the usual trick of applying the divergence theorem to

write the area integral in the form of a volume integral, ;{‘O'ijnj dA = ‘[ %aij dv.

Newton’s second law becomes:

—pF — — .. = 2.32
/[th PFi = G0 dv =0 (2.32)
1%

The fact that the surface integral of the stress can be written as a volume integral is a direct consequence of the
fact that we required S (The total surface force on our tetrahedron as I — 0) to vanish so the force balance for
each fluid element was preserved. This requirement allowed us to write 3;(72) = o;;n; (That is, the surface force
per unit surface area acting on a surface with outward normal 7 is a function of the stress tensor o;;). Thus, our
ability to rewrite equation 2.31 entirely as a volume integral is not a coincidence, but rather a result of our basic
physical formulation of the dynamics.

Now, we use the usual argument about integral statements: the volume chosen in equation 2.32 is entirely arbitrary,

so for the integral to vanish for any arbitrarily chose V', it must be true that the integrand vanishes. Thus,

Dui
P"Di

= pF; + (2.33)

—0yj
83?]‘
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This is the differential statement of momentum conservation. Note that this equation is valid for any

continuum — fluid or solid.

Example 2.5 (An alternate form to give different physical insight). If we expand the total derivative on the LHS

of equation 2.33,

Oui |, O
pat p]

0
8xj = pFZ + 87%0'2'3' (234)

Combining this with mass conservation, % + %(puj) = 0, we can write this as (exercise: convince yourself that
this is true!)

0 0
o7 (pui) + 5—(pujus) = pFy + (2.35)

875 8xj

——0ij
8xj

(The somewhat unwieldy a%(pujui) is the divergence of momentum flux. Discussed very shortly!) Rearranging,

J

0 d
a(pul) = pF; + %(aij — pu;u;) (2.36)
j

We will now integrate this equation over a fixed, stationary, and perfectly permeable volume. Again, we will use
the divergence theorem — this time to write the volume integral of the divergence of the vector field (o;; — pu;u;)
as an area integral of this vector dotted with n.

0
E/pui dV = /pFi dV + /(O’ij — puju;)n; dA (2.37)
v v A

Aside: What is pu;u; 7?7

Interpret as the flux of the i*" component of momentum pu; across
the face of the volume element perpendicular to the j*™ axis. The
velocity component u; carries a flux of momentum pu; in the i*8
direction across the face perpendicular to the j** axis. A divergence
of the momentum flux (more momentum leaving that entering) will

reduce the momentum within the volume.

A couple of observations:

e Physically, equation 2.37 says that the rate of change of the momentum pu; in the fixed volume must be equal
to [the total body force applied to the mass of the fluid enclosed by the volume V] plus [the total surface force

on the fluid element where the stress giving rise to this surface force is given by the applied stress ¥; = o;;n;]
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plus [the divergence of the momentum flux that appears as if it were equivalent to a stress acting on the fluid

within a volume.]

This equivalence between the momentum flux and the stress tensor is fundamental.

If you have studied the kinetic theory of gases, you may remember that the viscosity of a gas is due to this

kind of momentum flux on the molecular level. Here, we see the macroscopic analogue.

In fact, when people try to find representations of the turbulent stresses (which is nothing more than the
momentum flux by motions on smaller space scales and faster time scales than we can hope to calculate
directly) an appeal by analogy is often made to represent the turbulent stresses in terms of the large-scale
flow in the same way that molecular stresses are related to the macroscopic flow. More on this later in the

course...
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