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Seawater Thermodynamics

Introduction - the Need for Thermodynamics

In developing the equations for ocean dynamics1, it is necessary to introduce an equation relating
density ρ to pressure P , temperature T , and salinity S (eqn. A.6):

ρ = ρ(P, T, S) (1)

This relationship is purely empirical, as it arises from the physico-chemical properties of the par-
ticular fluid. For seawater it depends on the properties of water and the constituents of salt2. For
air we have a similar equation, except that in place of the salinity we use a variable representing
the water content (or humidity) of the air.

However, this results in the introduction of a new variable - temperature. We know how to write
equations that conserve mass (of water and of salt) in seawater. Thus, we also need to write a
conservation equation that governs temperature, or, more generally, “heat”.

But what is “heat”? It is not temperature, although clearly it is related to temperature3. We
know that temperature cannot measure heat directly for several reasons, based on measurements
of the actual properties of seawater. One is that the temperature increases with pressure. Thus
it cannot be a conserved property of an isolated water parcel in the same way that salt content
is conserved. We can remove this effect by considering a pressure-corrected variable called
potential temperature (about which we shall say more later), but even the potential temperature
cannot measure “heat” properly, because the heat capacity of seawater - the amount of energy
it takes to change the temperature by 1 K - is not a constant, but varies with temperature and
salinity. Thus when mixing parcels of seawater, the temperature of the mixture is not the average
of the original temperatures.

Instead our understanding of “heat” must be related to energy in some way. Energy can come
in different forms. For example, an equation for the mechanical energy in fluids which involves
kinetic and gravitational potential energy can be derived from the momentum equation. Now
we are also interested in the energy it takes to heat and cool seawater, change its volume, and
perhaps its composition.

Heat and heat energy changes will involve an internal storage of energy (and hence, the INTER-
NAL ENERGY4). Investigations into the nature of internal energy conservation lead us into the
field of THERMODYNAMICS.

The general approach used in the ocean (“quasi-equilibrium thermodynamics”) assumes that
small parcels of water are effectively in a thermodynamic equilibrium at all times (i.e. we are

1see Appendix A for a short review.
2For more technical information about temperature, salinity, and their relationship to density, see the article “Key

Physical Variables in the Ocean: Temperature, Salinity, and Density”,Nature Education Knowledge 4(4):13.
3indeed, what exactly is “temperature”? Read the article referenced in the last footnote!
4This can be thought of as energy involved in the vibration and rotation of molecules as well as energy in

chemical bonds and electrostatic charges.
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Seawater Thermodynamics

dealing with time scales longer than any local disequilibrium in response to sudden changes in,
for example, pressure), but that the ocean as a whole is not in equilibrium, so that we can track
changes in heat and salt content from place to place using hydrodynamic equations.

So, the first step (described in Part 1 next) is to define the equilibrium thermodynamics of a
parcel of water. This turns out to have an important consequence, namely that we can more
properly define an equation of state. The next step (described in Part 2) is then to embed this
understanding in a hydrodynamic system.

Part 1: Equilibrium Thermodynamics - The Equation of State

First, we consider the equilibrium behavior of a parcel of water. We begin with a postulate:

Postulate: The Internal Energy of a system in equilibrium is a function of its EXTENSIVE
properties.

Extensive properties are ones that are proportional to the amount of material present. These
properties include VOLUME, MASS, and something related to the arrangement and state of par-
ticles within the material, which we call ENTROPY. The actual functional relationship between
internal energy and the extensive properties would then completely define the possible states of
a particular system.

Entropy: is not usually considered to be as intuitive a concept as volume or salinity, nor can it
be easily measured. Entropy is sometimes described as a measure of disorder, or a measure
of the energy not available to do work.

An alternative interpretation is that the entropy is proportional to a value of the Shannon
Measure of Information (SMI), a concept defined in information theory, once the SMI is
maximized over all possible particle distributions in the system with fixed total energy and
mass5.

Entropy is sometimes considered to be a measure of “heat content”, and has the particular
advantage that, like potential temperature, it is not affected by changes in pressure alone.
However, entropy is always produced, never destroyed, by mixing, so it is not “isobaric
conservative” (i.e. entropy is not conserved when two water parcels are mixed together).

For fluids, it is more convenient to think of all these properties “per unit mass”. Such properties
are called “specific” or INTENSIVE. Then, for any particular fluid we can equivalently postulate
a relationship between the specific internal energy u of a parcel and intensive variables:

5Read about it in A. Ben-Naim, “Entropy and the Second Law”, (263pp., World Scientific Publishing Company,
2012)
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u = u(ν, η, S) (2)

where

• u is the specific internal energy (units of J/kg),
• ν is the specific volume (= 1/ρ, where ρ is the density) with units of m3/kg,
• η is the specific entropy, with units of J/kg/K, and
• S specifies the composition of the system. S is the salinity in seawater (e.g., the g/kg

of solute in seawater, as measured by Absolute Salinity SA on the TEOS-10 Reference
Composition Salinity Scale), or the relative humidity in air (i.e., the fraction of water).

Since u tells us about the thermodynamic state of a system it is called a THERMODYNAMIC
POTENTIAL. If we can determine a particular functional form for this relationship then that
functional form would provide a FUNDAMENTAL EQUATION OF STATE for the fluid.

The intensive variables used in eqn. (2) are somewhat arbitrary, but turn out to be “natural”
for internal energy. That is, they are most convenient for many theoretical purposes (as we
see below). Unfortunately, they are mostly not as useful for practical investigations. Entropy
is unmeasureable. Specific volumes are easy to understand, but are difficult to measure to the
accuracy required for ocean circulation studies outside of a specially equipped laboratory.

Ignoring these practical issues for now, this first postulate implies that changes in the volume,
salinity, or entropy of a fluid can result in changes in internal energy. Alternatively, changes in
the internal energy would have to be balanced by changes in the volume, composition, or entropy
of the fluid. These changes could be caused by outside forces. This leads us to a second postulate,
also known as the FIRST LAW OF THERMODYNAMICS:

Postulate (First Law of Thermodynamics): The Internal Energy of a system changes be-
cause of heat input, because of work done by or on it, or because of a change in composition.

In mathematical terms:

du = δQ− δW + δC (3)

where

• du is a differential change in the internal energy
• δQ is an infinitesimal input of heat
• δW is an infinitesimal amount of work done, and
• δC is the internal energy change caused by an infinitesimal composition change.
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The distinction between d and δ arises because the d are functions of the state of a body but the δ
changes are not. Only very small changes are allowed in this expression in order that the system
stays in equilibrium at all times.

Now, we can further parameterize each of terms on the right hand side:

1. δQ: The Heat Input. Heat and entropy are related through temperature.

Now we need to define temperature more precisely. The ZEROTH LAW OF THERMO-
DYNAMICS states that heat fluxes arise from temperature gradients, or equivalently that
objects in thermal equilibrium, without a heat flux passing between them, are at the same
temperature - or even, rather flippantly, that temperature is something measured by ther-
mometers!

Then we postulate a relationship (the SECOND LAW OF THERMODYNAMICS):

δQ

T
≤ dη (4)

where

• T is the absolute temperature (K), and
• dη is a differential change in entropy.

That is, an input of heat results in an entropy change, but the magnitude of this change also
depends on the temperature. In a REVERSIBLE system, which we will assume is the case
here, the ≤ is strictly =, so that

δQ = Tdη (5)

2. δW : The Work Done. Work is force times distance, or in this case the ambient pressure P
times the (differential) change in volume:

δW = Pdν (6)

3. δC: Composition changes. We will write this as

δC = µdS (7)

where a known change in salinity (or humidity in air) is proportional to the change in inter-
nal energy through a proportionality factor µwhich is called the CHEMICAL POTENTIAL.

Substituting these definitions into eqn. (3) results in the FUNDAMENTAL THERMODYNAMIC
RELATION6:

du = Tdη − Pdν + µdS (8)

6It is the addition of the last term involving chemical potential that makes this definition different from ones
found in standard approachs to thermodynamics.
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Now, since u = u(η, ν, S) we have by the chain rule:

du =
∂u

∂η

∣∣∣∣∣
ν,S

dη +
∂u

∂ν

∣∣∣∣∣
η,S

dν +
∂u

∂S

∣∣∣∣∣
η,ν

dS (9)

and so by comparing equations (8) and (9) we can identify

T =
∂u

∂η

∣∣∣∣∣
ν,S

, P = −∂u
∂ν

∣∣∣∣∣
η,S

, µ =
∂u

∂S

∣∣∣∣∣
η,ν

(10)

which can therefore be regarded as definitions of these variables. Again though, these definitions
are not very useful in practical terms since we don’t know how to measure η and measuring ν is
possible but usually only under controlled laboratory conditions.

However, here is a trick:

Let us DEFINE a different potential function g, called the GIBBS FUNCTION (or specific Gibbs
free energy, units of J/kg), in terms of the internal energy and a few other factors:

g ≡ u+ Pν − Tη (11)

The Gibbs function can also be thought of as the internal energy required to create a mass, plus
the pressure work needed to “make room” for it by pushing away the atmosphere surrounding it,
minus the amount of heat energy that would be obtained from its surroundings (at temperature
T ) during this process.

The Gibbs function is useful in the study of chemical reactions at constant temperature and pres-
sure, since reactions under those conditions will proceed spontaneously to a state with minimum
Gibbs energy. However, the Gibbs function is useful here for another reason, which we now
demonstrate: taking differentials on both sides of eqn. (11), and using eqn. (8) to replace du, we
get

dg = µdS − ηdT + νdP (12)

which suggests that the “natural’” coordinates for g are S, T , and P . That is, there can be a
functional dependence for g:

g = g(S, T, P ) (13)

which is useful in practice for describing the state of seawater because S, T , and P are variables
that we can measure (relatively) easily, even in the field.

If so, then it follows that (via the chain rule):

dg =
∂g

∂S

∣∣∣∣∣
T,P

dS +
∂g

∂T

∣∣∣∣∣
S,P

dT +
∂g

∂P

∣∣∣∣∣
T,S

dP (14)
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and by comparing eqns. (14) and (12) we can now find the entropy, density, and chemical
potential in terms of the Gibbs function:

η = − ∂g
∂T

∣∣∣∣∣
S,P

(15)

ρ = ν−1 =

 ∂g

∂P

∣∣∣∣∣
T,S

−1 (16)

and

µ =
∂g

∂S

∣∣∣∣∣
T,P

(17)

In addition, we can determine all other thermodynamic properties in terms of other equations
involving g and its derivatives. For example, we can calculate the internal energy itself:

u = g + Tη − Pν (18)

= g − T ∂g
∂T

∣∣∣∣∣
S,P

− P ∂g

∂P

∣∣∣∣∣
T,S

(19)

Another useful measure of “heat content” is the specific enthalpy h:

h ≡ u+ Pν (20)
= g + Tη (21)

= g − T ∂g
∂T

∣∣∣∣∣
S,P

(22)

The ENTHALPY is another thermodynamic potential7. It can be thought of as representing the
internal energy required to “create” a mass, plus the pressure work needed to “make space” for
it.

Enthalpy is very useful in the study of chemical reactions because changes in enthalpy are related
to the energy required (or produced) by a reaction at constant pressure. As we show later, it is
important in fluid dynamics because it is (almost completely) conserved under mixing at constant
pressure (it is “isobaric conservative”, as long as the heating from viscous dissipation of kinetic
energy is neglected). This importance will become more obvious when we consider heat in the
ocean as a whole.

7Other potential functions can also be defined; the most common of these is the specific Helmholtz energy
f ≡ u − Tη with natural coordinates of T , ν, and S. Best available estimates of the thermodynamic properties of
pure water from 251 K to 1273 K at pressures of up to s1000 MPa can be found from a standard called IAPWS-95,
which is in the form of a Helmholtz function f = f(ρ, T ).
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A related property (which can be measured in the laboratory) is the isobaric heat capacity, which
is the rate of change of enthalpy with temperature at constant salinity and pressure:

cp ≡
∂h

∂T

∣∣∣∣∣
S,P

= −T ∂
2g

∂T 2

∣∣∣∣∣
S,P

(23)

If we want to determine the effect of changes in pressure on the in-situ temperature when no heat
is gained or lost from the parcel, we need the adiabatic lapse rate Γ:

Γ =
∂T

∂P

∣∣∣∣∣
S,η

= −gTP
gTT

(24)

(where subscripts are used here to denote derivatives of the Gibbs function). Another important
thermodynamic parameter is the sound speed, which can also be written in terms of the Gibbs
function:

c =

√√√√∂P

∂ρ

∣∣∣∣∣
S,η

= gP

√
gTT

g2TP − gTTgPP
(25)

Other parameters such as the osmotic coefficient of seawater which can be related to freezing
point lowering and vapour-pressure lowering equations (with increases in salinity and pressure)
can also be derived from g.

Note that it is also possible to go the other way - if we have measurements of density, sound
speed, heat capacity, freezing-point lowering, and so on, then we can use all of this data together
to fit an empirical function that represents the Gibbs function (eqn 13)8.

Currently the Thermodynamic Equation of Seawater 2010 (TEOS-10) defines a Gibbs function
to describe the thermodynamic state of seawater, using temperature t on the ITS-90 scale, TEOS-
10 Absolute Salinity SA, and gauge pressure p (i.e. absolute pressure minus 101325 Pa) as its
state variables:

g(SA, t, p) = gW(t, p) + gS(SA, t, ) (26)

where a pure water part gW is given by a 41-term polynomial:

gW(t, p) = gu

7∑
j=0

6∑
k=0

gjk

(
t

tu

)j (
p

pu

)k
(27)

8Actually, since only various derivatives of g are measureable, there are several integration constants in the
complete expression for g that cannot be determined by any known experiment. However, this in turn implies that
their values have no practical significance for any real property of seawater.
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(with specified constants gu, tu, pu, and gjk, j = 0, . . . , k = 0, . . .), and the saline correction gS

is given by a 64-term equation that includes logarithmic and polynomial terms:

gS(SA, t, p) = gu
∑
j,k

{
ĝ1jk

(
SA

Su

)2

ln

(
SA

Su

)
+
∑
i>1

ĝijk

(
SA

Su

)i}(
t

tu

)j (
p

pu

)k
(28)

with additional specified constants Su and ĝijk, i = 1, . . . , j = 0, . . . , k = 0, . . .). Note that it is
NOT recommended that you type in all these constants yourself; instead use software available
from www.teos-10.org.

The TEOS-10 Gibbs function is created by a fitting procedure that incorporates experimental data
on density, heat capacity, vapour pressure, freezing and boiling points, sound speed, compress-
ibility, and enthalpy changes, and also has a theoretically correct pure-water limit as SA → 0.

Other Gibbs functions are available for humid air and ice, so the combination can also be used
to examine mixtures of the different fluids. The TEOS-10 Gibbs functions and their derivatives
then replace a whole suite of independently-derived correlations for thermodynamic properties,
including the EOS-80 density equations, a variety of sound speed equations, and more, with a
thermodynamically consistent and complete set of specified mathematical functions.

In summary, specifying an equation of state for seawater in terms of a Gibbs function is USEFUL,
because

1. All thermodynamics properties can be derived in a consistent way from the Gibbs function
(by taking appropriate derivatives in terms of easily measured variables), and

2. The Gibbs function itself depends on easily measured variables S, T , and P , and

3. We can come up with an empirical parametric equation for the Gibbs function, by regress-
ing onto sets of observational data of relatively easily measured properties.

Now we include this small-scale equilibrium framework into a set of equations for large scale
motions of an ocean which (over these large scales) is not in equilibrium.

Part 2: Non-equilibrium Thermodynamics - An Energy Con-
servation Equation

There are 3 steps to forming an heat energy conservation equation suitable for describing seawa-
ter dynamics. First, assuming that the fundamental relation (8) applies to each seawater parcel,
we can track its properties as the parcel moves through the ocean at longer time scales:

ρ
Du

Dt
= ρT

Dη

Dt
− P

ν

Dν

Dt
+ ρµ

DS

Dt
(29)
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which, using eqn. (20), we can rewrite in terms of the enthalpy:

ρ
Dh

Dt
− DP

Dt
= ρT

Dη

Dt
+ ρµ

DS

Dt
= ρ

Du

Dt
+
P

ν

Dν

Dt
(30)

to get the FUNDAMENTAL THERMODYNAMIC RELATIONSHIP FOR FLUIDS.

The second step is a little more complex. It turns out that we cannot just write down an equation
for internal energy conservation the same way that we can write down an equation for momentum
conservation starting with F = m~a and defining a set of forces. This is because the “heating rate”
which we denoted δQ in our equilibrium dynamics becomes difficult to specify properly in cases
where heat and mass diffuse through gradients in the system.

Instead we begin by defining the total energy per unit mass E as the sum of internal, kinetic, and
potential energies:

E ≡ u+
|~v|
2

2

+ Φ (31)

where ~v is the velocity and Φ the geopotential (recall ∇Φ = ~g, the gravitational acceleration).
Next, we construct a conservation equation for E:

ρ
DE

Dt
= −∇ · (P~v)−∇ · FR +∇ · (ρcpκ∇T ) +∇ · (ρνvisc∇|~v|

2

2

) (32)

where we a priori postulate that the total energy of a parcel changes because of divergences in:

• P~v: the pressure work done in compressing the system,
• FR: the effects of radiative fluxes (e.g., light),
• ρcpκ∇T : the molecular diffusion of heat, which occurs along T gradients 9, and
• ρνvisc∇|~v|2/2: the viscous diffusion of kinetic energy.

Note that since the right hand side terms are all written as the divergence of fluxes, the total
energy E is “conservative” (that is, the amount of E in a water parcel remains constant in the
absence of fluxes across the boundary of the parcel) and hence is also “isobaric conservative”
under mixing processes (i.e. it is not created or destroyed by mixing). However, it is affected by
pressure changes (via the first term on the RHS).

In reality there should be a small additional non-conservative term on the right hand side arising
from the production and remineralization of organic material in the ocean. Particulate is formed
by removing inorganic material that is part of the “salt” of seawater and hence there is an associ-
ated energy loss; in turn remineralization adds dissolved material and hence there is an associated
increase in the total energy. However, the consequences of these sources and sinks for overall
energy budgets are not yet clear.

9a complete development also includes a heat flux arising from salt diffusion, the so-called “Dufour Effect”, but
this is not important in the ocean.
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Now, it is a little awkward for the analysis of heat that our energy equation involves velocities
and the geopotential. So, the third step is to remove these by subtracting a conservation equation
for mechanical energy. Such an equation is easily formed by taking the dot product of ~v with the
usual equation for conservation of momentum (recall eqns. A.3 and A.4):

~v ·
(
ρ
D~v

Dt
+ 2Ω× ρ~v

)
= ~v ·

(
−∇P −∇Φ +∇ · (ρνvisc∇~v)

)
(33)

which can be written more conventionally as

ρ
D

Dt

(
|~v|
2

2

+ Pν + Φ

)
=
∂P

∂t
+∇ · (ρνvisc∇|~v|

2

2

)− ρε (34)

where ε = νvisc|(∇~v)|2 ≥ 0 is the nonnegative dissipation rate of mechanical energy.

Finally, after performing the subtraction, simplifying with the aid of mass conservation (eqn.
A.1)

Dρ

Dt
+ ρ∇ · ~v = 0 (35)

and using the fundamental relation (30) to replace u with h, we find:

ρ
Dh

Dt
− DP

Dt
= −∇ · FR +∇ · (ρcpκ∇T ) + ρε (36)

This is an equation that governs “heat” in the ocean. and as such is an expression of the FIRST
LAW OF THERMODYNAMICS IN A NON-EQUILIBRIUM FLUID.

The dissipation rate term (which links the conversion of kinetic energy into heat at very small
spatial scales) is small and can be neglected for most purposes, so the right hand side can be
written as the divergence of a set of fluxes, in the same way as the other scalar balance equations.

A Practical “Heat” Conservation Equation

With the development of eqn. (36) we have achieved our goal. However, the P term on the left
hand side of the equation is awkward. It implies that the enthalpy of a water parcel will change
as the parcel moves vertically, even if the motion is adiabatic and no salt is gained or lost. On
the other hand, at least at constant P it implies that h is conserved (e.g., under mixing), which is
a useful property.

Unfortunately, although we can easily replace the left hand side of eqn. (36) with other expres-
sions for either internal energy u or entropy η using the fundamental thermodynamic relationship
(30) these other forms also have awkward additional terms. An internal energy equation would
also involve pressure and changes in density. The entropy equation is more promising, since
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entropy is conserved under horizontal and vertical motions, in the absence of boundary fluxes
as long as no salt is gained or lost, but it is unwieldy to have to consider salt evolution and the
chemical potential in a heat equation.

There is therefore no perfect way to create a conservative heat tracer. Instead, we can try to
derive approximate equations, which have different levels of “error”. These approximate equa-
tions often use POTENTIAL variables. Variables with the potential property do not change with
changes in pressure. Entropy and salinity have this property, as does potential temperature, which
has traditionally been used as a measure of heat in the ocean. Traditionally, so-called potential
temperature has been used as an approximately conservative heat tracer, but doing so cannot
be rigorously justified. As we shall show, the best solution currently known is to consider the
potential enthalpy.

The potential temperature θ is the temperature that a fluid parcel would have, if it was moved
in an adiabatic (actually isentropic) and isohaline way from its in-situ pressure P to a reference
pressure Pref (usually taken to be at the surface). This can be written explicitly in terms of the
adiabatic lapse rate Γ as:

θ(S, T, P, Pref) = T +

∫ Pref

P

Γ(S, θ, P ′)dP ′ (37)

Alternatively, we can define θ(S, T, P, Pref) using an implicit definition, in terms of the entropy,
which can easily be implemented by iteration using the Gibbs function (eqn. 15):

η(S, θ, Pref) = η(S, T, P ) (38)

However, potential temperature is not conserved under isobaric mixing! Attempting to replace h
with θ in eqn. (36) results in all kinds of additional terms on the right hand side of the resulting
equation; these result in the “production” of temperature when parcels are mixed. These extra
terms have traditionally been ignored, but their effect is in fact noticeable (i.e., lead to predictions
that are not matched by observations) when considering ocean processes.

Another variable with the potential property is the potential enthalpy h0. This is the enthalpy
that a fluid parcel would have, if it was moved in an isentropic and isohaline way to a reference
pressure. That is

h0(S, T, P ) ≡ h(S, θ, Pref) (39)

Although potential enthalpy is not perfectly conservative, it has been shown that the approximate
“heat” equation:

ρ
Dh0

Dt
≈ −∇ · FR +∇ · (ρcpκ∇T ) + ρε (40)

has errors in the ocean that are two orders of magnitude smaller than those arising from a similar
equation for θ, and that these errors are smaller than the errors that result from the neglect of ε
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(i.e., the heating due to viscous dissipation which is around 6 mW m−2), or from the neglect of
the geothermal heat flux (averaging 86 mW m−2). Thus h0 is effectively conservative.

Since the potential enthalpy is a somewhat unusual parameter for oceanographers (and for any-
one else!), under TEOS-10 a temperature-like variable called the Conservative Temperature
(denoted Θ, or sometimes CT ) has been defined by scaling h0 by a nominal heat capacity
c0p ≡ 3991.86795711963 J/kg/K10:

Θ =
h0

c0p
(41)

This definition for c0p is close to the average value of the specific heat capacity at the ocean
surface, so that the average value of θ −Θ at the ocean surface is close to zero11.

Then a suitable heat equation is:

ρc0p
DΘ

Dt
= −∇ · FR +∇ · (ρcpκ∇T ) (42)

Note that T still appears in the term for diffusive heat fluxes. In many cases this will not be
a problem because turbulent diffusion (which will appear when these equations are averaged
over suitable eddy length scales) is more important than molecular diffusion, so a more realistic
equation might be

ρ
DΘ

Dt
= −∇ · F

R

c0p
+∇ · (ρκeddy∇Θ) (43)

where κeddy � κ is an eddy-diffusivity. This is of the same form as the salinity conservation
equation (A.2).

For numerical modelling purposes, it is then useful to have a state equation for density in the
form

ρ = ρ(SA,Θ, p) (44)

and a computationally efficient 75-term polynomial is available for this purpose.

10defined to all 15 digits
11for 99% of the ocean surface the difference is less than 0.25◦C
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material in Griffies’ “Fundamentals of Ocean Climate Models” (528 pp., Princeton University
Press, 2004).

Entropy is a tricky concept. If you are interested in learning more, A. Ben-Naim, “Entropy
and the Second Law”, (263pp., World Scientific Publishing Company, Singapore, 2012) is an
interesting and readable attempt to argue for a link between entropy and information theory.

Technical information about TEOS-10 can be found in the TEOS-10 Manual; a brief introduction
is in the “TEOS-10 Primer” (both at www.teos-10.org). A practical overview of tempera-
ture, salinity, and density in the ocean can be found in Pawlowicz, “Key Variables in the Ocean:
Temperature, Salinity, and Density” (Nature Education Knowledge 4(4):13), easiest to find on-
line by searching on “Pawlowicz Key Variables”).
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Seawater Thermodynamics

Appendix A: Review - the Standard Equations

In developing the governing equations for a geophysical fluid (e.g., the ocean), we have

1. Conservation of mass for the fluid:
Dρ

Dt
+ ρ∇ · ~v = 0 (A.1)

where ρ is the density and ~v = (u, v, w) the fluid velocity,

2. Conservation of mass for dissolved solute in the fluid:

ρ
DS

Dt
= ∇ · (ρκ∇S) (A.2)

where S is the mass fraction of dissolved content (salt in the ocean, water content in the
atmosphere) and κ is a diffusivity12,

3. Conservation of momentum (from F = m~a in a rotating frame):

ρ
D~v

Dt
+ 2~Ω× ρ~v = −∇P −∇Φ +∇ · (ρνvisc∇~v) (A.3)

where ~Ω is the (constant) reference frame rotation vector, P is pressure, Φ is the geopoten-
tial, and νvisc is the viscosity. Note that by taking the dot product of ~v with both sides we
can transform the 3-component momentum equation into a different (but not independent)
equation for the conservation of mechanical energy:

ρ
D

Dt

(
|~v|
2

2

+ Pν + Φ

)
=
∂P

∂t
+∇ · (ρνvisc∇|~v|

2

2

)− ρε (A.4)

where ε = νvisc|(∇~v)|2 ≥ 0 is the nonnegative dissipation rate of mechanical energy.

4. With 6 variables ρ, u, v, w, P , S we need one more equation to close this system, and this
need can be satisfied if there is a known relationship (an “equation of state”):

ρ = ρ(S, P ) (A.5)

However, we know that for seawater, density is additionally affected by temperature

ρ = ρ(S, T, P ) (A.6)

and the introduction of another variable also means we need another equation involving temper-
ature to close the system! Where will this come from?

12Although once we learn more about thermodynamics we will find that diffusive fluxes are more correctly written
as being proportional to gradients in chemical potential, which takes into account the chemical activity of solute,
and not to gradients of salinity itself, and that we can also have salt fluxes in response to temperature gradients, the
so-called “Soret Effect”, and in response to pressure gradients, called barodiffusion.
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