
Chapter 1
Tensor Notation

A Working Knowledge in Tensor Analysis

This chapter is not meant as a replacement for a course in tensor analysis, but it will
provide a working background to tensor notation and algebra.

1.1 Cartesian Frame of Reference

Physical quantities encountered are either scalars (e.g., time, temperature, pres-
sure, volume, density), or vectors (e.g., displacement, velocity, acceleration, force,
torque, or tensors (e.g., stress, displacement gradient, velocity gradient, alternating
tensors—we deal mostly with second-order tensors). These quantities are distin-
guished by the following generic notation:

s denotes a scalar (lightface italic)
u denotes a vector (boldface)
F denotes a tensor (boldface)

The distinction between vector and tensor is usually clear from the context. When
they are functions of points in a three-dimensional Euclidean space E, they are
called fields. The set of all vectors (or tensors) form a normed vector space U.

Distances and time are measured in the Cartesian frame of reference, or simply
frame of reference, F = {O; e1, e2, e3}, which consists of an origin O , a clock, and
an orthonormal basis {e1, e2, e3}, see Fig. 1.1,

ei · ej = δij , i, j = 1,2,3 (1.1)

where the Kronecker delta is defined as

δij =
{

1, i = j,

0, i �= j.
(1.2)

We only deal with right-handed frames of reference (applying the right-hand rule:
the thumb is in direction 1, and the forefinger in direction 2, the middle finger lies
in direction 3), where (e1 × e2) · e3 = 1.
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Fig. 1.1 Cartesian frame of
reference

Fig. 1.2 Albert Einstein
(1879–1955) got the Nobel
Prize in Physics in 1921 for
his explanation in
photoelectricity. He derived
the effective viscosity of a
dilute suspension of neutrally
buoyant spheres,
η = ηs(1 + 5

2 φ), ηs : the
solvent viscosity, φ: the
sphere volume fraction

The Cartesian components of a vector u are given by

ui = u · ei (1.3)

so that one may write

u =
3∑

i=1

uiei = uiei . (1.4)

Here we have employed the summation convention, i.e., whenever there are repeated
subscripts, a summation is implied over the range of the subscripts, from (1, 2, 3).
For example,

AijBjk =
3∑

j=1

AijBjk. (1.5)

This short-hand notation is due to Einstein (Fig. 1.2), who argued that physical laws
must not depend on coordinate systems, and therefore must be expressed in tensorial
format. This is the essence of the Principle of Frame Indifference, to be discussed
later.

The alternating tensor is defined as

εijk =

⎧⎪⎨
⎪⎩

+1, if (i, j, k) is an even permutation of (1,2,3),

−1, if (i, j, k) is an odd permutation of (1,2,3),

0, otherwise.

(1.6)
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Fig. 1.3 Two frames of
reference sharing a common
origin

1.1.1 Position Vector

In the frame F = {O; e1, e2, e3}, the position vector is denoted by

x = xiei , (1.7)

where xi are the components of x.

1.2 Frame Rotation

Consider the two frames of references, F = {O; e1, e2, e3} and F ′ = {O; e′
1, e′

2, e′
3},

as shown in Fig. 1.3, one obtained from the other by a rotation. Hence,

ei · ej = δij , e′
i · e′

j = δij .

Define the cosine of the angle between ei , e′
j as

Aij = e′
i · ej .

Thus Aij can be regarded as the components of e′
i in F , or the components of ej

in F ′. We write

e′
p = Apiei , ApiAqi = δpq.

Similarly

ei = Apie′
p, ApiApj = δij .

1.2.1 Orthogonal Matrix

A matrix is said to be an orthogonal matrix if its inverse is also its transpose; fur-
thermore, if its determinant is +1, then it is a proper orthogonal matrix. Thus [A] is
a proper orthogonal matrix.
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We now consider a vector u, expressed in either frame F or F ′,

u = uiei = u′
j e′

j .

Taking scalar product with either base vector,

u′
i = e′

i · ej uj = Aijuj ,

uj = ej · e′
iui = Aiju

′
i .

In matrix notation,

[A] =
⎡
⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤
⎦ , [u] =

⎡
⎣u1

u2
u3

⎤
⎦ ,

[
u′] =

⎡
⎣u′

1
u′

2
u′

3

⎤
⎦ ,

we have [
u′] = [A] · [u], [u] = [A]T · [u′],

u′
i = Aijuj , uj = Aiju

′
i .

(1.8)

In particular, the position vector transforms according to this rule

x = x′
ie

′
i = xj ej , x′

i = Aijxj or xj = Aijx
′
i .

1.2.2 Rotation Matrix

The matrix A is called a rotation—in fact a proper rotation (det A = 1).

1.3 Tensors

1.3.1 Zero-Order Tensors

Scalars, which are invariant under a frame rotation, are said to be tensors of zero
order.

1.3.2 First-Order Tensor

A set of three scalars referred to one frame of reference, written collectively as
v = (v1, v2, v3), is called a tensor of first order, or a vector, if the three components
transform according to (1.8) under a frame rotation.
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Clearly,

• If u and v are vectors, then u + v is also a vector.
• If u is a vector, then αu is also a vector, where α is a real number.

The set of all vectors form a vector space U under addition and multiplication. In
this space, the usual scalar product can be shown to be an inner product. With the
norm induced by this inner product, |u|2 = u · u, U is a normed vector space. We
also refer to a vector u by its components, ui .

1.3.3 Outer Products

Consider now two tensors of first order, ui and vi . The product uivj represents the
outer product of u and v, and written as (the subscripts are assigned from left to
right by convention),

[uv] =
⎡
⎣u1v1 u1v2 u1v3

u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

⎤
⎦ .

In a frame rotation, from F to F ′, the components of this change according to

u′
iv

′
j = AimAjnumvn.

1.3.4 Second-Order Tensors

In general, a set of 9 scalars referred to one frame of reference, collectively written
as W = [Wij ], transformed to another set under a frame rotation according to

W ′
ij = AimAjnWmn, (1.9)

is said to be a second-order tensor, or a two-tensor, or simply a tensor (when the
order does not have to be explicit). In matrix notation, we write

[
W′] = [A][W][A]T or W′ = AWAT or W ′

ij = AikWklAjl.

In the direct notation, we denote a tensor by a bold face letter (without the square
brackets). This direct notation is intimately connected to the concept of a linear
operator, e.g., Gurtin [29].



6 1 Tensor Notation

1.3.5 Third-Order Tensors

A set of 27 scalars referred to one frame of reference, collectively written as
W = [Wijk], transformed to another set under a frame rotation according to

W ′
ijk = AilAjmAknWlmn, (1.10)

is said to be a third-order tensor.
Obviously, the definition can be extended to a set of 3n scalars, and W =

[Wi1i2...in] (n indices) is said to be an n-order tensor if its components transform
under a frame rotation according to

W ′
i1i2...in

= Ai1j1Ai2j2 · · ·AinjnWj1j2...jn . (1.11)

We will deal mainly with vectors and tensors of second order. Usually, a higher-
order (higher than 2) tensor is formed by taking outer products of tensors of lower
orders, for example the outer product of a two-tensor T and a vector n is a third-
order tensor T ⊗ n. One can verify that the transformation rule (1.11) is obeyed.

1.3.6 Transpose Operation

The components of the transpose of a tensor W are obtained by swapping the in-
dices:

[W]ij = Wij , [W]Tij = Wji.

A tensor S is symmetric if it is unaltered by the transpose operation,

S = ST , Sij = Sji .

It is anti-symmetric (or skew) if

S = −ST , Sij = −Sji .

An anti-symmetric tensor must have zero diagonal terms (when i = j ).
Clearly,

• If U and V are two-tensors, then U + V is also a two-tensor.
• If U is a two-tensor, then αU is also a two-tensor, where α is a real number. The

set of U form a vector space under addition and multiplication.
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1.3.7 Decomposition

Any second-order tensor can be decomposed into symmetric and anti-symmetric
parts:

W = 1

2

(
W + WT

) + 1

2

(
W − WT

)
,

Wij = 1

2
(Wij + Wji) + 1

2
(Wij − Wji).

(1.12)

Returning to (1.9), if we interchange i and j , we get

W ′
ji = AjmAinWmn = AjnAimWnm.

The second equality arises because m and n are dummy indices, mere labels in the
summation. The left side of this expression is recognized as the components of the
transpose of W, B. The equation asserts that the components of the transpose of W
are also transformed according to (1.9). Thus, if W is a two-tensor, then its transpose
is also a two-tensor, and the Cartesian decomposition (1.12) splits an arbitrary two-
tensor into a symmetric and an anti-symmetric tensor (of second order).

We now go through some of the first and second-order tensors that will be en-
countered in this course.

1.3.8 Some Common Vectors

Position, displacement, velocity, acceleration, linear and angular momentum, linear
and angular impulse, force, torque, are vectors. This is because the position vector
transforms under a frame rotation according to (1.8). Any other quantity linearly
related to the position (including the derivative and integral operation) will also be
a vector.

1.3.9 Gradient of a Scalar

The gradient of a scalar is a vector. Let φ be a scalar, its gradient is written as

g = ∇φ, gi = ∂φ

∂xi

.

Under a frame rotation, the new components of ∇φ are

∂φ

∂x′
i

= ∂φ

∂xj

∂xj

∂x′
i

= Aij

∂φ

∂xj

,

which qualifies ∇φ as a vector.
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1.3.10 Some Common Tensors

We have met a second-order tensor formed by the outer product of two vectors,
written compactly as uv, with components (for vectors, the outer products is written
without the symbol ⊗)

(uv)ij = uivj .

In general, the outer product of n vectors is an n-order tensor.

Unit Tensor The Kronecker delta is a second-order tensor. In fact it is invariant
in any coordinate system, and therefore is an isotropic tensor of second-order. To
show that it is a tensor, note that

δij = AikAjk = AikAjlδkl,

which follows from the orthogonality of the transformation matrix. δij are said to
be the components of the second-order unit tensor I. Finding isotropic tensors of
arbitrary orders is not a trivial task.

Gradient of a Vector The gradient of a vector is a two-tensor: if ui and u′
i are

the components of u in F and F ′,

∂u′
i

∂x′
j

= ∂xl

∂x′
j

∂

∂xl

(Aikuk) = AikAjl

∂uk

∂xl

.

This qualifies the gradient of a vector as a two-tensor.

Velocity Gradient If u is the velocity field, then ∇u is the gradient of the velocity.
Be careful with the notation here. By our convention, the subscripts are assigned
from left to right, so

(∇u)ij = ∇iuj = ∂uj

∂xi

.

In most books on viscoelasticity including this, the term velocity gradient is taken
to mean the second-order tensor L = (∇u)T with components

Lij = ∂ui

∂xj

. (1.13)

Strain Rate and Vorticity Tensors The velocity gradient tensor can be decom-
posed into a symmetric part D, called the strain rate tensor, and an anti-symmetric
part W, called the vorticity tensor:

D = 1

2

(∇u + ∇uT
)
, W = 1

2

(∇uT − ∇u
)
. (1.14)
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Fig. 1.4 Defining the stress
tensor

Stress Tensor and Quotient Rule We are given that stress T = [Tij ] at a point x
is defined by, see Fig. 1.4,

t = Tn, ti = Tijnj , (1.15)

where n is a normal unit vector on an infinitesimal surface �S at point x, and t is
the surface traction (force per unit area) representing the force the material on the
positive side of n is pulling on the material on the negative side of n. Under a frame
rotation, since both t (force) and n are vectors,

t′ = At, t = AT t′, n′ = An, n = AT n′,
AT t′ = t = Tn = TAT n′, t′ = ATAT n′.

From the definition of the stress, t′ = T′n′, and therefore

T′ = ATAT .

So the stress is a second-order tensor.
In fact, as long as t and n are vector, the 9 components Tij defined in the manner

indicated by (1.15) form a second-order tensor. This is known as the quotient rule.

1.4 Tensor and Linear Vector Function

L is a linear vector function on U if it satisfies

• L(u1 + u2) = L(u1) + L(u2) ,
• L(αu) = αL(u), ∀u,u1,u2 ∈ U , ∀α ∈R.

1.4.1 Claim

Let W be a two-tensor, and define a vector-valued function through

v = L(u) = Wu,
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then L is a linear function. Conversely, for any linear function on U , there is a unique
two-tensor W such that

L(u) = Wu, ∀u ∈ U .

The first statement can be easily verified. For the converse part, given the linear
function, let define Wij through

L(ei ) = Wjiej .

Now, ∀u ∈ U ,

v = L(u) = L(uiei ) = uiWjiej ,

vj = Wjiui .

W is a second-order tensor because u and v are vectors. The uniqueness part of W
can be demonstrated by assuming that there is another W′, then(

W − W′)u = 0, ∀u ∈ U ,

which implies that W′ = W.
In this connection, one can define a second-order tensor as a linear function,

taking one vector into another. This is the direct approach, e.g., Gurtin [29], em-
phasizing linear algebra. We use whatever notation is convenient for the purpose at
hand. The set of all linear vector functions forms a vector space under addition and
multiplication. The main result here is that

L(ei ) = Wei = Wjiej , Wji = ej · (Wei ).

1.4.2 Dyadic Notation

Thus, one may write

W = Wij eiej . (1.16)

This is the basis for the dyadic notation, the eiej play the role of the basis “vectors”
for the tensor W.

1.5 Tensor Operations

1.5.1 Substitution

The operation δij uj = ui replaces the subscript j by i—the tensor δij is therefore
sometimes called the substitution tensor.
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1.5.2 Contraction

Given a two-tensor Wij , the operation

Wii =
3∑

i=1

Wii = W11 + W22 + W33

is called a contraction. It produces a scalar. The invariance of this scalar under a
frame rotation is seen by noting that

W ′
ii = AikAilWkl = δklWkl = Wkk.

This scalar is also called the trace of W, written as

tr W = Wii. (1.17)

It is one of the invariants of W (i.e., unchanged in a frame rotation). If the trace
of W is zero, then W is said to be traceless. In general, given an n-order tensor,
contracting any two subscripts produces a tensor of (n − 2) order.

1.5.3 Transpose

Given a two-tensor W = [Wij ], the transpose operation swaps the two indices

WT = (Wij eiej )
T = Wij ej ei ,

[
WT

]
ij

= Wji. (1.18)

1.5.4 Products of Two Second-Order Tensors

Given two second-order tensors, U and V,

U = Uij eiej , V = Vij eiej ,

one can form different products from them, and it is helpful to refer to the dyadic
notation here.

• The tensor product U ⊗ V is a 4th-order tensor, with component UijVkl ,

U ⊗ V = UijVkleiej ekel . (1.19)

• The single dot product U · V is a 2nd-order tensor, sometimes written without the
dot (the dot is the contraction operator),

U · V = UV = (Uij eiej ) · (Vklekel ) = Uij eiδjkVklel = UijVjleiel , (1.20)
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with components UikVkl , just like multiplying two matrices Uik and Vkj . This
single dot product induces a contraction of a pair of subscripts (j and k) in UijVkl ,
and acts just like a vector dot product.

• The double dot (or scalar, or inner) product produces a scalar,

U : V = (Uij eiej ) : (Vklekel ) = (Uij ei )δjk · (Vklel )

= UijVklδjkδil = UijVji . (1.21)

The dot operates on a pair of base vectors until we run out of dots. The end result
is a scalar (remember our summation convention). It can be shown that the scalar
product is in fact an inner product.

• The norm of a two-tensor is defined from the inner product in the usual manner,

‖U‖2 = UT : U = UijUij = tr
(
UT U

)
. (1.22)

The space of all linear vector functions therefore form a normed vector space.
• One writes U2 = UU, U3 = U2U, etc.
• A tensor U is invertible if there exists a tensor, U−1, called the inverse of U, such

that

UU−1 = U−1U = I (1.23)

One can also define the vector cross product between two second-order tensors
(and indeed any combination of dot and cross vector products). However, we
refrain from listing all possible combinations here.

1.6 Invariants

1.6.1 Invariant of a Vector

When a quantity is unchanged with a frame rotation, it is said to be invariant. From
a vector, a scalar can be formed by taking the scalar product with itself, vivi = v2.
This is of course the magnitude of the vector and it is the only independent scalar
invariant for a vector.

1.6.2 Invariants of a Tensor

From a second-order tensor S, there are three independent scalar invariants that can
be formed, by taking the trace of S, S2 and S3,

I = tr S = Sii, II = tr S2 = SijSji , III = tr S3 = SijSjkSki .
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However, it is customary to use the following invariants

I1 = I, I2 = 1

2

(
I 2 − II

)
, I3 = 1

6

(
I 3 − 3I II + 2III

) = det S.

It is also possible to form ten invariants between two tensors (Gurtin [29]).

1.7 Decompositions

We now quote some of the well-known results without proof, some are intuitively
obvious, others not.

1.7.1 Eigenvalue and Eigenvector

A scalar ω is an eigenvalue of a two-tensor S if there exists a non-zero vector e,
called the eigenvector, satisfying

Se = ωe. (1.24)

The characteristic space for S corresponding to the eigenvalue ω consists of all
vectors in the eigenspace, {v : Sv = ωv}. If the dimension of this space is n, then
ω is said to have geometric multiplicity of n. The spectrum of S is the ordered list
{ω1,ω2, . . .} of all the eigenvalues of S.

A tensor S is said to be positive definite if it satisfies

S : vv > 0, ∀v �= 0. (1.25)

We record the following theorems:

• The eigenvalues of a positive definite tensor are strictly positive.
• The characteristic spaces of a symmetric tensor are mutually orthogonal.
• Spectral decomposition theorem: Let S be a symmetric two-tensor. Then there is

a basis consisting entirely of eigenvectors of S. For such a basis, {ei , i = 1,2,3},
the corresponding eigenvalues {ωi, i = 1,2,3} form the entire spectrum of S, and
S can be represented by the spectral representation, where

S =

⎧⎪⎨
⎪⎩

∑3
i=1 ωieiei , when S has three distinct eigenvalues,

ω1ee + ω2(I − ee), when S has two distinct eigenvalues,

ωI, when S has only one eigenvalue.

(1.26)
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1.7.2 Square Root Theorem

Let S be a symmetric positive definite tensor. Then there is a unique positive definite
tensor U such that U2 = S. We write

U = S1/2.

The proof of this follows from the spectral representation of S.

1.7.3 Polar Decomposition Theorem

For any given tensor F, there exist positive definite tensors U and V, and a rotation
tensor R, such that

F = RU = VR. (1.27)

Each of these representations is unique, and

U = (
FT F

)1/2
, V = (

FFT
)1/2

. (1.28)

The first representation (RU) is called the right, and the second (VR) is called the
left polar decomposition.

1.7.4 Cayley–Hamilton Theorem

The most important theorem is the Cayley–Hamilton theorem: Every tensor S satis-
fies its own characteristic equation

S3 − I1S2 + I2S − I3I = 0, (1.29)

where I1 = tr S, I2 = 1
2 ((tr S)2 − tr S2), and I3 = det S are the three scalar invariants

for S, and I is the unit tensor in three dimensions.
In two dimensions, this equation reads

S2 − I1S + I2I = 0, (1.30)

where I1 = tr S, I2 = det S are the two scalar invariants for S, and I is the unit tensor
in two dimensions.

Cayley–Hamilton theorem is used to reduce the number of independent tensorial
groups in tensor-valued functions. We record here one possible use of the Cayley–
Hamilton theorem in two dimensions. The three-dimensional case is reserved as an
exercise.
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Suppose C is a given symmetric positive definite tensor in 2-D,

[C] =
[
C11 C12
C12 C22

]
,

and its square root U = C1/2 is desired. From the characteristic equation for U,

U = I−1
1 (U)

[
C + I3(U)I

]
,

so if we can express the invariants of U in terms of the invariant of C, we’re done.
Now, if the eigenvalues of U are λ1 and λ2, then

I1(U) = λ1 + λ2, I2(U) = λ1λ2,

I1(C) = λ2
1 + λ2

2, I2(C) = λ2
1λ

2
2.

Thus

I2(U) = √
I2(C),

I 2
1 (U) = I1(C) + 2

√
I2(C).

Therefore

U = C + √
I2(C)I√

I1(C) + 2
√

I2(C)
.

1.8 Derivative Operations

Suppose ϕ(u) is a scalar-valued function of a vector u. The derivative of ϕ(u) with
respect to u in the direction v is defined as the linear operator Dϕ(u)[v]:

ϕ(u + αv) = ϕ(u) + αDϕ(u)[v] + HOT,

where HOT are terms of higher orders, which vanish faster than α. Also, the square
brackets enclosing v are used to emphasize the linearity of in v. An operational
definition for the derivative of ϕ(u) in the direction v is therefore,

Dϕ(u)[v] = d

dα

[
ϕ(u + αv)

]
α=0. (1.31)

This definition can be extended verbatim to derivatives of a tensor-valued (of any
order) function of a tensor (of any order). The argument v is a part of the definition.
We illustrate this with a few examples.

Example 1 Consider the scalar-valued function of a vector, ϕ(u) = u2 = u · u. Its
derivative in the direction of v is
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Dϕ(u)[v] = d

dα
ϕ(u + αv)α=0 = d

dα

[
u2 + 2αu · v + α2v2]

α=0

= 2u · v.

Example 2 Consider the tensor-valued function of a tensor, G(A) = A2 = AA. Its
derivative in the direction of B is

DG(A)[B] = d

dα

[
G(A + αB)

]
α=0

= d

dα

[
A2 + α(AB + BA) + O

(
α2)]

α=0

= AB + BA.

1.8.1 Derivative of det(A)

Consider the scalar-valued function of a tensor, ϕ(A) = det A. Its derivative in the
direction of B can be calculated using

det(A + αB) = detαA
(
A−1B + α−1I

) = α3 det A det
(
A−1B + α−1I

)
= α3 det A

(
α−3 + α−2I1

(
A−1B

) + α−1I2
(
A−1 · B

) + I3
(
A−1B

))
= det A

(
1 + αI1

(
A−1B

) + O
(
α2)).

Thus

Dϕ(A)[B] = d

dα

[
ϕ(A + αB)

]
α=0 = det A tr

(
A−1B

)
.

1.8.2 Derivative of tr(A)

Consider the first invariant I (A) = tr A. Its derivative in the direction of B is

DI(A)[B] = d

dα

[
I (A + αB)

]
α=0

= d

dα
[tr A + α tr B]α=0 = tr B = I : B.

1.8.3 Derivative of tr(A2)

Consider the second invariant II(A) = tr A2. Its derivative in the direction of B is

DII(A)[B] = d

dα

[
II(A + αB)

]
α=0
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= d

dα

[
A : A + α(A : B + B : A) + O

(
α2)]

α=0

= 2A : B.

1.9 Gradient of a Field

1.9.1 Field

A function of the position vector x is called a field. One has a scalar field, for exam-
ple the temperature field T (x), a vector field, for example the velocity field u(x), or
a tensor field, for example the stress field S(x). Higher-order tensor fields are rarely
encountered, as in the many-point correlation fields. Conservation equations in con-
tinuum mechanics involve derivatives (derivatives with respect to position vectors
are called gradients) of different fields, and it is absolutely essential to know how to
calculate the gradients of fields in different coordinate systems. We also find it more
convenient to employ the dyadic notation at this point.

1.9.2 Cartesian Frame

We consider first a scalar field, ϕ(x). The Taylor expansion of this about point x is

ϕ(x + αr) = ϕ(x) + αrj
∂

∂xj

ϕ(x) + O
(
α2).

Thus the gradient of ϕ(x) at point x, now written as ∇ϕ, defined in (1.31), is given
by

∇ϕ[r] = r · ∂ϕ

∂x
. (1.32)

This remains unchanged for a vector or a tensor field.

Gradient Operator This leads us to define the gradient operator as

∇ = ej

∂

∂xj

= e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
. (1.33)

This operator can be treated as a vector, operating on its arguments. By itself, it has
no meaning; it must operate on a scalar, a vector or a tensor.

Gradient of a Scalar For example, the gradient of a scalar is

∇ϕ = ej

∂ϕ

∂xj

= e1
∂ϕ

∂x1
+ e2

∂ϕ

∂x2
+ e3

∂ϕ

∂x3
. (1.34)
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Gradient of a Vector The gradient of a vector can be likewise calculated

∇u =
(

ei

∂

∂xi

)
(uj ej ) = eiej

∂uj

∂xi

. (1.35)

In matrix notation,

[∇u] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x1

∂u2

∂x1

∂u3

∂x1

∂u1

∂x2

∂u2

∂x2

∂u3

∂x2

∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The component (∇u)ij is ∂uj /∂xi ; some books define this differently.

Transpose of a Gradient The transpose of a gradient of a vector is therefore

∇uT = eiej

∂ui

∂xj

. (1.36)

In matrix notation,

[∇u]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Divergence of a Vector The divergence of a vector is a scalar defined by

∇ · u =
(

ei

∂

∂xi

)
· (uj ej ) = ei · ej

∂uj

∂xi

= δij

∂uj

∂xi

,

∇ · u = ∂ui

∂xi

= ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
.

(1.37)

The divergence of a vector is also an invariant, being the trace of a tensor.

Curl of a Vector The curl of a vector is a vector defined by

∇ × u =
(

ei

∂

∂xi

)
× (uj ej ) = ei × ej

∂uj

∂xi

= εkij ek

∂uj

∂xi

= e1

(
∂u3

∂x2
− ∂u2

∂x3

)
+ e2

(
∂u1

∂x3
− ∂u3

∂x1

)
+ e3

(
∂u2

∂x1
− ∂u1

∂x2

)
. (1.38)

The curl of a vector is sometimes denoted by rot.
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Fig. 1.5 Cylindrical and
spherical frame of references

Divergence of a Tensor The divergence of a tensor is a vector field defined by

∇ · S =
(

ek

∂

∂xk

)
· (Sij eiej ) = ej

∂Sij

∂xi

. (1.39)

1.9.3 Non-Cartesian Frames

All the above definitions for gradient and divergence of a tensor remain valid in a
non-Cartesian frame, provided that the derivative operation is also applied to the
basis vectors as well. We illustrate this process in two important frames, cylindrical
and spherical coordinate systems (Fig. 1.5); for other systems, consult Bird et al. [4].

Cylindrical Coordinates In a cylindrical coordinate system (Fig. 1.5, left), points
are located by giving them values to {r, θ, z}, which are related to {x = x1, y = x2,

z = x3} by

x = r cos θ, y = r sin θ, z = z,

r =
√

x2 + y2, θ = tan−1
(

y

x

)
, z = z.

The basis vectors in this frame are related to the Cartesian ones by

er = cos θex + sin θey, ex = cos θer − sin θeθ ,

eθ = − sin θex + cos θey, ey = sin θer + cos θeθ .

Physical Components In this system, a vector u, or a tensor S, are represented by,
respectively,

u = urer + uθ eθ + uzez,

S = Srrerer + Srθereθ + Srzerez + Sθreθ er

+ Sθθeθ eθ + Sθzeθ ez + Szrezer + Szθ ezeθ + Szzezez.
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Gradient Operator The components expressed this way are called physical com-
ponents. The gradient operator is converted from one system to another by the chain
rule,

∇ = ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
= (cos θer − sin θeθ )

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)

+ (sin θer + cos θeθ )

(
sin θ

∂

∂r
+ cos θ

r

∂

∂θ

)
+ ez

∂

∂z

= er

∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
. (1.40)

When carrying out derivative operations, remember that

∂

∂r
er = 0,

∂

∂r
eθ = 0,

∂

∂r
ez = 0,

∂

∂θ
er = eθ ,

∂

∂θ
eθ = −er ,

∂

∂θ
ez = 0,

∂

∂z
er = 0,

∂

∂z
eθ = 0,

∂

∂z
ez = 0.

(1.41)

Gradient of a Vector The gradient of any vector is

∇u =
(

er

∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z

)
(urer + uθ eθ + uzez)

= erer

∂ur

∂r
+ ereθ

∂uθ

∂r
+ erez

∂uz

∂r
+ eθ er

1

r

∂ur

∂θ
+ eθeθ

ur

r

+ eθ eθ

1

r

∂uθ

∂θ
− eθ er

uθ

r
+ eθ ez

1

r

∂uz

∂θ
+ ezer

∂ur

∂z
+ ezeθ

∂uθ

∂z

+ ezez

∂uz

∂z
,

∇u = erer

∂ur

∂r
+ ereθ

∂uθ

∂r
+ erez

∂uz

∂r
+ eθ er

(
1

r

∂ur

∂θ
− uθ

r

)

+ eθ eθ

(
1

r

∂uθ

∂θ
+ ur

r

)
+ eθez

1

r

∂uz

∂θ
+ ezer

∂ur

∂z
+ ezeθ

∂uθ

∂z

+ ezez

∂uz

∂z
.

(1.42)

Divergence of a Vector The divergence of a vector is obtained by a contraction of
the above equation:

∇ · u = ∂ur

∂r
+ 1

r

∂uθ

∂θ
+ ur

r
+ ∂uz

∂z
. (1.43)
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1.9.4 Spherical Coordinates

In a spherical coordinate system (Fig. 1.5, right), points are located by giving them
values to {r, θ,φ}, which are related to {x = x1, y = x2, z = x3} by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

r =
√

x2 + y2 + z2, θ = tan−1
(√

x2 + y2

z

)
, φ = tan−1

(
y

x

)
.

The basis vectors are related by

er = e1 sin θ cosφ + e2 sin θ sinφ + e3 cos θ,

eθ = e1 cos θ cosφ + e2 cos θ sinφ − e3 sin θ,

eφ = −e1 sinφ + e2 cosφ,

and

e1 = er sin θ cosφ + eθ cos θ cosφ − eφ sinφ,

e2 = er sin θ sinφ + eθ cos θ sinφ + eφ cosφ,

e3 = er cos θ − eθ sin θ.

Gradient Operator Using the chain rule, it can be shown that the gradient oper-
ator in spherical coordinates is

∇ = er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ
. (1.44)

We list below a few results of interest.

Gradient of a Scalar The gradient of a scalar is given by

∇ϕ = er

∂ϕ

∂r
+ eθ

1

r

∂ϕ

∂θ
+ eφ

1

r sin θ

∂ϕ

∂φ
. (1.45)

Gradient of a Vector The gradient of a vector is given by

∇u = erer

∂ur

∂r
+ ereθ

∂uθ

∂r
+ ereφ

∂uφ

∂r
+ eθ er

(
1

r

∂ur

∂θ
− uθ

r

)

+ eθeθ

(
1

r

∂uθ

∂θ
+ ur

r

)
+ eφer

(
1

r sin θ

∂ur

∂φ
− uφ

r

)

+ eθeφ

1

r

∂uφ

∂θ
+ eφeθ

(
1

r sin θ

∂uθ

∂φ
− uφ

r
cot θ

)

+ eφeφ

(
1

r sin θ

∂uφ

∂φ
+ ur

r
+ uθ

r
cot θ

)
. (1.46)
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Fig. 1.6 Carl Friedrich
Gauss (1777–1855) was a
Professor of Mathematics at
the University of Göttingen.
He made several
contributions to Number
Theory, Geodesy, Statistics,
Geometry, Physics. His motto
was few, but ripe (Pauca, Sed
Matura), and nothing further
remains to be done. He did
not publish several important
papers because they did not
satisfy these requirements

Divergence of a Vector The divergence of a vector is given by

∇ · u = 1

r2

∂

∂r

(
r2ur

) + 1

r

∂

∂θ
(uθ sin θ) + 1

r sin θ

∂uφ

∂φ
. (1.47)

Divergence of a Tensor The divergence of a tensor is given by

∇ · S = er

[
1

r2

∂

∂r

(
r2Srr

) + 1

r sin θ

∂

∂θ
(Sθr sin θ) + 1

r sin θ

∂Sφr

∂φ
− Sθθ + Sφφ

r

]

+ eθ

[
1

r3

∂

∂r

(
r3Srθ

) + 1

r sin θ

∂

∂θ
(Sθθ sin θ) + 1

r sin θ

∂Sφθ

∂φ

+ Sθr − Srθ − Sφφ cot θ

r

]
+ eφ

[
1

r3

∂

∂r

(
r3Srφ

) + 1

r sin θ

∂

∂θ
(Sθφ sin θ)

+ 1

r sin θ

∂Sφφ

∂φ
+ Sφr − Srφ + Sφθ cot θ

r

]
. (1.48)

1.10 Integral Theorems

1.10.1 Gauss Divergence Theorem

Various volume integrals can be converted to surface integrals by the following the-
orems, due to Gauss (Fig. 1.6):∫

V

∇ϕ dV =
∫

S

ϕndS, (1.49)

∫
V

∇ · udV =
∫

S

n · udS, (1.50)

∫
V

∇ · SdV =
∫

S

n · SdS. (1.51)
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Fig. 1.7 A region enclosed
by a closed surface with
outward unit vector field

The proofs may be found in Kellogg [38]. In these, V is a bounded regular region,
with bounding surface S and outward unit vector n (Fig. 1.7), ϕ, u, and S) are
differentiable scalar, vector, and tensor fields with continuous gradients. Indeed the
indicial version of (1.50) is valid even if ui are merely three scalar fields of the
required smoothness (rather than three components of a vector field).

1.10.2 Stokes Curl Theorem

Various surfaces integrals can be converted into contour integrals using the follow-
ing theorems:

∫
S

n · (∇ × u) dS =
∮

C

t · udC, (1.52)

∫
S

n · (∇ × S) dS =
∮

C

t · SdC. (1.53)

In these, t is a tangential unit vector along the contour C. The direction of integration
is determined by the right-hand rule: thumb pointing in the direction of n, fingers
curling in the direction of C.

1.10.3 Leibniz Formula

If ϕ is a field (a scalar, a vector, or a tensor) define on a region V (t), which is
changing in time, with bounding surface S(t), also changing in time with velocity
uS , then (Leibniz formula, Fig. 1.8)

d

dt

∫
V

ϕ dV =
∫

V

∂ϕ

∂t
dV +

∫
S

ϕuS · ndS. (1.54)
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Fig. 1.8 Gottfried W.
Leibniz (1646–1716) was a
German philosopher and
mathematician, who
independently with Newton,
laid the foundation for
integral and differential
calculus in 1675

1.11 Problems

Problem 1.1 The components of vectors u, v, and w are given by ui , vi , wi . Verify
that

u · v = uivi,

u × v = εijkeiuj vk,

(u × v) · w = εijkuivjwk,

(u × v) · w = u · (v × w),

(u × v) × w = (u · w)v − (v · w)u,

(u × v)2 = u2v2 − (u · v)2,

where u2 = |u|2 and v2 = |v|2.

Problem 1.2 Let A be a 3 × 3 matrix with entries Aij ,

[A] =
⎡
⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤
⎦ .

Verify that

det[A] = εijkA1iA2jA3k = εijkAi1Aj2Ak3,

εlmn det[A] = εijkAilAjmAkn = εijkAliAmjAnk,

det[A] = 1

6
εijkεlmnAilAjmAkn.

Problem 1.3 Verify that

εijkεimn = δjmδkn − δjnδkm.
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Given that two 3 × 3 matrices of components

[A] =
⎡
⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤
⎦ , [B] =

⎡
⎣B11 B12 B13

B21 B22 B23
B31 B32 B33

⎤
⎦

verify that if [C] = [A] · [B], then the components of C are Cij = AikBkj . Thus if
[D] = [A]T [B], then Dij = AkiBkj .

Problem 1.4 Show that, if [Aij ] is a frame rotation matrix,

det[Aij ] = (
e′

1 × e′
2

) · e′
3 = 1,

[A]T [A] = [A][A]T = [I], [A]−1 = [A]T , det[A] = 1.

Problem 1.5 Verify that

εijkuivjwk = det

⎡
⎣ u1 u2 u3

v1 v2 v3
w1 w2 w3

⎤
⎦ .

Consider a second-order tensor Wij and a vector ui = εijkWjk . Show that if W is
symmetric, u is zero, and if W is anti-symmetric the components of u are twice
those of W in magnitude. This vector is said to be the axial vector of W.

Hence, show that the axial vector associated with the vorticity tensor of (1.14) is
−∇ × u.

Problem 1.6 If D, S and W are second-order tensors, D symmetric and W anti-
symmetric, show that

D : S = D : ST = D : 1

2

(
S + ST

)
,

W : S = −W : ST = W : 1

2

(
W − WT

)
,

D : W = 0.

Further, show that

if T : S = 0 ∀S then T = 0,

if T : S = 0 ∀ symmetric S then T is anti-symmetric,

if T : S = 0 ∀ anti-symmetric S then T is symmetric.

Problem 1.7 Show that Q is orthogonal if and only if H = Q − I satisfies

H + HT + HHT = 0, HHT = HT H.
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Problem 1.8 Show that, if S is a second-order tensor, then I = tr S, II = tr S2, III =
det S are indeed invariants. In addition, show that

det(S − ωI) = −ω3 + I1ω
2 − I2ω + I3.

If ω is an eigenvalue of S then det(S − ωI) = 0. This is said to be the characteristic
equation for S.

Problem 1.9 Apply the result above to find the square root of the Cauchy–Green
tensor in a two-dimensional shear deformation

[C] =
[

1 + γ 2 γ

γ 1

]
.

Investigate the corresponding formula for the square root of a symmetric positive
definite tensor S in three dimensions.

Problem 1.10 Write down all the components of the strain rate tensor and the vor-
ticity tensor in a Cartesian frame.

Problem 1.11 Given that r = xiei is the position vector, a is a constant vector, and
f (r) is a function of r = |r|, show that

∇ · r = 3, ∇ × r = 0, ∇(a · r) = a, ∇f = 1

r

df

dr
r.

Problem 1.12 Show that the divergence of a second-order tensor S in cylindrical
coordinates is given by

∇ · S = er

(
∂Srr

∂r
+ Srr − Sθθ

r
+ 1

r

∂Sθr

∂θ
+ ∂Szr

∂z

)

+ eθ

(
∂Srθ

∂r
+ 2Srθ

r
+ 1

r

∂Sθθ

∂θ
+ ∂Szθ

∂z
+ Sθr − Srθ

r

)

+ ez

(
∂Srz

∂r
+ Srz

r
+ 1

r

∂Sθz

∂θ
+ ∂Szz

∂z

)
. (1.55)

Problem 1.13 Show that, in cylindrical coordinates, the Laplacian of a vector u is
given by

∇2u = er

[
∂

∂r

(
1

r

∂

∂r
(rur)

)
+ 1

r2

∂2ur

∂θ2
+ ∂2ur

∂z2
− 2

r2

∂uθ

∂θ

]

+ eθ

[
∂

∂r

(
1

r

∂

∂r
(ruθ )

)
+ 1

r2

∂2uθ

∂θ2
+ ∂2uθ

∂z2
+ 2

r2

∂ur

∂θ

]

+ ez

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+ 1

r2

∂2uz

∂θ2
+ ∂2uz

∂z2

]
. (1.56)
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Problem 1.14 Show that, in cylindrical coordinates,

u · ∇u = er

[
ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− uθuθ

r

]

+ eθ

[
ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+ uθur

r

]

+ ez

[
ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

]
. (1.57)

Problem 1.15 The stress tensor in a material satisfies ∇ · S = 0. Show that the
volume-average stress in a region V occupied by the material is

〈S〉 = 1

2V

∫
S

(xt + tx) dS, (1.58)

where t = n ·S is the surface traction. The quantity on the left side of (1.58) is called
the stresslet (Batchelor [3]).

Problem 1.16 Calculate the following integrals on the surface of the unit sphere

〈nn〉 = 1

S

∫
S

nndS, (1.59)

〈nnnn〉 = 1

S

∫
S

nnnndS. (1.60)

These are the averages of various moments of a uniformly distributed unit vector on
a sphere surface.
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