Chapter 1
Tensor Notation

A Working Knowledge in Tensor Analysis

This chapter is not meant as a replacement for a course in tensor analysis, but it will
provide a working background to tensor notation and algebra.

1.1 Cartesian Frame of Reference

Physical quantities encountered are either scalars (e.g., time, temperature, pres-
sure, volume, density), or vectors (e.g., displacement, velocity, acceleration, force,
torque, or tensors (e.g., stress, displacement gradient, velocity gradient, alternating
tensors—we deal mostly with second-order tensors). These quantities are distin-
guished by the following generic notation:

s denotes a scalar (lightface italic)
u denotes a vector (boldface)
F denotes a tensor (boldface)

The distinction between vector and tensor is usually clear from the context. When
they are functions of points in a three-dimensional Euclidean space [E, they are
called fields. The set of all vectors (or tensors) form a normed vector space U.

Distances and time are measured in the Cartesian frame of reference, or simply
frame of reference, F = {O; ey, e», e3}, which consists of an origin O, a clock, and
an orthonormal basis {er, e, e3}, see Fig. 1.1,

e,--ej =5ij, i,j=1,2,3 (1.1)
where the Kronecker delta is defined as
1, i=}],
8;ii = 1.2
Y {o, i ] 1-2)

We only deal with right-handed frames of reference (applying the right-hand rule:
the thumb is in direction 1, and the forefinger in direction 2, the middle finger lies
in direction 3), where (e; x e;) -e3 = 1.
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Fig. 1.1 Cartesian frame of
reference

€

€ Xy

Xy

Fig. 1.2 Albert Einstein
(1879-1955) got the Nobel
Prize in Physics in 1921 for
his explanation in
photoelectricity. He derived
the effective viscosity of a
dilute suspension of neutrally
buoyant spheres,
n=15(1+ 3¢), 1, the
solvent viscosity, ¢: the
sphere volume fraction

The Cartesian components of a vector u are given by
u=u-¢; (1 .3)

so that one may write

3
u=2uiei =ue;. (1.4)
i=1
Here we have employed the summation convention, i.e., whenever there are repeated
subscripts, a summation is implied over the range of the subscripts, from (1, 2, 3).
For example,
3
AijBji = AijBji. (1.5)
Jj=1
This short-hand notation is due to Einstein (Fig. 1.2), who argued that physical laws
must not depend on coordinate systems, and therefore must be expressed in tensorial
format. This is the essence of the Principle of Frame Indifference, to be discussed
later.
The alternating tensor is defined as

+1, if (i, j, k) is an even permutation of (1,2, 3),
gijk =11 —1, if (i, j, k) is an odd permutation of (1, 2, 3), (1.6)
0, otherwise.
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Fig. 1.3 Two frames of
reference sharing a common
origin

1.1.1 Position Vector

In the frame F = {O; e, e>, €3}, the position vector is denoted by
X=Xx;¢;, (1.7)

where x; are the components of x.

1.2 Frame Rotation

Consider the two frames of references, 7 = {O; 1, 2, €3} and 7' = {0 ¢}, €}, €}},
as shown in Fig. 1.3, one obtained from the other by a rotation. Hence,

AN
el-oej =5ij, ei-ej‘:S,'j.

Define the cosine of the angle between e;, e’j as
/

A,'j =€;-€;.
Thus A;; can be regarded as the components of €] in F, or the components of e;
in F'. We write

/
ep=Ap,'e,', Ap,‘AinSPq.

Similarly

e = Apie,,  ApiAy =0i.

1.2.1 Orthogonal Matrix

A matrix is said to be an orthogonal matrix if its inverse is also its transpose; fur-
thermore, if its determinant is +1, then it is a proper orthogonal matrix. Thus [A] is
a proper orthogonal matrix.
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We now consider a vector u, expressed in either frame F or F/,
/A
u=u;e = ujej.
Taking scalar product with either base vector,

/— / . . — .. .
up =€ -ejuj=Ajjuj,

j— .. S — oy
uj =ej-eu; =A;ju;.

In matrix notation,

Al A Ap ui uy
[Al=| Az1 Axn A |, [w]=|u2 |, [w]=1u |,
Azl Az A3 u3 u’y

we have
[w] =[A]" [ul], [u] =[A]" - [u'],

/ / (1.8)
ui :Aijuj, I,t.,'ZAl'jui.

In particular, the position vector transforms according to this rule

Y VA o. !/ __ v L R
X=1x;€ =x;e;, Xx;=A;jxjorx;=A;x;.

1.2.2 Rotation Matrix

The matrix A is called a rotation—in fact a proper rotation (detA = 1).

1.3 Tensors

1.3.1 Zero-Order Tensors

Scalars, which are invariant under a frame rotation, are said to be tensors of zero
order.

1.3.2 First-Order Tensor

A set of three scalars referred to one frame of reference, written collectively as
v = (v1, v2, v3), is called a tensor of first order, or a vector, if the three components
transform according to (1.8) under a frame rotation.
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Clearly,

e If u and v are vectors, then u + v is also a vector.
e If uis a vector, then avu is also a vector, where « is a real number.

The set of all vectors form a vector space I/ under addition and multiplication. In
this space, the usual scalar product can be shown to be an inner product. With the
norm induced by this inner product, |u|2 =u-u, U is a normed vector space. We
also refer to a vector u by its components, u; .

1.3.3 Outer Products

Consider now two tensors of first order, u; and v;. The product u;v; represents the
outer product of u and v, and written as (the subscripts are assigned from left to
right by convention),
Uivy uiv2 U1v3
[uv]=| uovi wugva wuzv3
uU3zvy U3V U3V3

In a frame rotation, from F to F’, the components of this change according to

4
uivj = AimAj,,u,nvn.

1.3.4 Second-Order Tensors

In general, a set of 9 scalars referred to one frame of reference, collectively written
as W = [W,;;], transformed to another set under a frame rotation according to

Wj/j = AimAjnWmns (1.9

is said to be a second-order tensor, or a two-tensor, or simply a tensor (when the
order does not have to be explicit). In matrix notation, we write

[W]=[AlIIWIA]" or W =AWAT or W/ =AuWuAj.
In the direct notation, we denote a tensor by a bold face letter (without the square

brackets). This direct notation is intimately connected to the concept of a linear
operator, e.g., Gurtin [29].
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1.3.5 Third-Order Tensors

A set of 27 scalars referred to one frame of reference, collectively written as
W = [W;;], transformed to another set under a frame rotation according to

Wik = AitA jm Akn Wimn, (1.10)

is said to be a third-order tensor.

Obviously, the definition can be extended to a set of 3n scalars, and W =
[Wii,..i,] (n indices) is said to be an n-order tensor if its components transform
under a frame rotation according to

Wiinooin = Aiji Ainjo - A ju Wi oo - (1.11)

i102...In

We will deal mainly with vectors and tensors of second order. Usually, a higher-
order (higher than 2) tensor is formed by taking outer products of tensors of lower
orders, for example the outer product of a two-tensor T and a vector n is a third-
order tensor T ® n. One can verify that the transformation rule (1.11) is obeyed.

1.3.6 Transpose Operation

The components of the transpose of a tensor W are obtained by swapping the in-
dices:

[W];; =W, [W]iTj =W;.
A tensor S is symmetric if it is unaltered by the transpose operation,
S=S8", S;=S;.
It is anti-symmetric (or skew) if
S=-8", Sij=-5;.

An anti-symmetric tensor must have zero diagonal terms (when i = j).
Clearly,

e If Uand V are two-tensors, then U + V is also a two-tensor.
e If U is a two-tensor, then U is also a two-tensor, where « is a real number. The
set of U form a vector space under addition and multiplication.
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1.3.7 Decomposition

Any second-order tensor can be decomposed into symmetric and anti-symmetric
parts:

—_—

WZE(W+WT)+1(W—W ),

[\

: | (1.12)
Wij =5 (Wij + Wji) + 5 (Wij — Wji).

Returning to (1.9), if we interchange i and j, we get
W]/'l' = Aijin Winn = AjnAim Wam .

The second equality arises because m and n are dummy indices, mere labels in the
summation. The left side of this expression is recognized as the components of the
transpose of W, B. The equation asserts that the components of the transpose of W
are also transformed according to (1.9). Thus, if W is a two-tensor, then its transpose
is also a two-tensor, and the Cartesian decomposition (1.12) splits an arbitrary two-
tensor into a symmetric and an anti-symmetric tensor (of second order).

We now go through some of the first and second-order tensors that will be en-
countered in this course.

1.3.8 Some Common Vectors

Position, displacement, velocity, acceleration, linear and angular momentum, linear
and angular impulse, force, torque, are vectors. This is because the position vector
transforms under a frame rotation according to (1.8). Any other quantity linearly
related to the position (including the derivative and integral operation) will also be
a vector.

1.3.9 Gradient of a Scalar

The gradient of a scalar is a vector. Let ¢ be a scalar, its gradient is written as

¢
g=Vo, g = P
X

Under a frame rotation, the new components of V¢ are

0 ¢ 0x; 3¢

7= T o o
dx;  Ox; Ox; 0x;

which qualifies V¢ as a vector.
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1.3.10 Some Common Tensors

We have met a second-order tensor formed by the outer product of two vectors,
written compactly as uv, with components (for vectors, the outer products is written
without the symbol ®)

(llV)ij =Ujvj.
In general, the outer product of n vectors is an n-order tensor.
Unit Tensor The Kronecker delta is a second-order tensor. In fact it is invariant

in any coordinate system, and therefore is an isotropic tensor of second-order. To
show that it is a tensor, note that

8ij = AikAjk = Aix A ik,

which follows from the orthogonality of the transformation matrix. §;; are said to
be the components of the second-order unit tensor I. Finding isotropic tensors of
arbitrary orders is not a trivial task.

Gradient of a Vector  The gradient of a vector is a two-tensor: if u; and ] are
the components of u in F and F/,

ou;  dx; 0 (Aneitg) = Ay A Ouy
8x; 8x} x; ikik ikt ax;

This qualifies the gradient of a vector as a two-tensor.

Velocity Gradient If uis the velocity field, then Vu is the gradient of the velocity.
Be careful with the notation here. By our convention, the subscripts are assigned
from left to right, so

(V ) v ou j

W =Viu: — ]
Y T B

In most books on viscoelasticity including this, the term velocity gradient is taken
to mean the second-order tensor L = (Vu)” with components

ou;

= . 1.13
i (1.13)

Strain Rate and Vorticity Tensors The velocity gradient tensor can be decom-
posed into a symmetric part D, called the strain rate tensor, and an anti-symmetric
part W, called the vorticity tensor:

D=_(Vu+Vu'), W:%(VuT—Vu). (1.14)

N =
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Fig. 1.4 Defining the stress 2/
tensor }
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Stress Tensor and Quotient Rule  We are given that stress T = [T};] at a point x
is defined by, see Fig. 1.4,

t=Tn, ¢ ="Tn;, (1.15)

where n is a normal unit vector on an infinitesimal surface AS at point X, and t is
the surface traction (force per unit area) representing the force the material on the
positive side of n is pulling on the material on the negative side of n. Under a frame
rotation, since both t (force) and n are vectors,

t =At, t=AT¢, n=An, n=ATn/
ATt =t=Tn=TA"n/, t = ATATn'.

From the definition of the stress, t' = T'n’, and therefore
T =ATAT.

So the stress is a second-order tensor.
In fact, as long as t and n are vector, the 9 components 7;; defined in the manner
indicated by (1.15) form a second-order tensor. This is known as the quotient rule.

1.4 Tensor and Linear Vector Function

L is a linear vector function on I/ if it satisfies

o L(u; +w)=L(u)+ L),
o L(au)=aL(u), Yu,uj,up €4, Vo e R.

1.4.1 Claim

Let W be a two-tensor, and define a vector-valued function through

v=L(u) =Wu,
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then L is a linear function. Conversely, for any linear function on ¢/, there is a unique
two-tensor W such that

L(u)=Wu, VYuel.

The first statement can be easily verified. For the converse part, given the linear
function, let define W;; through

L(e,-) = Wj,‘ej.
Now, Yu e U4,
v=Lu)=L(ue;)=u;Wje;,
V= Wjiu,-.

W is a second-order tensor because u and v are vectors. The uniqueness part of W
can be demonstrated by assuming that there is another W', then

(W-W)u=0, Vuel,

which implies that W = W.

In this connection, one can define a second-order tensor as a linear function,
taking one vector into another. This is the direct approach, e.g., Gurtin [29], em-
phasizing linear algebra. We use whatever notation is convenient for the purpose at
hand. The set of all linear vector functions forms a vector space under addition and
multiplication. The main result here is that

L(e,-):We,-:Wj,-ej, Wji =ej-(We,~).

1.4.2 Dyadic Notation

Thus, one may write
W:Wijeiej. (1~16)

This is the basis for the dyadic notation, the e;e; play the role of the basis “vectors”
for the tensor W.

1.5 Tensor Operations

1.5.1 Substitution

The operation §;ju ; = u; replaces the subscript j by i—the tensor §;; is therefore
sometimes called the substitution tensor.
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1.5.2 Contraction

Given a two-tensor W;;, the operation

3
Wii ZZWii = Wi + Wy + Ws3

i=1

is called a contraction. It produces a scalar. The invariance of this scalar under a
frame rotation is seen by noting that

Wi, = Ak Ait Wi = 8.u Wi = Wik.
This scalar is also called the trace of W, written as
trW=W;. (1.17)

It is one of the invariants of W (i.e., unchanged in a frame rotation). If the trace
of W is zero, then W is said to be traceless. In general, given an n-order tensor,
contracting any two subscripts produces a tensor of (n — 2) order.

1.5.3 Transpose

Given a two-tensor W = [W;;], the transpose operation swaps the two indices
WT = (W,'je,'ej)T = W,-jeje,-, [WT]ij = Wj,'. (1.18)

1.5.4 Products of Two Second-Order Tensors

Given two second-order tensors, U and V,
U=U;jee;, V="Vee,,

one can form different products from them, and it is helpful to refer to the dyadic
notation here.

o The tensor product U ® V is a 4th-order tensor, with component Uj;; Vi,
UV =U;;Vyee;ee. (1.19)

e The single dot product U - V is a 2nd-order tensor, sometimes written without the
dot (the dot is the contraction operator),

U-V=UV=(Ujjeie;) - (Viere)) = Ujje;d; Ve =U;;Vjeier,  (1.20)
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with components Ujx Vi, just like multiplying two matrices Ujx and Vi;. This
single dot product induces a contraction of a pair of subscripts (j and k) in U;; Vi,
and acts just like a vector dot product.

e The double dot (or scalar, or inner) product produces a scalar,

U:V = (Ujjeie;) : (Viere) = (Ujjei)djx - (Viuer)
= Ui Viudjidit = Ui Vji. (1.21)
The dot operates on a pair of base vectors until we run out of dots. The end result
is a scalar (remember our summation convention). It can be shown that the scalar

product is in fact an inner product.
e The norm of a two-tensor is defined from the inner product in the usual manner,

U =U" : U=U;;U;; =(UT V). (1.22)

The space of all linear vector functions therefore form a normed vector space.

e One writes U? = UU, U? = U?U, etc.

e A tensor U is invertible if there exists a tensor, U™}, called the inverse of U, such
that

vu'=Uu"lu=1 (1.23)

One can also define the vector cross product between two second-order tensors
(and indeed any combination of dot and cross vector products). However, we
refrain from listing all possible combinations here.

1.6 Invariants

1.6.1 Invariant of a Vector

When a quantity is unchanged with a frame rotation, it is said to be invariant. From
a vector, a scalar can be formed by taking the scalar product with itself, v;v; = v°.
This is of course the magnitude of the vector and it is the only independent scalar

invariant for a vector.

1.6.2 Invariants of a Tensor

From a second-order tensor S, there are three independent scalar invariants that can
be formed, by taking the trace of S, S? and S3,

I=uS=S;, H=uS*=S;S;;, M =tS=58;SSk.
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However, it is customary to use the following invariants

L=I, bhL= %(12 —1), L= é(ﬁ — 3111+ 21IT) = detS.

It is also possible to form ten invariants between two tensors (Gurtin [29]).

1.7 Decompositions

We now quote some of the well-known results without proof, some are intuitively
obvious, others not.

1.7.1 Eigenvalue and Eigenvector

A scalar w is an eigenvalue of a two-tensor S if there exists a non-zero vector e,
called the eigenvector, satisfying

Se = we. (1.24)

The characteristic space for S corresponding to the eigenvalue w consists of all
vectors in the eigenspace, {v:Sv = wv}. If the dimension of this space is n, then
w is said to have geometric multiplicity of n. The spectrum of S is the ordered list
{w1, w2, ...} of all the eigenvalues of S.

A tensor S is said to be positive definite if it satisfies

S:vw>0, Vv#0. (1.25)

We record the following theorems:

e The eigenvalues of a positive definite tensor are strictly positive.

e The characteristic spaces of a symmetric tensor are mutually orthogonal.

e Spectral decomposition theorem: Let S be a symmetric two-tensor. Then there is
a basis consisting entirely of eigenvectors of S. For such a basis, {e;,i =1, 2,3},
the corresponding eigenvalues {w;, i = 1,2, 3} form the entire spectrum of S, and
S can be represented by the spectral representation, where

Z?:l w;e;e;, when S has three distinct eigenvalues,
S={wee+ wy(I—ee), when S has two distinct eigenvalues, (1.26)
ol, when S has only one eigenvalue.
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1.7.2 Square Root Theorem

Let S be a symmetric positive definite tensor. Then there is a unique positive definite
tensor U such that U? = S. We write

U=S"2

The proof of this follows from the spectral representation of S.

1.7.3 Polar Decomposition Theorem

For any given tensor F, there exist positive definite tensors U and V, and a rotation
tensor R, such that

F=RU=VR. (1.27)
Each of these representations is unique, and

1/2 1/2

U= (F'F) V = (FF") (1.28)
The first representation (RU) is called the right, and the second (VR) is called the

left polar decomposition.

1.7.4 Cayley—-Hamilton Theorem

The most important theorem is the Cayley—Hamilton theorem: Every tensor S satis-
fies its own characteristic equation

S-S+ LS—LI=0, (1.29)

where I} =trS, I, = %((tr S)2 — trS?), and I3 = detS are the three scalar invariants
for S, and I is the unit tensor in three dimensions.
In two dimensions, this equation reads

S2—1S+ LI=0, (1.30)

where I1 =trS, I, = detS are the two scalar invariants for S, and I is the unit tensor
in two dimensions.

Cayley—Hamilton theorem is used to reduce the number of independent tensorial
groups in tensor-valued functions. We record here one possible use of the Cayley—
Hamilton theorem in two dimensions. The three-dimensional case is reserved as an
exercise.
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Suppose C is a given symmetric positive definite tensor in 2-D,

Cn Cn2
Cl= :
1] |:C12 sz}

and its square root U = C!/? is desired. From the characteristic equation for U,
U=17"(U)[C+ LI,

so if we can express the invariants of U in terms of the invariant of C, we’re done.
Now, if the eigenvalues of U are A; and A, then

L(U) =21+ A2, L (U) = A1z,
L) =2 +23, ©L(C)=rA3.

Thus
L(U) =5K(0),
1}(U) = I1(C) + 2/ 1(C).
Therefore

__C+Vhol
V11 (C) +24/1(0)

1.8 Derivative Operations

Suppose ¢(u) is a scalar-valued function of a vector u. The derivative of ¢ (u) with
respect to u in the direction v is defined as the linear operator Dg(u)[v]:

pu+av) =g¢) +aDe)[v] + HOT,

where HOT are terms of higher orders, which vanish faster than «. Also, the square
brackets enclosing v are used to emphasize the linearity of in v. An operational
definition for the derivative of ¢(u) in the direction v is therefore,

d
Dy(u)[v] = d—a[go(u+av)]a=0. (1.31)

This definition can be extended verbatim to derivatives of a tensor-valued (of any
order) function of a tensor (of any order). The argument v is a part of the definition.
We illustrate this with a few examples.

Example 1 Consider the scalar-valued function of a vector, ¢(u) = w>=u-u lts
derivative in the direction of v is
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D()[]i(+) L[+ 200 v+ 0??]
plv @(u avao—dau ou-v+atvT) o
=2u-v.

Example 2 Consider the tensor-valued function of a tensor, G(A) = A2 = AA. Its
derivative in the direction of B is

d
DGA)[B] = ——~ [GA+aB)],_,

_ %[AZ +a(AB+BA) + 0(e?)],_,

=AB + BA.

1.8.1 Derivative of det(A)

Consider the scalar-valued function of a tensor, ¢ (A) = detA. Its derivative in the
direction of B can be calculated using

det(A + oB) = detaA(A™'B + o~ 'I) = o’ detAdet(A™'B + o ')
=o’detA(e + o 2[(A7'B) + o« 'L(A™' - B) + 3(A7'B))
=detA(l +al; (A7'B) + 0(a?)).
Thus

Dy(A)[B] = d [<p(A+aB)] , =detAtr(A7'B).

1.8.2 Derivative of tr(A)
Consider the first invariant  (A) = tr A. Its derivative in the direction of B is

DI(A)[B] = d [I(A +aB)],_,

d
= d—[trA +oatrBlg—o=trB=1:B.
o

1.8.3 Derivative of tr(A2)
Consider the second invariant I7(A) = tr AZ. Its derivative in the direction of B is

DII(A)[B] = d []I(A +aB)],_,
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d
= a[A:A+a(A:B+B:A)+O(az)]azo

=2A:B.

1.9 Gradient of a Field

1.9.1 Field

A function of the position vector x is called a field. One has a scalar field, for exam-
ple the temperature field 7 (x), a vector field, for example the velocity field u(x), or
a tensor field, for example the stress field S(x). Higher-order tensor fields are rarely
encountered, as in the many-point correlation fields. Conservation equations in con-
tinuum mechanics involve derivatives (derivatives with respect to position vectors
are called gradients) of different fields, and it is absolutely essential to know how to
calculate the gradients of fields in different coordinate systems. We also find it more
convenient to employ the dyadic notation at this point.

1.9.2 Cartesian Frame
We consider first a scalar field, ¢ (x). The Taylor expansion of this about point X is
9 2
p(xX+ar) =) +ar; gw(x) + O(a )
J

Thus the gradient of ¢(x) at point X, now written as Vg, defined in (1.31), is given
by

Vo[r]=r- 8_(,0 (1.32)
Jx

This remains unchanged for a vector or a tensor field.

Gradient Operator  This leads us to define the gradient operator as

0 0 d
=e—+e—t+e3— (1.33)

V=i s P axs
j 1 X2 X3

This operator can be treated as a vector, operating on its arguments. By itself, it has
no meaning; it must operate on a scalar, a vector or a tensor.

Gradient of a Scalar  For example, the gradient of a scalar is

0
V¢=ej7=el—+e2—+e3—. (1.34)
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Gradient of a Vector  The gradient of a vector can be likewise calculated

Vu= (e e =ee; (1.35)
= ] —— u;e;)—¢e;,——. .
'8xi I ! jax,-

In matrix notation,

[ Ouy dup Ous

8x1 axl 3)61
) a d
(vuj= | 2 w2 dus
axz 8X2 3)62

3141 8u2 3M3

dx3  0x3  0x3 |

The component (Vu);; is du j /0x;; some books define this differently.

Transpose of a Gradient The transpose of a gradient of a vector is therefore

a .
Vil = ejej ot (1.36)
8)Cj

In matrix notation,

_81/!1 3141 3u1_

dx; 0xp 0x3
[Vu]T — % % %
dx1 0xp 0x3
ous 0uz 0us

3)61 3)C2 3)63 a

Divergence of a Vector  The divergence of a vector is a scalar defined by

\V 0 ( ) 314/' s 8u,~
u= e; — (u:e;)—=e; -¢;—— = .._'7
lax,‘ I ! I 3)6,‘ " 3)(,'

_ au,'

(1.37)
ouy dup  duj

Vou= = .
0x; 0x] dxp  0x3

The divergence of a vector is also an invariant, being the trace of a tensor.

Curl of a Vector  The curl of a vector is a vector defined by

v d ( ) Buj 3I/£j
Xu=\|e— | XUu;ej)=e Xej— =¢&jje
’ax,- a ! J ax,- kijk Bxi

ousz  Jup ou| us dupy  ouj
—e 2 -2 ot 220 (138
e1<3x2 3X3) +€2(3X3 3X1> +e3<3x1 8)62) (1:3%)

The curl of a vector is sometimes denoted by rot.
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Fig. 1.5 Cylindrical and
spherical frame of references

Divergence of a Tensor The divergence of a tensor is a vector field defined by

v.s= (e (S~~e~e~)—e‘aSij (1.39)
~ Mo MR g ’

1.9.3 Non-Cartesian Frames

All the above definitions for gradient and divergence of a tensor remain valid in a
non-Cartesian frame, provided that the derivative operation is also applied to the
basis vectors as well. We illustrate this process in two important frames, cylindrical
and spherical coordinate systems (Fig. 1.5); for other systems, consult Bird ez al. [4].

Cylindrical Coordinates In acylindrical coordinate system (Fig. 1.5, left), points
are located by giving them values to {r, 9, z}, which are related to {x = x1, y = x3,
z=x3} by

X =rcoso, y=rsin6, 7=z,

r=./x%+y2, 9=tan_1<j}—c), 7=2.

The basis vectors in this frame are related to the Cartesian ones by

e, =cosfe, +sinfey, e, =cosfe, —sinbey,
ey = —sinfe, + cosfe,, e, =sinfe, + cosfey.
Physical Components In this system, a vector u, or a tensor S, are represented by,
respectively,
u=ure +upey + ue,,
S = S,re e + Srpe €9 + S;€.€; + Spreqe,

+ Sgpepey + Spz€p€; + S;re.e, + Speeg + S zece;.
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Gradient Operator ~ The components expressed this way are called physical com-

ponents. The gradient operator is converted from one system to another by the chain
rule,

v d n d + d — (cos6 Bes) 0 d sinf 9
=e e e cosfe, —sinfeg)| cosf — — —— —
Tox | Yay | oz ’ o ar  r a0
T (sinfe, + cosbep) (sing - 4 <3¢ 0 i
sinfe, + cosfeg)| sinf — + —— — e, —
’ ¢ or | r 00) " “oz
0 10 d
= -— —. 1.40
=€ te 39+ez8z (1.40)
When carrying out derivative operations, remember that
0 0, 9 0
—e, = —e —e, =
or ar 0= ar <7
ad ad a
—e, =€y, —e —e,, —e, =0, 1.41
90 T 6 90 6 — r 90 4 ( )
ad ad 0
—_— :0’ —_— :0, —_— :0
aze’ Bzee Z)zeZ
Gradient of a Vector  The gradient of any vector is
0 10 0
Vu = e + €2 +eza_z (urer +upeg + uze;)
ouy oug ou; 10u, Uy
=€ € — ar +e-eg— ar +ee;,— or -+ €epe r_ 8_9 +6990_
n 1 dug Ug n 1 du, e ou, N oug
egeg— —— — ege e e,eg—
60€o - 96 0Cr — A3 zr 89 2€r — 9z z€0 9z
+ auz 1.42
e.e,—, .
€ ( )
v au, + dug + ou, n laur ug
u=e.e e e e.e e —_— - —
rCr ar r€o — ar rCz ar 0€r r 90 ,
n 1 Bug n uy n 1 du; e ou, n oug
ege — ege e.e
0 €0 30 P 0 zr 30 €€ 8 780 —— 9z
n Buz
e.e
radd 3Z

Divergence of a Vector  The divergence of a vector is obtained by a contraction of
the above equation:

du, 10dupg u, du,

V-u= —_—t — + —. (1.43)
or r 060 r 0z
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1.9.4 Spherical Coordinates

In a spherical coordinate system (Fig. 1.5, right), points are located by giving them
values to {r, 6, ¢}, which are related to {x = x1, y = x3,z = x3} by

X =rsinf cos ¢, y=rsinfsing, z=rcoso,
/2 2
r=,/x2+y*+22%, 9=tan_1<7x +y ), qb:tan_l(X).
z X

The basis vectors are related by
e, =e|sinfcos¢ + e sinf sing + e3 cosb,
ey =ejcosfcos¢p + eycoshsing —ezsind,
ey = —e;sing + e cos ¢,

and
e; =e, sinf cos¢® + eg cosd cos¢ — ey sing,
e, =e, sinfsing + eg cos O sin¢ + ey cos @,
e3 =e,cosf —egsinb.

Gradient Operator  Using the chain rule, it can be shown that the gradient oper-
ator in spherical coordinates is

Ve pepr L yept 2 (1.44)
= T 90 T sing a9 '
We list below a few results of interest.
Gradient of a Scalar  The gradient of a scalar is given by
0 10 1 9
Vo=e 0 teg- : (1.45)

— +e —.
ar 790 T sing 99
Gradient of a Vector The gradient of a vector is given by

AV 8 n 8u9+ 8u¢+ 18ur Uug
= €,e €, € €.€p— epe, | — - —
Oy Ty T T T e T

+ ege 189+ +ege L dur ug
%0\ 90 5\ rsing 9 r

n 18u¢+ 1 3149 Ugp 0
egeyp— —— +epe — —co
0% a0 9%\ Jsing 8(;5 r

+epep( — 8u—¢—|——+—cot9 (1.46)
rsinf d¢
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Fig. 1.6 Carl Friedrich
Gauss (1777-1855) was a
Professor of Mathematics at
the University of Gottingen.
He made several
contributions to Number
Theory, Geodesy, Statistics,
Geometry, Physics. His motto
was few, but ripe (Pauca, Sed
Matura), and nothing further
remains to be done. He did
not publish several important
papers because they did not
satisfy these requirements

Divergence of a Vector  The divergence of a vector is given by

1 0

_ 1 Odug
T r29r

rsinf 3¢

V-u

(1.47)

19
(r*u,) + ~ g (o sin®) +

Divergence of a Tensor The divergence of a tensor is given by

1 38y, B Soe + S¢¢i|

0
— (Sp, sinf) +

10
V~S:er|:r—28—r(r25,r)+

rsinf 90 rsinf d¢ r
19,4 1 0 . 98¢0
——(r’S — (S 0 —
+e"[r3 ar S0+ g ag (S sinO + e
Sor — Sy — S¢¢ cotd 1 0 3 d .
——(r’S — (S 0
+ r teo r3 Br(r r¢)+rsin6’ 89( b Sin0)

(1.48)

I 03S8Spp = Ser — Sre + Spe cotd
rsinf 9¢ r ’

1.10 Integral Theorems

1.10.1 Gauss Divergence Theorem

Various volume integrals can be converted to surface integrals by the following the-
orems, due to Gauss (Fig. 1.6):

f VgodV:fcpndS, (1.49)
\%4 S

/V~udV=/n-udS, (1.50)
v N

/V~SdV:/n~SdS. (1.51)
\4 S
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Fig. 1.7 A region enclosed
by a closed surface with
outward unit vector field

The proofs may be found in Kellogg [38]. In these, V is a bounded regular region,
with bounding surface S and outward unit vector n (Fig. 1.7), ¢, u, and S) are
differentiable scalar, vector, and tensor fields with continuous gradients. Indeed the
indicial version of (1.50) is valid even if u; are merely three scalar fields of the
required smoothness (rather than three components of a vector field).

1.10.2 Stokes Curl Theorem

Various surfaces integrals can be converted into contour integrals using the follow-
ing theorems:

/n- (V xu)dS:%tudC, (1.52)
S c
/n- (V x S)dS:ftSdC. (1.53)
S c

In these, t is a tangential unit vector along the contour C. The direction of integration
is determined by the right-hand rule: thumb pointing in the direction of n, fingers
curling in the direction of C.

1.10.3 Leibniz Formula

If ¢ is a field (a scalar, a vector, or a tensor) define on a region V (¢), which is
changing in time, with bounding surface S(¢), also changing in time with velocity
ug, then (Leibniz formula, Fig. 1.8)

d 1)
— dv=| —dV -ndS. 1.54
ar ), ¢ /v ot +/S<Plls n (1.54)
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Fig. 1.8 Gottfried W.
Leibniz (1646-1716) was a
German philosopher and
mathematician, who
independently with Newton,
laid the foundation for
integral and differential
calculus in 1675

1.11 Problems

Problem 1.1 The components of vectors u, v, and w are given by u;, v;, w;. Verify
that
u-v=1u;v;,
U XV=E¢j€U;v,
(U X V) W=¢;jjuivjwg,
uxv)-w=u-(VxXWw),
uxv)xw=@-w)v—(v-wu,

(u x V)2 =u*v? — (u- V)Z,
where 12 = |u|? and v? = |v|2.

Problem 1.2 Let A be a 3 x 3 matrix with entries A;;,

Al A A
[Al=| A1 A A
A3zl Az Asz

Verify that

det[A] = ¢&;jk A1; Az Az = €k Ai1 A j2 Ak,

eimn detlA] = &;jk Ait A jm Akn = €ijk Ali Amj Ank,

1
det[A] = ggijkslmnAilAijkw

Problem 1.3 Verify that

&ijk€imn = 6 jmSkn — 8 jndkm.
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Given that two 3 x 3 matrices of components

Ailr Ap A Bi1 B2 B3
[Al=] A1 Axp A |, [Bl=| Ba1 Bx B
A3l Az Az B31 B3y Bsj

verify that if [C] = [A] - [B], then the components of C are C;; = A;; By;. Thus if
[D] = [A]”[B], then D;; = Ay; By;.

Problem 1.4 Show that, if [A;;] is a frame rotation matrix,
det[A;j]= (€] x &) - €5 =1,

[AIT[A]=[Al[A) =[], [A17'=[A]7,  det[A]l=1.
Problem 1.5 Verify that

up uz2 U3
EijkUiVjWg = det | vy vy U3
wp w2 w3

Consider a second-order tensor W;; and a vector u; = &;jx Wjr. Show that if W is
symmetric, u is zero, and if W is anti-symmetric the components of u are twice
those of W in magnitude. This vector is said to be the axial vector of W.

Hence, show that the axial vector associated with the vorticity tensor of (1.14) is
-V xu.

Problem 1.6 If D, S and W are second-order tensors, D symmetric and W anti-
symmetric, show that

D:S:D:ST=D;%(S+ST),

W:S=-W:ST=W:_(W-WT),

1
2
D:W=0.
Further, show that
ifT:S=0VSthenT=0,
if T:S =0V symmetric S then T is anti-symmetric,

if T: S =0V anti-symmetric S then T is symmetric.
Problem 1.7 Show that Q is orthogonal if and only if H = Q — I satisfies

H+H’ +HH” =0, HH’ =H"H.
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Problem 1.8 Show that, if S is a second-order tensor, then I =trS, Il =tr S2 1l =
detS are indeed invariants. In addition, show that

det(S — wl) = —w® + Ila)2 — hw+ Is.

If w is an eigenvalue of S then det(S — wI) = 0. This is said to be the characteristic
equation for S.

Problem 1.9 Apply the result above to find the square root of the Cauchy—Green
tensor in a two-dimensional shear deformation

_[1+y? y
[C]_[ Y 1]

Investigate the corresponding formula for the square root of a symmetric positive
definite tensor S in three dimensions.

Problem 1.10 Write down all the components of the strain rate tensor and the vor-
ticity tensor in a Cartesian frame.

Problem 1.11 Given that r = x;e; is the position vector, a is a constant vector, and
f(r) is a function of r = |r|, show that

1
:—ﬁr

V.r=3, Vxr=0, V(a-r)=a, Vf PR
rdr

Problem 1.12 Show that the divergence of a second-order tensor S in cylindrical
coordinates is given by

V~S=er(asrr + Srr_Sé)é) laSHr 8Szr>

ar r r 00 0z
2, 25, 198 08 Sor — S
+ep ro + ro - 606 + z60 + Or ro
or r r 00 0z r

or r r 00 0z

a5y Sy 198 as
+ez< z z 1009z zz>. (1.55)

Problem 1.13 Show that, in cylindrical coordinates, the Laplacian of a vector u is
given by

o2 d (19 ) + 1 8%u, N %u, 2 duy
u=e,| —| ——(u -t = - 5=
"Lar\rar ) r2 802 0 822 2 96

N 9 13( )+182u9+82u9+28ur
€| —| ——Cu — —
‘ ror )T 2902 T 922 T r2 00

e 19 ( ou. N 1 0%u, N 0%u. (1.56)
——\r— - . .
Lror\ ar ) r2 002 922
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Problem 1.14 Show that, in cylindrical coordinates,

Uz
ar r 00 0z r

u,r  ug du, ou, Uglg
u-Va=e,|uy,— + —

Up— + ——

n dug Uy oug dug  Ugly
e U, —
i T P I TR

Ju;  up duy 8u11| (157)

“z[“r ar T F a0 g

Problem 1.15 The stress tensor in a material satisfies V - S = 0. Show that the
volume-average stress in a region V occupied by the material is

1
=— t+tx) d L.
2V/S(x+x) S, (1.58)

where t =n- S is the surface traction. The quantity on the left side of (1.58) is called
the stresslet (Batchelor [3]).

Problem 1.16 Calculate the following integrals on the surface of the unit sphere
1
(nn) = —/nndS, (1.59)
S Js
1
(nnnn) = — / nnnndS. (1.60)
SJs

These are the averages of various moments of a uniformly distributed unit vector on
a sphere surface.
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