Alex Cannon
Adjunct Professor
Research Scientist - Environment and Climate Change Canada
Google Scholar
ResearchGate profile
ORCID profile
R packages:
https://cran.r-project.org/package=qrnn Quantile regression neural network
https://cran.r-project.org/package=MBC Multivariate climate model bias correction
https://cran.r-project.org/package=ClimDown Gridded climate downscaling
https://cran.r-project.org/package=monmlp Monotone multi-layer perceptron
https://cran.r-project.org/package=CaDENCE Conditional density estimation network (CDEN)
https://cran.r-project.org/package=GEVcdn Generalized extreme value CDEN
127. Tam, B., A.J. Cannon, and B. Bonsal, 2023. Standardized Precipitation Evapotranspiration Index (SPEI) for Canada: Assessment of probability distributions. Canadian Water Resources Journal. doi:10.1080/07011784.2023.2183143
126. Dianonescu, E., H. Sankare, K. Chow, T. Murdock, and A.J. Cannon, 2023. A short note on the use of daily climate data to calculate Humidex heat-stress indices. International Journal of Climatology, 43(2):837-849. doi:10.1002/joc.7833
125. Jeong, D.I., B. Yu, and A.J. Cannon, 2023. Climate change impacts on linkages between atmospheric blocking and North American winter cold spells in CanESM2 and CanESM5. Climate Dynamics, 60:477-491. doi:10.1007/s00382-022-06307-z
121. Deng, D., A.J. Cannon, P. Laux, C. Held, O. Adeyeri, J. Rahimi, A. Srivastava, M. Mabaya, and H. Kuntsmann, 2022. Multivariate bias-correction of high-resolution regional climate change simulations for West Africa: performance and climate change implications. Journal of Geophysical Research - Atmospheres, 127(5):e2021JD034836. doi:10.1029/2021JD034836
120. Mahony, C., T. Wang, A. Hamann, and A.J. Cannon, 2022. A global climate model ensemble for downscaled monthly climate normals over North America. International Journal of Climatology, 42(11):5871-5891. doi:10.1002/joc.7566
119. Rupa R. C., R.K. Gaddam, S.D. Nerantzaki, S. Papalexiou, A.J. Cannon, and M.P. Clark, 2022. Exacerbated heat in large Canadian cities. Urban Climate, 42:101097. doi:10.1016/j.uclim.2022.101097
118. Cannon, A.J., H. Alford, R.R. Shrestha, M.C. Kirchmeier-Young, and M.R. Najafi, 2022. Canadian Large Ensembles Adjusted Dataset version 1 (CanLEADv1): Multivariate bias-corrected climate model outputs for terrestrial modelling and attribution studies in North America. Geoscience Data Journal, 9:288-303. doi:10.1002/gdj3.142
91. Cannon, A.J. and S. Innocenti, 2019. Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: Implications for future Intensity-Duration-Frequency curves. Natural Hazards and Earth System Sciences, 19:421-440. doi:10.5194/nhess-19-421-2019
87. Tam, B., K. Szeto, B. Bonsal, G. Flato, A.J. Cannon, and R. Rong, 2019. CMIP5 projections of droughts in Canada based on the Standardized Precipitation Evapotranspiration Index. Canadian Water Resources Journal, 44(1):90-107. doi:10.1080/07011784.2018.1537812
86. Farjad, B., A. Gupta, H. Sartipizadeh, and A.J. Cannon, 2019. A novel approach for selecting extreme climate change scenarios for climate change impact studies. Science of the Total Environment, 678:476-485. doi:10.1016/j.scitotenv.2019.04.218
2018:
85. Mahony, C.R. and A.J. Cannon, 2018. Wetter summers can intensify departures from natural variability in a warming climate. Nature Communications, 9:783. doi:10.1038/s41467-018-03132-z
84. Cannon, A.J., 2018. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dynamics, 50(1-2):31-49. doi:10.1007/s00382-017-3580-6
83. Cannon, A.J., 2018. Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. Stochastic Environmental Research and Risk Assessment, 32(11):3207-3225. doi:10.1007/s00477-018-1573-6
82. Ouali, D. and A.J. Cannon, 2018. Estimation of rainfall Intensity-Duration-Frequency curves at ungauged locations using quantile regression methods. Stochastic Environmental Research and Risk Assessment, 32(10):2821-2836. doi:10.1007/s00477-018-1564-7
81. Neilsen, D., M. Bakker, T. Van der Gulik, S. Smith, A.J. Cannon, I. Losso, A. Warwick Sears, 2018. Landscape based agricultural water demand modeling - a tool for water management decision making in British Columbia, Canada. Frontiers in Environmental Science, 6:74. doi:10.3389/fenvs.2018.00074
80. Wang, H-., J. Chen, A.J. Cannon, Xu, C-., and H. Chen, 2018. Transferability of climate simulation uncertainty to hydrological climate change impacts. Hydrology and Earth System Sciences, 22:3739-3759. doi:10.5194/hess-22-3739-2018
79. Snauffer, A., W.W. Hsieh, A.J. Cannon, and M.A. Schnorbus, 2018. Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models. The Cryosphere, 12(3):891-905. doi:10.5194/tc-12-891-2018
78. Hiebert, J., A.J. Cannon, T. Murdock, S. Sobie, and A. Werner, 2018. ClimDown: Climate Downscaling in R. The Journal of Open Source Software, 3(22):360. doi:10.21105/joss.00360
77. Li, G., X. Zhang, A.J. Cannon, T.Q. Murdock, S. Sobie, F.W. Zwiers, K. Anderson, and B. Qian, 2018. Indices of Canada's future climate for general and agricultural adaptation applications. Climatic Change, 148(1-2):249-263. doi:10.1007/s10584-018-2199-x
76. Stiff, H. W., K. D. Hyatt, M. M. Stockwell, and A. J. Cannon. 2018. Downscaled GCM Trends in Projected Air and Water Temperature to 2100 Due To Climate Variation in Six Sockeye Watersheds. Can. Tech. Rep. Fish. Aquat. Sci. 3259: vi + 83 p.
72. Zhang, X., F.W. Zwiers, G. Li, H. Wan, and A.J. Cannon, 2017. Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 10:255-259. doi:10.1038/NGEO2911
71. Mahony, C., A.J. Cannon, T. Wang, and S. Aitken, 2017. A closer look at novel climates: new method and insights at continental to landscape scales. Global Change Biology, 23:3934-3955. doi:10.1111/gcb.13645
70. Eum, H.I., A.J. Cannon, and T.Q. Murdock, 2017. Intercomparison of multiple statistical downscaling methods: Application of multi-criteria decision making to a model selection procedure. Stochastic Environmental Research and Risk Assessment, 31(3):683–703. doi:10.1007/s00477-016-1312-9
69. Eum, H.I. and A.J. Cannon, 2017. Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble. International Journal of Climatology, 37(8):3381-3397. doi:10.1002/joc.4924
68. Peng, H., A.R. Lima, A. Teakles, J. Jin, A.J. Cannon, and W.W. Hsieh, 2017. Forecasting hourly air quality concentration in Canada using updatable machine learning methods. Air Quality, Atmosphere and Health, 10(2):195-211. doi:10.1007/s11869-016-0414-3
67. Neilsen, D., S. Smith, G. Bourgeois, B. Qian, A.J. Cannon, G. Neilsen, and I. Losso, 2017. Modelling changing suitability for tree fruits in complex terrain. Acta Horticulturae (ISHS), 1160:207-214. doi:10.17660/ActaHortic.2017.1160.30
I'm a Research Scientist in the Climate Data and Analysis Section of Climate Research Division, Environment and Climate Change Canada. I work on the University of Victoria campus in Victoria, BC and am co-located with the Canadian Centre for Climate Modelling and Analysis and the Water & Climate Impacts Research Centre.
Since moving to Victoria, I no longer co-supervise students at UBC, but do continue to serve on graduate committees and collaborate with UBC researchers. Research collaborations have dealt mainly with the development and application of machine learning and statistical models for climate and weather analysis and prediction tasks, including:
-
estimation of hydroclimatological extremes; climate downscaling algorithms; climate model post-processing and bias correction; synoptic map-pattern classification and weather typing; assessing predictive uncertainty; and climate impacts on environmental systems
More broadly, I'm involved in activities that contribute to understanding of the state, trends, variability, extremes, and future projections of climate at both global and regional scales, with an emphasis on societally-relevant climatic variables.
I'm one of the Editors-In-Chief of Atmosphere-Ocean, am an associate editor of Advances in Statistical Climatology, Meteorology and Oceanography, and am on the editorial advisory board of Computers & Geosciences. I'm a past member of the AMS Committee on Artificial Intelligence Applications to Environmental Science.
Current CV