Scott McDougall

Assistant Professor

EOS-South 255
(604) 827-3864

Landslides and related natural and man-made geological hazards (geohazards) can travel long distances and pose a significant risk around the world to people, property and the environment. The long-term goal of my research program is to help reduce the losses caused by these events by developing a suite of tools and techniques that improve the ability of engineers and geoscientists to answer the following questions:

1) What is the probability that a landslide or related geohazard of a given size will occur?
2) If it occurs, what is the probability it will reach a certain location of interest (e.g. a community)?
3) If it reaches that location, what is the probability it will cause a certain degree of damage?
4) If the resulting risk is unacceptable, how much can it be reduced with various mitigation options?

In the short term, our work is focused on the following key geohazards: rock avalanches, debris flows, debris floods, tailings dam breaches, shoreline erosion and landslide-generated waves. All of these geohazards present us with unique research challenges. To address these challenges, our research approach integrates the following four methods: 1) field data collection and mapping of past events using state-of-the-art equipment, 2) statistical analysis of the data we collect to look for trends, 3) development and calibration of computer models that can be used to predict how far, how fast and in what direction future events may travel, and 4) laboratory experiments to study the underlying fundamental processes that influence the behaviour of these events.

My research interests and mentoring approach draw significantly from my experience as a consulting engineer, and I maintain strong industry connections.  As a result, students, postdoctoral fellows and research assistants in my program gain fundamental and specialized geohazard knowledge and skills that are in high demand in practice.

Assistant Professor, UBC (2016-present)

Geotechnical Engineer, BGC Engineering (2006-2016)

PhD, Geological Engineering, UBC (2006)

BASc, Civil Engineering, University of Toronto (1998)

Graduate Students

PhD Geological Engineering


Aaron J, McDougall S, Moore JR, Coe JA, Hungr O. 2017. The role of initial coherence and path materials in the dynamics of three rock avalanche case histories. Geoenvironmental Disasters. 4:5.

Miller GS, W. Take A, Mulligan RP, McDougall S. 2017. Tsunamis generated by long and thin granular landslides in a large flume. Journal of Geophysical Research: Oceans. 122:653-668.


McDougall S. 2016. 2014 Canadian Geotechnical Colloquium: Landslide runout analysis—current practice and challenges. Canadian Geotechnical Journal. 54:605-620.

Whittall J, Eberhardt E, McDougall S. 2016. Runout analysis and mobility observations for large open pit slope failures. Canadian Geotechnical Journal. 54:373-391.


Jakob M, McDougall S, Weatherly H, Ripley N. 2013. Debris-flow simulations on Cheekye river, British Columbia. Landslides. 10:685-699.


Brideau M-A, McDougall S, Stead D, Evans SG, Couture R, Turner K. 2012. Three-dimensional distinct element modelling and dynamic runout analysis of a landslide in gneissic rock, British Columbia, Canada. Bulletin of Engineering Geology and the Environment. 71:467-486.


Hungr O, McDougall S. 2009. Two numerical models for landslide dynamic analysis. Computers & Geosciences. 35:978-992.

Evans SG, Tutubalina OV, Drobyshev VN, Chernomorets SS, McDougall S, Petrakov DA, Hungr O. 2009. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology. 105:314-321.

Willenberg H, Eberhardt E, Loew S, McDougall S, Hungr O. 2009. Hazard assessment and runout analysis for an unstable rock slope above an industrial site in the Riviera valley, Switzerland. Landslides. 6:111-119.


Hungr O, McDougall S, Wise M, Cullen M. 2008. Magnitude–frequency relationships of debris flows and debris avalanches in relation to slope relief. Geomorphology. 96:355-365.


McDougall S, Boultbee N, Hungr O, Stead D, Schwab JW. 2006. The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide–debris flow. Landslides. 3:195.


McDougall S, Hungr O. 2005. Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal. 42:1437-1448.


McDougall S, Hungr O. 2004. A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal. 41:1084-1097.